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Introduction

Question: If C is a curve defined over a number field k , is C (k)
finite or infinite?

genus 0: If C (k) 6= ∅, then C ∼= P1 and C (k) is infinite.

genus 1: If C (k) 6= ∅, then C is an elliptic curve and C (k) is a
finitely generated abelian group.

genus ≥ 2: C (k) is finite by Faltings’s theorem
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Introduction

Let d ∈ Z+.

Question: If C is a curve defined over a number field k , is the
collection of closed points of degree d finite or infinite?

f : C → P1, degree d =⇒ infinitely many points of degree d

Debarre and Fahlaoui (’93): Can have infinitely many degree d
points even without a map of degree ≤ d onto P1 or an elliptic
curve.
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Introduction

Suppose P0 ∈ C (k) and x ∈ C is a closed point of degree d .

Φd : Symd C → Jac(C )

x = P1 + P2 + · · ·+ Pd 7→ [P1 + · · ·+ Pd − dP0]

If C has infinitely many closed points of degree d , then one of
following is true:

Φd(x) = Φd(y) for distinct y ∈ (Symd C )(k). ∃f ∈ k(C )×

with div(f ) = x − y , and f : C → P1 has degree d .

Φd is injective on degree d points. By Faltings (’94), there
must be an infinite family of degree d points parametrized by
a positive rank abelian subvariety of Jac(C ).
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Isolated Points

Φd : Symd C → Jac(C )

Definition

1 A closed point x ∈ C of degree d is P1-parametrized if there
exists distinct x ′ ∈ (Symd C )(k) such that Φd(x) = Φd(x ′).

2 A closed point x ∈ C of degree d is AV-parametrized if there
exists a positive rank abelian subvariety A ⊂ Jac(C ) such that
Φd(x) + A ⊂ im(Φd).

3 A closed point x ∈ C of degree d is isolated if it is neither
P1-parametrized nor AV-parametrized.
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Isolated Points

A closed point x ∈ C of degree d is isolated if it is neither
P1-parametrized nor AV-parametrized.

Theorem (B., Ejder, Liu, Odumodu, Viray - BELOV, ’19)

Let C be a curve over a number field.

1 There are infinitely many degree d points on C if and only if
there is a degree d point on C that is not isolated.

2 There are only finitely many isolated points on C.
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Isolated Points on Modular Curves

X1(N)/Q: Noncuspidal points parametrize pairs (E ,P)/ ∼

j : X1(N)→ X1(1) ∼= P1 sends x = [E ,P] to j(E )

Theorem (BELOV, ’19)

Let I denote the set of all isolated points on all modular curves
X1(N) for N ∈ Z+. Suppose there exists a constant C = C (Q)
such that for all non-CM elliptic curves E/Q, the mod p Galois
representation associated to E is surjective for primes p > C.
Then j(I) ∩Q is finite.

We call j ∈ j(I) an isolated j-invariant.
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Let I denote the set of all isolated points on all modular curves
X1(N) for N ∈ Z+.

Can the (likely finite) set j(I) ∩Q be made explicit?

What can be said about the proportion of CM versus non-CM
j-invariants in j(I) ∩Q?

Can the condition on Serre’s Uniformity Conjecture be
removed?
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Restriction to Odd Degree

Theorem (B., Gill, Rouse, Watson, ’20)

Let Iodd denote the set of all isolated points of odd degree on all
modular curves X1(N) for N ∈ Z+. Then j(Iodd) ∩Q contains at
most the j-invariants in the following list:

non-CM j-invariants CM j-invariants

−32 · 56/23 −218 · 33 · 53
33 · 13/22 −215 · 33 · 53 · 113

−218 · 33 · 53 · 233 · 293

Conversely, j(Iodd) ∩Q contains −32 · 56/23 and 33 · 13/22.

Najman, ’16: ∃x ∈ X1(21) of degree 3 with j(x) = −32 · 56/23

∃x ∈ X1(28) of degree 9 and j(x) = 33 · 13/22
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Characterization of Odd Degree Points

Let x ∈ X1(n) be a point of odd degree with j(x) ∈ Q.

Suppose j(x) 6= 33 · 5 · 75/27.

Suppose j(x) 6= j(z) for all z ∈ X0(21)(Q).

Theorem (B., Gill, Rouse, Watson, ’20)

If p is an odd prime dividing n, then there exists y ∈ X0(p)(Q)
with j(x) = j(y). Moreover,

n = 2apb

for p ∈ {3, 5, 7, 11, 13, 19, 43, 67, 163} and nonnegative integers
a, b with a ≤ 3. If b > 0, then a ≤ 2.
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E/Q with isogenies

For a fixed prime p, let m be the maximum integer such that an
elliptic curve E/Q possesses a Q-rational cyclic pm-isogeny.

Theorem (Greenberg, ’12 & Greenberg, Rubin, Silverberg,
Stoll, ’14)

If E/Q is a non-CM elliptic curve with a rational p-isogeny for
some prime p ≥ 5, then im ρE ,p∞ is the complete pre-image of
im ρE ,pm in GL2(Zp).

Theorem (BELOV, ’19)

Let f : C → D be a finite map of curves and let x ∈ C be an
isolated point. If deg(x) = deg(f (x)) · deg(f ), then f (x) is an
isolated point of D.
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Proof Outline: Nice Cases

Let x ∈ X1(N) be an isolated point of odd degree with j(x) ∈ Q.

No E/Q with rational 21-isogeny and j(E ) = j(x)

=⇒ N = 2apb with a ≤ 2.

If p > 5, then Greenberg, Rubin, Silverberg, Stoll + BELOV

=⇒ f (x) ∈ X1(2ap) is isolated, with finite exceptions.

Demonstrate f (x) is isolated, or argue no such isolated point
can exist.
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What about rational cyclic 21-isogenies?

Let x ∈ X1(N) be an isolated point of odd degree with j(x) ∈ Q.
Suppose j(x) = j(E ) for some E/Q with rational cyclic 21-isogeny.

N = 2a3b7c

Q(ζ9)+ ⊆ Q(E [7]) ∩Q(E [9]) - “entanglement” occurs

For fixed m, BELOV (’19) gives explicit (uniform) bound on level
of m-adic Galois representation.

These bounds can be improved when entanglement occurs!
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What about p = 3?

The case of possible isolated points x ∈ X1(2a3b) is difficult to
analyze because possible entanglement is much harder to control.

Proposition (B., Gill, Rouse, Watson, ’20)

There are no odd degree isolated points on X1(54) or X1(162)
associated to a non-CM elliptic curve E with j(E ) ∈ Q.

For example:

Any elliptic curve E/Q for which Q(E [2]) ∩Q(E [27]) is an
S3-extension gives a rational point on an explicit curve C/Q.

Can reduce to case of a single C/Q of genus 4.

Since C maps to a genus 1 curve, can show has no
non-cuspidal points.
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What about p = 3?

The case of possible isolated points x ∈ X1(2a3b) is difficult to
analyze because possible entanglement is much harder to control.
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Main Theorem

Theorem (B., Gill, Rouse, Watson, ’20)

Let Iodd denote the set of all isolated points of odd degree on all
modular curves X1(N) for N ∈ Z+. Then j(Iodd) ∩Q contains at
most the j-invariants in the following list:

non-CM j-invariants CM j-invariants

−32 · 56/23 −218 · 33 · 53
33 · 13/22 −215 · 33 · 53 · 113

−218 · 33 · 53 · 233 · 293

Conversely, j(Iodd) ∩Q contains −32 · 56/23 and 33 · 13/22.



Thank you!


