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Quick overview

• In count data, there exhibits an overabundance of 
zeros or near-zeros.

• Sample-size heterogeneity appears together with 
sparsity or quasi-sparsity.

• We discuss predictive densities for sparse count 
data with sample-size heterogeneity. 
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Genomic position

# of mutated alleles
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Overabundance of zeros or near-zeros:
Pickpocketing in Tokyo
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Lots of zeros and near–zeros in the crime count data!!

BanffTokyo

Pickpocketings at towns in 8 wards during 2012-2017 from http://www.keishicho.metro.tokyo.jp/

・More pickpocketings in towns with deeper red color
・Less  pickpocketings in towns with lighter  red color
・No pickpocketings in towns without color 



Overabundance of zeros or near-zeros:
Rare allele mutants in PIK3CA
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Lots of near–zeros in the rare allele mutants!!

Genomic position

・Genomic location of an oncogene PIK3CA from https://ghr.nlm.nih.gov/gene/PIK3CA

・Focus on rare allele mutants (allele frequencies <0.05)

# of mutated alleles

・very low counts at 
a majority of genomic positions

・substantially higher counts at  
functionally relevant positions

https://ghr.nlm.nih.gov/gene/PIK3CA


Heterogeneity arises in sparse count data
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Most of sparse count data have sample-size heterogeneity
Ex.) Longitudinal data of pickpocketings in Tokyo

・𝑆𝑡,𝑖: 1 if town 𝑖 reports crime counts 0 otherwise

・Expectation of crimes for 𝑇 years at town 𝑖 = σ𝑡=1
𝑇 𝑆𝑡,𝑖×crime rate 𝜃𝑖

・Sample size σ𝑡=1
𝑇 𝑆𝑡,𝑖 varies according to towns 𝑖

Town＼Year 2013 2014 2015 2016 2017 

𝑡=1

5

𝑆𝑡,𝑖

Ginza 1 0 0 0 2 0 5
…

Ginza 8 7 1 1 12 3 5

Irifune 1 0 0 0 0 0 5

Irifune 2 0 0 0 0 No report 4
…

Hamarikyu 0 0 No report 0 No report 3



Heterogeneity arises in sparse count data

2019/04/11 8

Genomic position 𝑖 Genomic position 𝑖

# of mutated alleles: 𝑋𝑖 Sequencing depth 𝑟𝑖

Most of sparse count data have sample-size heterogeneity
Ex.) rare allele mutants in PIK3CA

Mean of # of mutated alleles at each genomic position E[𝑋𝑖]

= sequencing depth 𝑟𝑖×common mutation rate 𝜃𝑖

・Sequencing depth 𝑟𝑖 varies according to genomic positions 𝑖



Prediction for sparse count data 
with sample-size heterogeneity

In either example, prediction is of interest
• In the crime data, predicting the behavior of future crime 

counts based on past crime data is useful for preventing 
future crimes

• In the rare allele mutants data, predicting the rare allele 
mutations after normalization of sequencing depth 
removes the effect of heterogeneous sequencing depths

・Observe 𝑋𝑖 ∼ Po 𝑟𝑖𝜃𝑖 , 𝑖𝑛𝑑𝑒𝑝. for 𝑖 = 1,… , 𝑛

・Predict 𝑌𝑖 ∼ Po 𝜃𝑖 , 𝑖𝑛𝑑𝑒𝑝. for 𝑖 = 1,… , 𝑛
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Our goal is to find a good predictive density for this set-up



Problem set-up

• Current observation: 𝑋𝑖 ∼ Po 𝑟𝑖𝜃𝑖 , 𝑖𝑛𝑑𝑒𝑝. for 𝑖 = 1,… , 𝑛

• Future observation:  𝑌𝑖 ∼ Po 𝜃𝑖 , 𝑖𝑛𝑑𝑒𝑝. for 𝑖 = 1,… , 𝑛

• Notation: 𝑞 𝑦 𝜃 ≔ ς𝑖(𝜃𝑖
𝑦𝑖/𝑦𝑖!)exp(−𝜃𝑖)

• Known parameter: sample size (ratio) {𝑟𝑖: 𝑖 = 1,… , 𝑛}

• Unknown parameter: 𝜃 = (𝜃1, … , 𝜃𝑛)

• 𝜃 is assumed to be sparse
𝜃 = 𝜃1, … , 𝜃𝑛 ∈ Θ 𝑠𝑛 ≔ {𝜃: ||𝜃||0 ≤ 𝑠𝑛}

• 𝜃 is assumed to be quasi-sparse
𝜃 = 𝜃1, … , 𝜃𝑛 ∈ Θ 𝑠𝑛, 𝜀𝑛 ≔ {𝜃: (#𝑖 𝑠. 𝑡. 𝜃𝑖 > 𝜀𝑛) ≤ 𝑠𝑛}

2019/04/11 10

What is a good strategy for constructing a predictive density? 



Decision-theoretic framework for prediction

• Predictive density: ො𝑞(𝑦; 𝑥)
• We predict future observations 𝑦 using a predictive density 
ො𝑞 𝑦; 𝑥 based on current observations 𝑥.

• Ex.) Bayesian predictive density based on a prior Π

• Kullback-Leibler loss and risk: 𝐿(𝑥, ො𝑞) and 𝑅(𝜃, ො𝑞)

Our goal: find exact asymptotically minimax predictive densities 
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𝑞Π 𝑦 𝑥 = ∫ 𝑞 𝑦 𝜃 Π(𝑑𝜃 ∣ 𝑥)

𝐿 𝑥, ො𝑞 ≔

𝑦

𝑞 𝑦 𝜃 log
𝑞(𝑦 ∣ 𝜃)

ො𝑞(𝑦; 𝑥) 𝑅 𝜃, ො𝑞 ≔ 𝐸𝑋∣𝜃[𝐿(𝑋, ො𝑞)]&

sup
𝜃∈Θ[𝑠𝑛]

𝑅(𝜃, ො𝑞) ∼ inf
ො𝑞

sup
𝜃∈Θ 𝑠𝑛

𝑅(𝜃, ො𝑞) as 𝑛 → ∞ and 
𝑠𝑛

𝑛
→ 0



Related literature on
sparse count data analysis/ prediction for Poisson

• Sparse (or quasi-sparse) count data analysis
• Manufacturing; c.f., Lambert (1992)

• Micropropagation; c.f., Yang, Hardin, and Addy (2010)

• Terrorist attacks; c.f., Datta and Dunson (2016)

• Estimation and Prediction using Poisson models 
under Kullback-Leibler loss
• Simultaneous estimation; Ghosh and Yang (1988)

• Shrinkage priors; Komaki (2004,2015)
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This work discusses prediction (as well as estimation)
using sparse Poisson models under Kullback-Leibler loss!



Related literature on 
exact asymptotically minimaxity
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Table for Estimation Gaussian Poisson

Ellipsoidal constraint Pinsker (1980)
Johnstone and 

MacGibbon (1992)

Sparsity constraint
Donoho, Johnstone, 

Hoch and Stern (1992)
This work

Table for Prediction Gaussian Poisson

Ellipsoidal constraint Xu and Liang (2010) *

Sparsity constraint
Mukherjee and 

Johnstone (2015,2017)
This work
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Problem set-up (in this talk)

• Current observation: 𝑋𝑖 ∼ Po 𝑟𝜃𝑖 , 𝑖𝑛𝑑𝑒𝑝. for 𝑖 = 1,… , 𝑛

• Future observation:  𝑌𝑖 ∼ Po 𝜃𝑖 , 𝑖𝑛𝑑𝑒𝑝. for 𝑖 = 1,… , 𝑛

• Notation: 𝑞 𝑦 𝜃 ≔ ς𝑖(𝜃𝑖
𝑦𝑖/𝑦𝑖!)exp(−𝜃𝑖)

• Known parameter: sample size (ratio) {𝑟𝑖: 𝑖 = 1,… , 𝑛}

• Unknown parameter: 𝜃 = (𝜃1, … , 𝜃𝑛)

• 𝜃 is assumed to be sparse            
𝜃 = 𝜃1, … , 𝜃𝑛 ∈ Θ 𝑠𝑛 ≔ {𝜃: ||𝜃||0 ≤ 𝑠𝑛}

• 𝜃 is assumed to be quasi-sparse 
𝜃 = 𝜃1, … , 𝜃𝑛 ∈ Θ 𝑠𝑛, 𝜀𝑛 ≔ {𝜃: (#𝑖 𝑠. 𝑡. 𝜃𝑖 > 𝜀𝑛) ≤ 𝑠𝑛}
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What is a good strategy for constructing a predictive density? 



Exact asymptotically minimax risk

Theorem 2.1 of [Y., Kaneko, Komaki arXiv] 

Fix 𝑟 ∈ (0,∞) and fix a sequence 𝑠𝑛 ∈ (0, 𝑛)

such that 𝜂𝑛 ≔ Τ𝑠𝑛 𝑛 = 𝑜(1).

(a) For Θ 𝑠𝑛

inf
ො𝑞

sup
𝜃∈Θ 𝑠𝑛

𝑅(𝜃, ො𝑞) ∼ 𝒞𝑠𝑛 log(𝜂𝑛
−1)

(b) For Θ 𝑠𝑛, 𝜀𝑛 with 𝜀𝑛 = 𝑜 𝜂𝑛

inf
ො𝑞

sup
𝜃∈Θ 𝑠𝑛,𝜀𝑛

𝑅(𝜃, ො𝑞) ∼ 𝒞𝑠𝑛 log(𝜂𝑛
−1)
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Let 𝒞 ≔
𝑟

𝑟+1

𝑟 1

𝑟+1



Implication of the theorem
• The rate is identical to that of sparse Gaussian models

• The exact constant depends on 𝑟
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inf
ො𝑞

sup
𝜃∈Θ 𝑠𝑛

𝑅(𝜃, ො𝑞) ∼ 𝒞𝑠𝑛 log(𝜂𝑛
−1)

inf
ො𝑞

sup
𝜃∈Θ 𝑠𝑛

𝑅(𝜃, ො𝑞) ∼ 𝒞𝑠𝑛 log(𝜂𝑛
−1) with 𝒞 ≔

𝑟

𝑟+1

𝑟 1

𝑟+1

0 2 4 6 8 10
𝑟

𝒞



Spike-and-slab prior with improper slab

For 𝜅 > 0 and ℎ > 0
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Π ℎ, 𝜅 𝑑𝜃𝑖 ≔⊗𝑖=1
𝑛 [𝛿0(𝑑𝜃𝑖) + ℎ𝜃𝑖

𝜅−11𝜃𝑖≥0𝑑𝜃𝑖]

improper slab priorproper spike prior



Spike-and-slab prior with improper slab
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For 𝜅 > 0 and ℎ > 0

Π ℎ, 𝜅 𝑑𝜃𝑖 ≔⊗𝑖=1
𝑛 [𝛿0(𝑑𝜃𝑖) + ℎ𝜃𝑖

𝜅−11𝜃𝑖≥0𝑑𝜃𝑖]

improper slab prior

Scale parameter 𝒉

The scale of an improper prior within their mixture impacts on the posterior



Resulting Bayes predictive density
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𝑞Π ℎ,𝜅 𝑦 𝑥

=ෑ

1

𝑛

𝜔𝑖𝛿0 𝑦𝑖 + 1 − 𝜔𝑖

𝑥𝑖 + 𝑦𝑖 + 𝜅 − 1

𝑦𝑖

𝑟

𝑟 + 1

𝑟

1 −
𝑟

𝑟 + 1

where 𝜔𝑖 = ቐ

1

1+ ΤℎΓ(𝜅) 𝑟𝜅
, 𝑥𝑖 = 0

0, 𝑥𝑖 ≥ 1

The resulting Bayes predictive density is controlled by ℎ and 𝜅 of Π[ℎ, 𝜅]

・When 𝑥𝑖 ≥ 1, 𝑞Π ℎ,𝜅 (𝑦𝑖 ∣ 𝑥𝑖) is just negative binomial

・When 𝑥𝑖 = 0, 𝑞Π ℎ,𝜅 (𝑦𝑖 ∣ 𝑥𝑖) is zero-inflated negative binomial

Our prior switches the predictive density according to the value of 𝑥 !



Risk bounds for Bayes predictive densities 
based on Π[ℎ, 𝜅]

Theorem 2.2 of [Y., Kaneko, Komaki arXiv]

Fix 𝑟 ∈ (0,∞) and 𝜅 > 0. 

Fix also 𝑠𝑛 ∈ 0, 𝑛 s.t. 𝜂𝑛 ≔ Τ𝑠𝑛 𝑛 = 𝑜 1 .

The predictive density 𝑞Π[𝐿𝜂𝑛,𝜅] with 𝐿 > 0 and 𝜅 > 0satisfies

sup
𝜃∈Θ 𝑠𝑛

𝑅 𝜃, 𝑞Π 𝐿𝜂𝑛,𝜅 ≤ 𝒞𝑠𝑛log 𝜂𝑛
−1 − 𝒞𝑠𝑛log 𝐿 +𝒦𝑠𝑛𝐿 + Υ1

sup
𝜃∈Θ 𝑠𝑛,𝜀𝑛

𝑅 𝜃, 𝑞Π 𝐿𝜂𝑛,𝜅 ≤ 𝒞𝑠𝑛log 𝜂𝑛
−1 − 𝒞𝑠𝑛log 𝐿 +𝒦𝑠𝑛𝐿 + Υ2

where Υ1, Υ2 represent terms independent of L or 𝑂(𝑠𝑛𝜂𝑛).
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Let 𝒞 ≔
𝑟

𝑟+1

𝑟 1

𝑟+1
and 𝒦 ≔

𝑟−𝜅− 𝑟+1 −𝜅

𝜅



Implication of the theorem
• Theoretical consideration:

𝑞Π[𝐿𝜂𝑛,𝜅] is exact asymptotically minimax for any 𝐿, 𝜅 > 0 .

• Practical consideration:
Tuning parameters 𝐿 and 𝜅 even when 𝜂𝑛 ≔ Τ𝑠𝑛 𝑛 is known.

22

Our theorem also provides a theoretical guidepost for 𝐿.

sup
𝜃∈Θ 𝑠𝑛

𝑅 𝜃, 𝑞Π 𝐿𝜂𝑛,𝜅 ≤ 𝒞𝑠𝑛log 𝜂𝑛
−1 − 𝒞𝑠𝑛log 𝐿 + 𝒦𝑠𝑛𝐿 + Υ1

𝐿

・𝐿∗ ≔ 𝒞/𝒦 minimizes the upper bound w.r.t . 𝐿 !
・Prediction gives indication of how to select tuning parameter!

2019/04/11



Implication of the theorem
• Theoretical consideration:

𝑞Π[𝐿𝜂𝑛,𝜅] is exact asymptotically minimax for any 𝐿, 𝜅 > 0 .

• Practical consideration:
Tuning parameters 𝐿 and 𝜅 even when 𝜂𝑛 ≔ Τ𝑠𝑛 𝑛 is known.

23

Our theorem also provides a theoretical guidepost for 𝐿.

sup
𝜃∈Θ 𝑠𝑛

𝑅 𝜃, 𝑞Π 𝐿𝜂𝑛,𝜅 ≤ 𝒞𝑠𝑛log 𝜂𝑛
−1 − 𝒞𝑠𝑛log 𝐿 + 𝒦𝑠𝑛𝐿 + Υ1

𝐿

・𝐿∗ ≔ 𝒞/𝒦 minimizes the upper bound w.r.t . 𝐿 !
・Prediction gives indication of how to select tuning parameter!

2019/04/11



Adaptation to 𝑠𝑛

Plugging-in an estimator for 𝑠𝑛 works to some extent. 

Let Ƹ𝑠𝑛 ≔ max{1, #{𝑖: 𝑋𝑖 ≥ 1}} and Ƹ𝜂𝑛 ≔ ΤƸ𝑠𝑛 𝑛.

2019/04/11 24

Theorem 2.3 of [Y., Kaneko, Komaki arXiv]

Fix 𝑟 ∈ (0,∞) and 𝜅 > 0. 

For any 𝑠𝑛 ∈ 0, 𝑛 s.t. 𝑠𝑛 = 𝑜(𝑛 Τ1 2),

the predictive density 𝑞Π[𝐿∗ෝ𝜂𝑛,𝜅] with 𝜅 > 0 satisfies

sup
𝜃∈Θ 𝑠𝑛

𝑅 𝜃, 𝑞Π[𝐿∗ෝ𝜂𝑛,𝜅] ∼ inf
ො𝑞

sup
𝜃∈Θ 𝑠𝑛

𝑅 𝜃, ො𝑞

sup
𝜃∈Θ 𝑠𝑛,𝜀𝑛

𝑅 𝜃, 𝑞Π[𝐿∗ෝ𝜂𝑛,𝜅] ∼ inf
ො𝑞

sup
𝜃∈Θ 𝑠𝑛,𝜀𝑛

𝑅 𝜃, ො𝑞 .
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Simulation studies

𝚷[𝑳∗ ෝ𝜼𝒏, 𝟎. 𝟓] 𝚷[𝑳∗ ෝ𝜼𝒏, 𝟏]
Gauss hypergeometric in

Datta and Dunson(2016)
Shrinkage in

Komaki (2004)

Point prediction 18.8 21.9 104 96.5

E log 𝑞 Y; X -15.4 -16.1 -66.3 -86.2

90% Prediction 
Coverage

92.6 95.8 92.0 40.5

2019/04/11 26

Comparisons using ℓ1 point prediction; E log 𝑞 Y; X ; predictive coverage. 

1. Set-up: 𝑛, 𝑠, 𝑟 = (200,5, 1)

𝚷[𝑳∗ ෝ𝜼𝒏, 𝟎. 𝟓] 𝚷[𝑳∗ ෝ𝜼𝒏, 𝟏]
Gauss hypergeometric in

Datta and Dunson(2016)
Shrinkage in

Komaki (2004)

Point prediction 14.0 14.5 15.7 22.5

E log 𝑞 Y; X -13.3 -13.5 -15.6 -21.6

90% Prediction 
Coverage

90.0 89.4 97.6 97.5

2. Set-up: 𝑛, 𝑠, 𝑟 = (200,5, 20)

𝜃𝑖 ∼ 𝜈𝑖𝑒𝑆,𝑖 ∣ 𝜈𝑖 ∼ 𝐺𝑎𝑚𝑚𝑎 10,1 , 𝑆 ∼ Unif on all 𝑠−sparse subsets



Application to pickpocketing in Tokyo

• Pickpocketings at all towns of 8 wards in Tokyo

• Current observations 𝑋: data from 2012 to 2017

• Future observation 𝑌: data from 2018/1 to 2018/6
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𝚷[𝑳∗ ෝ𝜼𝒏, 𝟎. 𝟓]
Gauss hypergeometric in

Datta and Dunson(2016)
Shrinkage in

Komaki (2004)

Point prediction 273 293 273

log 𝑞 Y; X -399 -399 -429

90% Prediction 
marginal Coverage

93.0 27.0 84.2



Conclusion 

• Prediction for Poisson models under sparsity (and quasi-sparsity) 
constraints
• Many motivative examples

• Main results
• Exact asymptotically minimax risks are identified
• Exact asymptotically minimax predictive densities are constructed 

using spike-and-slab priors with improper slab priors.
• Optimal scale of improper slab priors is specified by the predictive risk 

bound.
• Plugging-in strategy works for adaptation
• Sample-size heterogeneous versions are also obtained.

• This talk is based on our arXiv manuscript
• K. Yano, R. Kaneko and F. Komaki: Exact Minimax Predictive Density 

for Sparse Count Data
• arXiv:1812.06037v2
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