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Introduction

I Aim: develop scalable MCMC algorithms for large (N, p)
regression with continuous shrinkage priors

I Compute the posterior expectation & marginal posterior
densities for the coefficients

I We won’t get this from optimization, also not a convex
problem in many cases

I For concreteness, we focus on the horseshoe prior of Carvalho
et al. (2010) - theoretical support + empirical performance

I Basic ingredients extend to more general Gaussian variance
mixtures as well as two-component mixtures like the
spike-and-slab lasso (Rockova & George, 2014)



Approximations in MCMC

I Our proposed algorithm introduces certain approximations at
each MCMC step - approximate certain expensive matrix
multiplications

I Leads to substantial computational advantages

I How to quantify the effect of such approximations?

I Perturbation theory for MCMC algorithms (Alquier et al.
2014, Rudolf & Schweizer (2018), Johndrow & Mattingley
(2018)...)

I A new general result + bounds on approximation error for our
algorithm



Other applications

I Similar ideas applicable to a host of other high-dimensional
problems

I Ongoing work: approximate sampling from truncated
multivariate normals with applications to problems with
constrained parameters

I Replace the hard constraints with “soft” versions



Bayesian shrinkage: motivation and background



“Global-local” shrinkage priors

I Consider a Gaussian linear model

z = Wβ + ε, ε ∼ N(0, σ2IN)

where W is N × p, with N, p both possibly large

I The basic form of the prior is

βj | σ, ξ, η
ind∼ N(0, σ2ξ−1η−1

j )

I The η
−1/2
j are the “local scales” and ξ−1/2 the “global scale”

I A popular choice for π(ξ, η) is the “Horseshoe” (Carvalho et
al. 2010)

η
−1/2
j

ind .∼ Cauchy+(0, 1), ξ−1/2 ∼ Cauchy+(0, 1)



“Global-local” shrinkage priors

I The basic form of the prior is

βj | σ, ξ, η
ind∼ N(0, σ2ξ−1η−1

j )

I The η
−1/2
j are the “local scales” and ξ−1/2 the “global scale”

I Only global scale ⇒ ridge type shrinkage

I Local scales help adapt to sparsity

I The global scale ξ−1/2 controls how many βj are signals, and

η
−1/2
j control their identities



Continuous shrinkage via one group models
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Computational challenges



MCMC review

I Basic idea of MCMC: construct a Markov transition kernel P
with invariant measure the posterior, i.e. µP = µ where µ is
the posterior measure

I Then approximate

µϕ ≡
∫
ϕ(x)µ(dx) ≈ n−1

n−1∑
k=0

ϕ(Xk)

for Xk ∼ νPk−1



Computational cost

I What is the computational cost? Two factors

1. The cost of taking one step with P
2. How long the Markov chain needs to be to make

approximation “good”



Computational cost per step

I Perform various matrix operations - multiplication, solving
linear systems, Cholesky etc

I Sample from complicated distributions (such as truncated
MVNs)



Length of path required

I How long of a Markov chain do we need to approximate the
posterior well?

I Informally, the higher the autocorrelations, the longer the path
we will need

I Another performance metric: effective sample size, the
equivalent number of independent samples (larger is better)



Computational cost

I What is the computational cost? Two factors

1. The cost of taking one step with P
2. How long the Markov chain needs to be to make

approximation “good”

I For the horseshoe, both of these present challenges

I Linear algebra with large matrices

I High autocorrelation



Algorithmic developments



Gibbs sampling for the horseshoe

State space X = Rp × Rp
+ × R+ × R+ with state-vector

x = (β, η, ξ, σ2). Let D = diag(η−1
j )

Typical computational approach: blocked Gibbs sampling (Polson
et al (2012))

η | β, σ2, ξ, z

ξ | β, σ2, η, z

(β, σ2) | η, ξ, z

The algorithm is known to exhibit poor mixing for ξ (Polson et al.
(2012))



Mixing issues

Evidence of poor mixing for ξ



Remedy: Johndrow, Orenstein, B. (2018+)

I Our approach: more blocking

(β, σ2, ξ) | η, z
η | (β, σ2, ξ), z

I The first step is done by sampling

ξ | η, z ⇒ Metropolis-within-Gibbs

σ2 | η, ξ, z ⇒ sample from Inverse-Gamma

β | η, σ2, ξ, z ⇒ sample from MVN

I The second step is done by sampling ηjs independently using
an accurate rejection sampler



Results: Autocorrelations for ξ



Example

Simulation with N = 2, 000 and p = 20, 000: first 50 βj (rest are
zero). Posterior medians, 95 percent credible intervals, along with
the truth.



Results: Accuracy

The old algorithm often failed to identify components of β with
bimodal marginals
This conveys uncertainty about whether βj is a true signal, which
is one of the nice features of taking a Bayesian approach to
multiple testing



Geometric ergodicity

Theorem. The blocked sampler above is geometrically ergodic.

Verify standard drift + minorization condition

1. Foster–Lyapunov condition. There exists a function
V : X→ [0,∞) and constants 0 < γ < 1 and K > 0 such that

(PV )(x) ≡
∫

V (y)P(x , dy) ≤ γV (x) + K .

2. Minorization. For every R > 0 there exists α ∈ (0, 1)
(depending on R) such that, for S(R) = {x : V (x) < R},

sup
x ,y∈S(R)

‖P(x , ·)− P(y , ·)‖TV ≤ 2(1− α).



Geometric ergodicity

Harris’ Theorem (Meyn & Tweedie; Hairer & Mattingley).
Let x = (η, ξ, σ2, β) and P the transition kernel. Also, let µ be the
invariant measure, i.e., the posterior.

Together, (1) and (2) imply,

sup
|ϕ|<1+V

∫
ϕ(y)(Pn(x , y)− µ(y)) dy ≤ C ᾱnV (x),

for some ᾱ ∈ (0, 1).

Geometric convergence in a weighted total variation norm

(1− ᾱ) the spectral gap - larger implies faster convergence



The exact algorithm

Blocking improves mixing, plus provably geometrically ergodic.

But what about the cost-per-step?



Cost-per-iteration

Let’s focus on the update of β:

β | σ2, ξ, η, z ∼ N

((
W ′W + (ξ−1D)−1

)−1
W ′z , σ2

(
W TW + (ξ−1D)−1

)−1
)

where D = diag(η−1
j ).

Usual Cholesky based sampler (Rue, 2001) for N(Q−1b,Q−1)
requires O(p3) computation for non-sparse Q.

Highly prohibitive O(p3) complexity per iteration when p � N.



(Partial) Remedy

In B., Chakraborty, Mallick (2016), we propose an alternative
exact sampler with O(N2p) complexity.

(i) Sample u ∼ N(0, ξ−1D) and f ∼ N(0, IN) indep.
(ii) Set v = Wu + f
(iii) Solve Mξv

∗ = (z/σ − v) where Mξ = IN + ξ−1WDW ′

(iv) Set β = σ(u + ξ−1DW ′v∗)

(iii) is the costliest step taking max{O(N2p),O(N3)} steps.
Significant savings when p � N.



Cost-per-iteration

However, still O(N2p) computation. N can be in the order of tens
of thousands in GWAS studies.

The remaining bottleneck is only in calculating

Mξ = IN + ξ−1WDW ′

which is needed by the updates for β, σ2, and ξ

Our proposal: replace WDW ′ with a cheaper and accurate
approximation



Approximations in MCMC



Approximation

I Horseshoe is designed to shrink most coordinates of β toward
zero... So many of the (ξηj)

−1 will typically be tiny at any
iteration

I Choose a “small” threshold δ, approximate Mξ by

Mξ,δ = IN + ξ−1WSDSW
′
S , S = {j : ξ−1η−1

j > δ}

where WS is the sub-matrix consisting of columns in the set
S , etc

I Carefully replace all calculations involving Mξ with Mξ,δ

I Reduces cost per step to Ns2 ∨ Np, where s = |S |

Note: this is different from setting some βj = 0 at each scan. β is
still being drawn from a non-singular MVN.



Perturbations in MCMC

I A general strategy to reduce cost-per-step is to replace the
exact transition kernel P with an “approximation” Pε

I Some other examples - replace a non-standard density with its
best approximation from a standard family, divide-conquer...

I Pε still a Markov chain

I Question: what can we say about finite-time averages from
the approximate chain? In other words, is

µϕ ≈ n−1
n−1∑
k=0

ϕ(X ε
k)

for X ε
k ∼ νPk

ε ?



Literature review

I Early reference on perturbation bounds: Mitrophanov (2005),
for uniformly ergodic chains

I Renewed interest in recent years (Alquier et al. 2014, Pillai &
Smith (2015), Rudolf & Schweizer (2018), Johndrow &
Mattingley (2018)) - extensions to unbounded state-spaces

I Most applications pertain to “tall data”, i.e., lots of samples
(Bardenet, Doucet, Holmes (2017))

I Ours is one of the first applications for large N and p with
potentially p � N



A new general perturbation bound

We show that

E

(
1

n

n−1∑
k=0

ϕ(X ε
k)− µϕ

)2

can be “controlled” (skipping exact bounds) if

1. There exists Kε > 0 and γε ∈ (0, 1) such that

(PεV )(x) ≤ γεV (x) + Kε,

that is V is also Lyapunov for Pε.

2. The approximate kernel Pε satisfies

sup
x∈X
‖P(x , ·)− Pε(x , ·)‖TV ≤

ε

2
.



Application to Horseshoe sampler

Recall our approximation step replaces Mξ = IN + ξ−1WDW ′ with
Mξ,δ = IN + ξ−1WDδW

′.

We show that this approximation achieves

sup
x
‖P(x , ·)− Pδ(x , ·)‖2

TV ≤ δ‖W ‖2
[
4N(‖z‖2/b0) + 9

]
+O(δ2)

for any small fixed threshold δ.

Satisfies conditions of our general theorem.



Application to Horseshoe sampler

Practically: we recommend δ = 10−4 or 10−5 and have observed
no advantages from smaller values.

Figure: Average KS distance between the marginals of 100 entries of β
from the exact and approximate algorithm for N = 1000 and p = 10000



Varying threshold

I Using a fixed threshold ε results in an asymptotic bias
proportional to

√
ε/(1− ᾱ), where recall ᾱ quantifies rate of

convergence of the exact chain

I More room to use approximations when the exact chain mixes
rapidly, i.e.,

√
ε is small compared to the spectral gap (1− ᾱ)

of the exact chain

I The asymptotic bias can be eliminated by using a decreasing
schedule of approximation parameters (εk) - need to satisfy
εk → 0 “sufficiently fast” (summability condition)

I Reminiscent of conditions for stochastic gradient or Langevin
dynamics



Simulation studies

The results that follow use a common simulation structure

wi
iid∼ Np(0,Σ)

zi ∼ N(wiβ, 4)

βj =

{
2−(j/4−9/4) j < 24

0 j > 23
,

So there are always “small” and “large” signals, and true nulls
We consider both Σ = I (independent design) and Σij = 0.9|i−j |

(correlated design)



Effective sample size

Recall effective sample size ne , a measure of the number of
independent samples your Markov path is “worth”

If ne = n then your MCMC is giving essentially independent
samples (like vanilla Monte Carlo)

If ne � n then your MCMC has very high autocorrelations, need
very long path to get good approximation to posterior



Mixing as p increases

Effective sample sizes are essentially independent of p, even when
the design matrix is highly correlated



Mixing as N increases

Effective sample sizes are essentially independent of N, even when
the design matrix is highly correlated



Effective samples per second

Recall effective sample size ne , a measure of the number of
independent samples your Markov path is “worth”

So if t is computation time in seconds, effective samples per
second ne/t is an empirical measurement of overall computational
efficiency



Results: Effective samples per second

The approximate algorithm is fifty times more efficient when
N = 2, 000 and p = 20, 000



Conclusion

Computational cost for MCMC shouldn’t massively differ from
alternatives designed for the same problem

But making the algorithm fast takes work, often problem-specific

More thrust on “computing” posteriors that we know have “nice”
properties

Approximations in MCMC seem a promising direction to speed-up
computation

A step towards rigorous quantification of approximation error
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Thank You



Performance in p � n settings



Data generation

I Replicated simulation study with horseshoe prior (Carvalho et
al. (2010)

I n = 200 & p = 5000. True β0 has 5 non-zero entries and
σ = 1.5

I Two signal strengths:
(i) weak - β0S = ±(0.75, 1, 1.25, 1.5, 1.75)T

(ii) moderate - β0S = ±(1.5, 1.75, 2, 2.25, 2.5)T

I Two types of design matrix:
(i) Independent - Xj i.i.d. N(0, Ip)

(ii) compound symmetry - Xj i.i.d. N(0,Σ), Σjj′ = 0.5 + 0.5δjj′

I Summary over 100 datasets



Weak signal case
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Estimation performance: Boxplots of `1, `2 and prediction error across

100 simulation replicates. HSme and HSm are posterior point wise median

and mean for the horeshoe prior. Top row: Independent covariates,

Bottom row: Compound symmetry



Moderate signal case
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Frequentist coverage of 95% credible intervals

Frequentist coverages (%) and 100×lengths of point wise 95% intervals. Average

coverages and lengths are reported after averaging across all signal variables (rows 1

and 2) and noise variables (rows 3 and 4). Subscripts denote 100×standard errors for

coverages. LASSO and SS respectively stand for the methods in van de Geer et al.

(2014) and Javanmard & Montanari (2014). The intervals for the horseshoe (HS) are

the symmetric posterior credible intervals.



Variable selection by postprocessing

Q(β) =
1

2
‖X β̂ − Xβ‖2

2 +

p∑
j=1

µj |βj |, µj = |β̂j |−2.



Variable selection performance

SAVS: Variable selection by post-processing the posterior mean from the HS prior.

Plot of Mathew’s correlation coefficient (MCC) over 1000 simulations for various

methods. MCC values closer to 1 indicate better variable selection performance.


