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Introduction

» Aim: develop scalable MCMC algorithms for large (N, p)
regression with continuous shrinkage priors

» Compute the posterior expectation & marginal posterior
densities for the coefficients

» We won't get this from optimization, also not a convex
problem in many cases

» For concreteness, we focus on the horseshoe prior of Carvalho
et al. (2010) - theoretical support + empirical performance

» Basic ingredients extend to more general Gaussian variance
mixtures as well as two-component mixtures like the
spike-and-slab lasso (Rockova & George, 2014)



Approximations in MCMC

» Our proposed algorithm introduces certain approximations at
each MCMC step - approximate certain expensive matrix
multiplications

> Leads to substantial computational advantages
» How to quantify the effect of such approximations?

» Perturbation theory for MCMC algorithms (Alquier et al.
2014, Rudolf & Schweizer (2018), Johndrow & Mattingley
(2018)...)

» A new general result + bounds on approximation error for our
algorithm



Other applications

» Similar ideas applicable to a host of other high-dimensional
problems

» Ongoing work: approximate sampling from truncated
multivariate normals with applications to problems with
constrained parameters

> Replace the hard constraints with “soft” versions



Bayesian shrinkage: motivation and background



“Global-local” shrinkage priors

» Consider a Gaussian linear model
z=WpB+e, &~N(0, d%ly)
where W is N x p, with N, p both possibly large

» The basic form of the prior is

ind 1
Bilo&n % NO,0% )

» The 7]].71/2 are the “local scales” and £-1/2 the “global scale”

» A popular choice for 7(§,n) is the “Horseshoe” (Carvalho et
al. 2010)

~1/2 ind.

] Cauchy, (0,1), &7 %2 ~ Cauchy,(0,1)



“Global-local” shrinkage priors

v

The basic form of the prior is

ind 1 —
Bilo&n X NO,0% )

1/2

v

The 771-_1/2 are the “local scales” and £~/< the “global scale”

v

Only global scale = ridge type shrinkage

v

Local scales help adapt to sparsity

1/2

v

The global scale £~

n; V' control their identities

controls how many §3; are signals, and



Continuous shrinkage via one group models

Comparsion of priors: central region
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Computational challenges



MCMC review

» Basic idea of MCMC: construct a Markov transition kernel P
with invariant measure the posterior, i.e. P = p where p is
the posterior measure

» Then approximate

n—1

pp = /w(X)u(dX) At o(Xe)

k=0

for X, ~ vpk-1



Computational cost

» What is the computational cost? Two factors
1. The cost of taking one step with P

2. How long the Markov chain needs to be to make
approximation “good”



Computational cost per step

» Perform various matrix operations - multiplication, solving
linear systems, Cholesky etc

» Sample from complicated distributions (such as truncated
MVNs)



Length of path required

» How long of a Markov chain do we need to approximate the
posterior well?

> Informally, the higher the autocorrelations, the longer the path
we will need

» Another performance metric: effective sample size, the
equivalent number of independent samples (larger is better)



Computational cost

v

What is the computational cost? Two factors
1. The cost of taking one step with P

2. How long the Markov chain needs to be to make
approximation “good”

v

For the horseshoe, both of these present challenges

v

Linear algebra with large matrices

v

High autocorrelation



Algorithmic developments



Gibbs sampling for the horseshoe

State space X = RP x Ri x Ry x R4 with state-vector
x = (8.1.€,0%). Let D = diag(n;”")

Typical computational approach: blocked Gibbs sampling (Polson
et al (2012))

n ‘ ﬂ7027§72
¢ B,0%m, 2
(B,0%) | n,¢&, 2

The algorithm is known to exhibit poor mixing for £ (Polson et al.
(2012))



Mixing issues

Evidence of poor mixing for £
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Remedy: Johndrow, Orenstein, B. (2018+)

» Qur approach: more blocking

(/870-275) ‘ 7772
n ‘ (/870'275)72

» The first step is done by sampling

& | m, z = Metropolis-within-Gibbs
o? | n,&, z = sample from Inverse-Gamma

B|n,02, €& z = sample from MVN

» The second step is done by sampling 7);s independently using
an accurate rejection sampler



Results: Autocorrelations for &
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Example

Simulation with N = 2,000 and p = 20, 000: first 50 ; (rest are
zero). Posterior medians, 95 percent credible intervals, along with
the truth.
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Results: Accuracy
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The old algorithm often failed to identify components of 5 with
bimodal marginals

This conveys uncertainty about whether 3; is a true signal, which
is one of the nice features of taking a Bayesian approach to
multiple testing



Geometric ergodicity

Theorem. The blocked sampler above is geometrically ergodic.
Verify standard drift + minorization condition

1. Foster—Lyapunov condition. There exists a function
V : X —=[0,00) and constants 0 < v < 1 and K > 0 such that

(PVI) = [ VOIP(.dy) <7V + K.

2. Minorization. For every R > 0 there exists o € (0, 1)
(depending on R) such that, for S(R) = {x: V(x) < R},

sup  [[P(x,-) = P(y,)lrv <2(1 - a).
x,y€S(R)



Geometric ergodicity

Harris’ Theorem (Meyn & Tweedie; Hairer & Mattingley).
Let x = (n,£,02, B) and P the transition kernel. Also, let 11 be the
invariant measure, i.e., the posterior.

Together, (1) and (2) imply,

sup / o) (P (x.y) — ply)) dy < Ca"V(x),
lpl<1+V

for some & € (0,1).
Geometric convergence in a weighted total variation norm

(1 — @) the spectral gap - larger implies faster convergence



The exact algorithm

Blocking improves mixing, plus provably geometrically ergodic.

But what about the cost-per-step?



Cost-per-iteration

Let's focus on the update of S:
Blo2&n,z~N ((W’W + (€I T IW z, A (WTW (510)1)1>

where D = diag(njfl).

Usual Cholesky based sampler (Rue, 2001) for N(Q~1h, Q1)
requires O(p>) computation for non-sparse Q.

Highly prohibitive O(p3) complexity per iteration when p > N.



(Partial) Remedy

In B., Chakraborty, Mallick (2016), we propose an alternative
exact sampler with O(N?p) complexity.

(i) Sample u ~ N(0,671D) and f ~ N(0, ) indep.

(i) Set v=Wu+f

(iii) Solve Mgv* = (z/o — v) where Mg = Iy + £~ 1WDW’
(iv) Set B8 = o(u+ £ 1DW/v¥)

(iii) is the costliest step taking max{O(N?p), O(N3)} steps.
Significant savings when p > N.



Cost-per-iteration

However, still O(N?p) computation. N can be in the order of tens
of thousands in GWAS studies.

The remaining bottleneck is only in calculating
Me = Iy + £ WDW/
which is needed by the updates for 3,02, and ¢

Our proposal: replace WDW'’ with a cheaper and accurate
approximation



Approximations in MCMC



Approximation

» Horseshoe is designed to shrink most coordinates of 3 toward
zero... So many of the (£n;)~! will typically be tiny at any
iteration

» Choose a “small” threshold J, approximate M by
Mes=In+& " WsDsWe, S ={j:& " > 6}

where Wjs is the sub-matrix consisting of columns in the set
S, etc

» Carefully replace all calculations involving Mg with M s

» Reduces cost per step to Ns? V Np, where s = |§|

Note: this is different from setting some 3; = 0 at each scan. 3 is
still being drawn from a non-singular MVN.



Perturbations in MCMC

v

A general strategy to reduce cost-per-step is to replace the
exact transition kernel P with an “approximation” P

v

Some other examples - replace a non-standard density with its
best approximation from a standard family, divide-conquer...

P, still a Markov chain

Question: what can we say about finite-time averages from
the approximate chain? In other words, is

v

v

n—1
e Y o(X()
k=0

for Xg ~ vPk?



Literature review

» Early reference on perturbation bounds: Mitrophanov (2005),
for uniformly ergodic chains

» Renewed interest in recent years (Alquier et al. 2014, Pillai &
Smith (2015), Rudolf & Schweizer (2018), Johndrow &
Mattingley (2018)) - extensions to unbounded state-spaces

» Most applications pertain to “tall data”, i.e., lots of samples
(Bardenet, Doucet, Holmes (2017))

» Qurs is one of the first applications for large N and p with
potentially p > N



A new general perturbation bound

We show that
n—1 2
1
E (n D (X)) - /w)
k=0
can be “controlled” (skipping exact bounds) if
1. There exists K. > 0 and ~, € (0,1) such that
(PeV)(x) < 7eV(x) + Ko,
that is V is also Lyapunov for P..
2. The approximate kernel P, satisfies

sup [|P(x, ) — Pe(x, ")l 7v <
xeX

N



Application to Horseshoe sampler

Recall our approximation step replaces Mg = Iy + ETWDW' with
M&(; =Iy+ 6_1 WDg w'.

We show that this approximation achieves
sup [[P(x, ) = Ps(x, oy < SIWIP[aN(12[|/ bo) + 9] + O(5%)
for any small fixed threshold 4.

Satisfies conditions of our general theorem.



Application to Horseshoe sampler

Practically: we recommend § = 10~% or 1075 and have observed
no advantages from smaller values.
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Figure: Average KS distance between the marginals of 100 entries of 3
from the exact and approximate algorithm for N = 1000 and p = 10000



Varying threshold

» Using a fixed threshold € results in an asymptotic bias
proportional to \/€/(1 — &), where recall & quantifies rate of
convergence of the exact chain

» More room to use approximations when the exact chain mixes
rapidly, i.e., \/€ is small compared to the spectral gap (1 — @)
of the exact chain

» The asymptotic bias can be eliminated by using a decreasing
schedule of approximation parameters (ex) - need to satisfy
ex — 0 “sufficiently fast” (summability condition)

» Reminiscent of conditions for stochastic gradient or Langevin
dynamics



Simulation studies

The results that follow use a common simulation structure

wi % N, (0, %)
zi ~ N(w;3,4)
g — 2-U/4=9/4) ;<24
7o j>23’

So there are always “small” and “large” signals, and true nulls
We consider both ¥ = / (independent design) and ¥;; = 0.9li—Jl
(correlated design)



Effective sample size

Recall effective sample size n., a measure of the number of
independent samples your Markov path is “worth"”

If ne = n then your MCMC is giving essentially independent
samples (like vanilla Monte Carlo)

If ne < n then your MCMC has very high autocorrelations, need
very long path to get good approximation to posterior



Mixing as p increases

independent design
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Effective sample sizes are essentially independent of p, even when

the design matrix is highly correlated



Mixing as N increases

independent design

correlated design
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Effective sample sizes are essentially independent of N, even when

the design matrix is highly correlated



Effective samples per second

Recall effective sample size n., a measure of the number of
independent samples your Markov path is “worth”

So if t is computation time in seconds, effective samples per
second n./t is an empirical measurement of overall computational
efficiency



Results: Effective samples per second

old

new approximate
median: 0.42 median: 0.22 median: 11.
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The approximate algorithm is fifty times more efficient when
N = 2,000 and p = 20,000



Conclusion

Computational cost for MCMC shouldn't massively differ from
alternatives designed for the same problem

But making the algorithm fast takes work, often problem-specific

More thrust on “computing” posteriors that we know have “nice”
properties

Approximations in MCMC seem a promising direction to speed-up
computation

A step towards rigorous quantification of approximation error
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Performance in p > n settings



Data generation

v

Replicated simulation study with horseshoe prior (Carvalho et
al. (2010)

n =200 & p = 5000. True By has 5 non-zero entries and
c=15

Two signal strengths:

(i) weak - Bos = £(0.75,1,1.25,1.5,1.75)"

(i) moderate - Sps = +(1.5,1.75,2,2.25,2.5)"

Two types of design matrix:

(i) Independent - X; i.i.d. N(0,1,)

(ii) compound symmetry - X; i.i.d. N(0,%), X7 = 0.5+ 0.55;;

Summary over 100 datasets

v

v

v

v



Weak signal case
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Estimation performance: Boxplots of /1, /> and prediction error across

100 simulation replicates. HS,,e and HS,, are posterior point wise median

and mean for the horeshoe prior. Top row: Independent covariates,

Bottom row: Compound symmetry




Moderate signal case
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Estimation performance: Boxplots of /1, /> and prediction error across
100 simulation replicates. HS,,e and HS,, are posterior point wise median
and mean for the horeshoe prior. Top row: Independent covariates,
Bottom row: Compound symmetry



Frequentist coverage of 95% credible intervals

p 500

Design Independent Comp Symm Toeplitz

HS LASSO SS HS LASSO SS HS LASSO SS

Signal Covcragc 931‘0 7512‘0 823,7 950‘9 734.0 804.0 944_0 807.0 795.6
Signal Length 42 46 41 85 71 7 86 79 4

Noise Covcrago 100[).0 990.8 991,0 1000‘0 981.0 990.8 981 981.0 990.6
Noise Length 2 43 40 4 69 35 78 73

Frequentist coverages (%) and 100x lengths of point wise 95% intervals. Average
coverages and lengths are reported after averaging across all signal variables (rows 1
and 2) and noise variables (rows 3 and 4). Subscripts denote 100X standard errors for
coverages. LASSO and SS respectively stand for the methods in van de Geer et al.
(2014) and Javanmard & Montanari (2014). The intervals for the horseshoe (HS) are

the symmetric posterior credible intervals.



Variable selection by postprocessing

A
Noise components of §

Estimated noise components
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Variable selection performance
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SAVS: Variable selection by post-processing the posterior mean from the HS prior.

Plot of Mathew’s correlation coefficient (MCC) over 1000 simulations for various

methods. MCC values closer to 1 indicate better variable selection performance.



