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A question of V. Milman

Let K be a symmetric convex body in Rn.

For any s-tuple C = (C1, . . . ,Cs) of symmetric
convex bodies Cj in Rn we consider the norm on Rs , defined by

‖t‖C,K =
1∏s

j=1 |Cj |

∫
C1

· · ·
∫
Cs

∥∥∥ s∑
j=1

tjxj
∥∥∥
K
dxs · · · dx1,

where t = (t1, . . . , ts). If C = (C , . . . ,C) then we write ‖t‖C s ,K instead of ‖t‖C,K .

Question (V. Milman)

To examine if, in the case C = K , one has that

‖t‖K s ,K =
1

|K |s

∫
K

· · ·
∫
K

∥∥∥ s∑
j=1

tjxj
∥∥∥
K
dxs · · · dx1

is equivalent to the standard Euclidean norm up to a term which is logarithmic in the
dimension. In particular, if under some cotype condition on the norm induced by K to Rn

one has equivalence between ‖ · ‖K s ,K and the Euclidean norm.

Since ‖t‖K s ,K = ‖t‖(TK)s ,TK for any T ∈ GL(n), we may choose any position of K .
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Lower bounds

We may assume that |C1| = · · · = |Cs | = |K | = 1.

Bourgain, Meyer, V. Milman and Pajor (1987) obtained the lower bound

‖t‖C,K > c
√
s
( s∏

j=1

|tj |
)1/s

.

Assuming, additionally, that C is isotropic they also obtained the lower bound∫
C

· · ·
∫
C

∫
Ω

∥∥∥ s∑
j=1

gj(ω)xj

∥∥∥
K
dω dxs · · · dx1 > c

√
s LC

√
nM(K),

where LC is the isotropic constant of C and M(K) =
∫
Sn−1 ‖ξ‖K dσ(ξ).
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Lower bounds

Around 2000, Gluskin and V. Milman studied the same question and obtained a
better lower bound in a more general context.

Gluskin-Milman

Let A1, . . . ,As be measurable sets in Rn and K be a star body in Rn with 0 ∈ int(K).
Assume that |A1| = · · · = |As | = |K |. Then, for all t = (t1, . . . , ts) ∈ Rs ,

‖t‖A,K :=
1∏s

j=1 |Aj |

∫
A1

· · ·
∫
As

∥∥∥ s∑
j=1

tjxj
∥∥∥
K
dxs · · · dx1 > c ‖t‖2.

The proof uses the Brascamp-Lieb-Luttinger rearrangement inequality.
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Lower bounds: alternative proof

G.-Chasapis-Skarmogiannis

Let C = (C1, . . . ,Cs) be an s-tuple of symmetric convex bodies and K be a symmetric
convex body in Rn with |Cj | = |K | = 1. Then, for any t = (t1, . . . , ts) ∈ Rs ,

‖t‖C,K >
n

e(n + 1)
‖t‖2.

Since ‖t‖C,K is a norm, we may assume that ‖t‖2 = 1. Our starting point is the next
observation.

An identity

Let X1, . . . ,Xs be independent random vectors, uniformly distributed on C1, . . . ,Cs

respectively. Given t = (t1 . . . , ts) ∈ Rs , we write νt for the distribution of the random
vector t1X1 + · · ·+ tsXs . Then,

‖t‖C,K =

∫
Rn

‖x‖Kdνt(x).

Note that νt is an even log-concave probability measure on Rn We write gt for the
density of νt.
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Lower bounds: alternative proof

Lemma 1

If ‖t‖2 = 1 then ‖gt‖∞ 6 en.

Recall that the entropy of a random vector X in Rn with density g(x) is defined by
h(X ) = −

∫
Rn g(x) log g(x) dx .

Bobkov-Madiman

If g is log-concave then

log(‖g‖−1
∞ ) 6 h(X ) 6 n + log(‖g‖−1

∞ ).

Let t ∈ Rs with ‖t‖2 = 1 and t1, . . . , ts > 0. Then, if X1, . . . ,Xs are independent
random vectors with densities g1, . . . , gs , by an equivalent form of the
Shannon-Stam inequality, we have that h(t1X1 + · · ·+ tsXs) >

∑s
j=1 t

2
j h(Xj).
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Lower bounds: alternative proof

Lemma 1

If ‖t‖2 = 1 then ‖gt‖∞ 6 en.

Since the density gt of t1X1 + · · ·+ tsXs is also log-concave, we may write

s∑
j=1

t2
j log(‖gj‖−1

∞ ) 6
s∑

j=1

t2
j h(Xj) 6 h(t1X1 + · · ·+ tsXs) 6 n + log(‖gt‖−1

∞ ),

which implies that ‖gt‖∞ 6 en
∏s

j=1 ‖gj‖
t2
j
∞.

In our case, gj = 1Cj , therefore ‖gj‖∞ = 1 and the lemma follows.
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Lower bounds: alternative proof

Lemma 1

If ‖t‖2 = 1 then ‖gt‖∞ 6 en.

Lemma 2

Let f be a bounded positive density on Rn. For any symmetric convex body K of volume
1 in Rn we have

n

n + 1
6 ‖f ‖1/n

∞

∫
Rn

‖x‖K f (x) dx .

We have assumed that |Cj | = |K | = 1. We want a lower bound for

‖t‖C,K =

∫
Rn

‖x‖Kdνt(x) =

∫
Rn

‖x‖Kgt(x) dx .

For any t ∈ Rs with ‖t‖2 = 1 we have ‖gt‖∞ 6 en, therefore

n

n + 1
6 e

∫
Rn

‖x‖K dνt(x) = e ‖t‖C,K .
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Isotropic convex bodies and log-concave measures

A convex body C in Rn is called isotropic if it has volume 1, it is centered, i.e. its
barycenter is at the origin, and its inertia matrix is a multiple of the identity matrix:
there exists a constant LC > 0 such that

‖〈·, ξ〉‖2
L2(C) :=

∫
C

〈x , ξ〉2dx = L2
C , ξ ∈ Sn−1.

We say that a log-concave probability measure µ with density fµ on Rn is isotropic if
it is centered, i.e. if ∫

Rn

〈x , ξ〉dµ(x) =

∫
Rn

〈x , ξ〉fµ(x)dx = 0

for all ξ ∈ Sn−1, and Cov(µ) is the identity matrix.

If µ is an isotropic log-concave measure on Rn with density fµ, we define the
isotropic constant of µ by

Lµ := ‖fµ‖
1
n
∞.
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Log-concave measures

If C is a centered convex body of volume 1 in Rn then we say that a direction
ξ ∈ Sn−1 is a ψα-direction (where 1 6 α 6 2) for C with constant % > 0 if

‖〈·, ξ〉‖Lq(C) 6 % q1/α‖〈·, ξ〉‖L2(C),

for all q > 2.

Similar definitions may be given in the context of a centered log-concave probability
measure µ on Rn.

From log-concavity it follows that every ξ ∈ Sn−1 is a ψ1-direction for any C or µ
with an absolute constant %: there exists % > 0 such that

‖〈·, ξ〉‖Lq(µ) 6 % q‖〈·, ξ〉‖L2(µ)

for all n > 1, all centered log-concave probability measures µ on Rn and all ξ ∈ Sn−1

and q > 2.
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Upper bounds

We assume that C is an isotropic convex body in Rn. We shall try to give upper
estimates for ‖t‖C s ,K , where K is a symmetric convex body in Rn.

Let X1, . . . ,Xs be independent random vectors, uniformly distributed on C . Given
t = (t1 . . . , ts) ∈ Rs with ‖t‖2 = 1, we write νt for the distribution of the random
vector t1X1 + · · ·+ tsXs . It is then easily verified that the covariance matrix Cov(νt)
of νt is a multiple of the identity: more precisely,

Cov(νt) = L2
C In.

It follows that if gt is the density of νt then ft(x) = Ln
Cgt(LCx) is the density of an

isotropic log-concave probability measure µt on Rn.

From Lemma 1 we have a bound for the isotropic constants of all these measures:

Lµt = ‖ft‖
1
n
∞ = LC‖gt‖

1
n
∞ 6 eLC

for all t ∈ Rs with ‖t‖2 = 1.

We also have

‖t‖C s ,K =

∫
Rn

‖x‖K dνt(x) = L−n
C

∫
Rn

‖x‖K ft(x/LC ) dx = LC

∫
Rn

‖y‖Kdµt(y).
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Upper bounds

Since ‖t‖C s ,K = ‖t‖(TC)s ,TK for any T ∈ SL(n), we may restrict our attention to the
case where C is isotropic.

In this case
‖t‖C s ,K = ‖t‖2LC I1(µt,K),

where µt is an isotropic, compactly supported log-concave probability measure
depending on t and

I1(µ,K) =

∫
Rn

‖x‖Kdµ(x).

Note that if µ is isotropic and K is a symmetric convex body of volume 1 in Rn then∫
O(n)

I1(µ,U(K)) dν(U) =

∫
Rn

∫
O(n)

‖x‖U(K)dν(U) dµ(x)

= M(K)

∫
Rn

‖x‖2dµ(x) ≈
√
nM(K).

It follows that
∫
O(n)
‖t‖U(C)s ,K ≈ (LC

√
nM(K)) ‖t‖2.

Therefore, our goal is to obtain a constant of the order of LC

√
nM(K) in our upper

estimate for ‖t‖C s ,K .
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Bounds for M(Kiso)

In particular, in the case C = K we may assume that K is isotropic, and an optimal
upper bound would be O(LK

√
nM(Kiso)).

The question to estimate the parameter M(K) for an isotropic symmetric convex
body K in Rn remains open.

One may hope that LK

√
nM(Kiso) 6 c(log n)b for some absolute constant b > 0.

However, the currently best known estimate is

M(Kiso) 6
c(log n)2/5

10
√
nLK

.

proved in [G. - E. Milman].

There, it is also shown that in the case where K is a ψ2-body with constant % one
has

M(Kiso) 6
c 3
√
%(log n)1/3

6
√
nLK

.
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A general upper bound

G.-Chasapis-Skarmogiannis

Let C be an isotropic convex body in Rn and K be a symmetric convex body in Rn. Then,

‖t‖C s ,K 6 c max
{

4
√
n,
√

log(1 + s)
}
LC

√
nM(K)‖t‖2

for every t = (t1, . . . , ts) ∈ Rs , where c > 0 is an absolute constant.

For the proof one has to estimate

I1(µt,K) =

∫
Rn

‖x‖Kdµt(x)

where µt is an isotropic, compactly supported log-concave probability measure
depending on the unit vector t.

This is done with an argument that resembles Bourgain’s proof of the bound
LK = O( 4

√
n log n) and makes use of Talagrand’s comparison theorem.
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Some special cases

ψ2-case

Let C be an isotropic convex body in Rn, which is a ψ2-body with constant %, and K be
a symmetric convex body in Rn. Then for any s > 1 and every t = (t1, . . . , ts) ∈ Rs ,

‖t‖C s ,K 6 c%2√nM(K) ‖t‖2.

Cotype-2 case

Let C be an isotropic symmetric convex body in Rn and K be a symmetric convex body
in Rn. Then for any s > 1 and t = (t1, . . . , ts) ∈ Rs ,

‖t‖C s ,K 6
(
c LCC2(XK )

√
nM(K)

)
‖t‖2

where C2(XK ) is the cotype-2 constant of the space with unit ball K .

This is a consequence of our representation of ‖t‖C s ,K and of a result of E. Milman:
If µ is a finite, compactly supported isotropic measure on Rn then, for any
symmetric convex body K in Rn,

I1(µ,K) 6 c C2(XK )
√
nM(K).
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where C2(XK ) is the cotype-2 constant of the space with unit ball K .

This is a consequence of our representation of ‖t‖C s ,K and of a result of E. Milman:
If µ is a finite, compactly supported isotropic measure on Rn then, for any
symmetric convex body K in Rn,

I1(µ,K) 6 c C2(XK )
√
nM(K).
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Some special cases

In particular, for any symmetric convex body K of volume 1 in Rn we have that∫
K

· · ·
∫
K

∥∥∥ s∑
j=1

tjxj

∥∥∥
K
dxs · · · dx1 6

(
cLKC2(XK )

√
nM(Kiso)

)
‖t‖2,

where Kiso is an isotropic image of K .

Unconditional case

There exists an absolute constant c > 0 with the following property: if K and C1, . . . ,Cs

are isotropic unconditional convex bodies in Rn then, for every q > 1,(∫
C1

. . .

∫
Cs

∥∥∥ s∑
j=1

tjxj
∥∥∥q
K
dx1 . . . dxs

)1/q

6 cn1/q√q ·max{‖t‖2,
√
q‖t‖∞} 6 cn1/qq ‖t‖2,

for every t = (t1, . . . , ts) ∈ Rs . In particular,

‖t‖C,K 6 c
√

log n ·max{‖t‖2,
√

log n‖t‖∞} 6 c log n ‖t‖2.

This is essentially proved in [G.-Hartzoulaki-Tsolomitis]. The proof makes use of the
comparison theorem of Bobkov and Nazarov.
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Expected volume of random convex sets

Let K be a symmetric convex body in RN . For any x = (x1, . . . , xN) ∈ ⊕N
i=1Rn we

denote by
Tx = [x1 · · · xN ]

the n × N matrix whose columns are the vectors xi , and consider the convex body
Tx(K) in Rn.

Examples

If K = BN
1 then

Tx(K) = conv{±x1, . . . ,±xN}.

If K = BN
∞ then

Tx(K) =
N∑
i=1

[−xi , xi ].
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Expected volume of random convex sets

The question that we study is to estimate the expected volume of Tx(K) when
x1, . . . , xN are independent random points distributed according to an isotropic
log-concave probability measure µ.

Paouris-Pivovarov

Let N > n and f1, . . . , fN be probability densities on Rn with ‖fi‖∞ 6 1 for all
i = 1, . . . ,N. Then, ∫

Rn

· · ·
∫
Rn

|Tx(K)|
N∏
i=1

fi (xi ) dxN · · · dx1

>
∫
Dn

· · ·
∫
Dn

|Tx(K)| dxN · · · dx1,

where Dn is the (centered at the origin) Euclidean ball of volume 1.
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Expected volume of random convex sets

The theorem of Paouris and Pivovarov shows that for a lower bound it is useful to
examine the case µ = µDn , where µDn is the uniform measure on Dn.

G.-Skarmogiannis

For any N > n and any convex body K in RN we have

c1

√
N/n vrad(K) 6

(
EµN

Dn
|Tx(K)|1/n

)
6
(
EµN

Dn
|Tx(K)|

)1/n

6 c2

√
N/n w(K),

where c1, c2 > 0 are absolute constants.
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Expected volume of random convex sets

K = BN
∞ (

EµN |Tx(B
N
∞)|
)1/n

≈
√

N/n vrad(BN
∞).

K = BN
1

EµN

(
|conv{±x1, . . . ,±xN}|

)1/n

≈
√

log(2N/n)√
n

6
√

N/n w(BN
1 ).

Unconditional K

Let µ be an isotropic log-concave probability measure on Rn. For any unconditional
isotropic convex body K in RN we have

EµN

(
|Tx(K)|

)1/n

6 c
√

N/n vrad(K)
√

log(2N/n).
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Expected volume of random convex sets

A general upper bound

Let µ be an isotropic log-concave probability measure on Rn. For any N > n and any
symmetric convex body K in RN we have(

EµN |Tx(K)|
) 1

n
6

cN

n
w(K)

where c > 0 is an absolute constant.

Our starting point is the formula

|Tx(K)| =
√

det(TxT ∗x ) |PEx(K)|,

where Ex = ker(Tx)
⊥ = Range(T ∗x ).

By the Cauchy-Binet formula

det(TxT
∗
x ) =

∑
|S|=n

det((Tx|S)(Tx|S)∗).

and
EµN

(
det((Tx|S)(Tx|S)∗)

)
= n! det(Cov(µ)).
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Expected volume of random convex sets

Assuming that µ is isotropic we have that det(Cov(µ)) = 1. It follows that

EµN

(
det(TxT

∗
x )
)

=

(
N

n

)
n! det(Cov(µ)) 6 Nn.

Then,

EµN

(
|Tx(K)|

)
6
(
EµN

(
det(TxT

∗
x )
))1/2(

EµN |PEx(K)|2
)1/2

6 Nn/2
(
EµN |PEx(K)|2

)1/2

.

Then we use the fact that if K is a centrally symmetric convex body in RN then for
any 1 6 n < N and any E ∈ GN,n we have that

|PE (K)|1/n 6 c
√

N/n
w(K)√

n
.

This follows in a standard way from Sudakov’s inequality.
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Expected volume of random convex sets

In a similar way, assuming that K is isotropic we have:

Isotropic K

For any N > n and any isotropic convex body K in RN we have(
EµN |Tx(K)|

)1/n

6
cN

n
vrad(K) LK

where c > 0 is an absolute constant.

This time we use a classical inequality of Rogers and Shephard:

|PEx(K)| 6

(
N

n

)
|K ∩ E⊥x |−1

for all x.

Since K is isotropic, we also know that

|K ∩ E⊥x |1/n >
c

LK
.

Apostolos Giannopoulos (University of Athens) Random convex sets Banff, February 2020 23 / 30



Expected volume of random convex sets

In a similar way, assuming that K is isotropic we have:

Isotropic K

For any N > n and any isotropic convex body K in RN we have(
EµN |Tx(K)|

)1/n

6
cN

n
vrad(K) LK

where c > 0 is an absolute constant.

This time we use a classical inequality of Rogers and Shephard:

|PEx(K)| 6

(
N

n

)
|K ∩ E⊥x |−1

for all x.

Since K is isotropic, we also know that

|K ∩ E⊥x |1/n >
c

LK
.

Apostolos Giannopoulos (University of Athens) Random convex sets Banff, February 2020 23 / 30



Expected volume of random convex sets

In a similar way, assuming that K is isotropic we have:

Isotropic K

For any N > n and any isotropic convex body K in RN we have(
EµN |Tx(K)|

)1/n

6
cN

n
vrad(K) LK

where c > 0 is an absolute constant.

This time we use a classical inequality of Rogers and Shephard:

|PEx(K)| 6

(
N

n

)
|K ∩ E⊥x |−1

for all x.

Since K is isotropic, we also know that

|K ∩ E⊥x |1/n >
c

LK
.

Apostolos Giannopoulos (University of Athens) Random convex sets Banff, February 2020 23 / 30



Expected volume of random convex sets

In a similar way, assuming that K is isotropic we have:

Isotropic K

For any N > n and any isotropic convex body K in RN we have(
EµN |Tx(K)|

)1/n

6
cN

n
vrad(K) LK

where c > 0 is an absolute constant.

This time we use a classical inequality of Rogers and Shephard:

|PEx(K)| 6

(
N

n

)
|K ∩ E⊥x |−1

for all x.

Since K is isotropic, we also know that

|K ∩ E⊥x |1/n >
c

LK
.

Apostolos Giannopoulos (University of Athens) Random convex sets Banff, February 2020 23 / 30



Random ball polyhedra

Let f be a probability density on Rn with ‖f ‖∞ 6 1, fix N > 1 and an N-tuple
r = (r1, . . . , rN) of positive real numbers. Consider a sequence x1, . . . , xN of
independent random points in Rn distributed according to f , and define the random
ball-polyhedron

B(x, r) :=
N⋂
i=1

B(xi , ri )

which is the intersection of the Euclidean balls B(xi , ri ) = xi + riB
n
2 .

Paouris and Pivovarov showed that if z1, . . . , zN is a sequence of independent
random points in Rn distributed according to the uniform measure on the Euclidean
ball Dn of volume 1 then, for any 1 6 j 6 n and for any r1, . . . , rN > 0,

EµNVj

( N⋂
i=1

B(xi , ri )
)
6 EµN

Dn
Vj

( N⋂
i=1

B(zi , ri )
)
,

where Vj denotes the j-th intrinsic volume.

In fact, they showed that the same holds true for any function ϕ : Kn → [0,∞)
which is quasi-concave with respect to Minkowski addition, monotone and invariant
under orthogonal transformations. The intrinsic volumes satisfy the above - the
quasi-concavity is a consequence of the Aleksandrov-Fenchel inequality.
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Random ball polyhedra

Question: to estimate the expected volume

E
∣∣∣ N⋂
i=1

B(xi , ri )
∣∣∣

where x1, . . . , xN are independent random points uniformly distributed in a convex
body K of volume 1 in Rn, and r1, . . . , rN > 0.

More generally, to estimate the expected volume

E
∣∣∣ N⋂
i=1

(xi + riC)
∣∣∣

where x1, . . . , xN are independent random points uniformly distributed in a convex
body K of volume 1 in Rn, C is any symmetric convex body in Rn, and
r1, . . . , rN > 0.
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Random ball polyhedra

Skarmogiannis

Let K be a symmetric convex body of volume 1 in Rn and x1, . . . , xN be independent
random points uniformly distributed in K . Then, for any symmetric convex body C in Rn

and any r1, . . . , rN > 0,

cn,N |K + rC |
N∏
i=1

|K ∩ riC | 6 EµN
K

(∣∣∣ N⋂
i=1

(xi + rC)
∣∣∣) 6 |K + rC |

N∏
i=1

|K ∩ riC |,

where r = min{r1, . . . , rN} and cn,N = nB(n, nN + 1) where B(a, b) is the Beta function.
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Random ball polyhedra

Lemma

Let K ,C be centrally symmetric convex bodies in Rn. Assume that |K | = 1. For any
r1, . . . , rN > 0,

EµN
K

(∣∣∣ N⋂
i=1

(xi + riC)
∣∣∣) =

∫
K+(mini ri )C

N∏
i=1

|(K − y) ∩ riC)| dy .

Let r1, . . . , rN > 0. We write

EµN
K

(∣∣∣ N⋂
i=1

(xi + riC)
∣∣∣) =

∫
K

· · ·
∫
K

∫
Rn

1⋂N
i=1(xi+riC)(y) dy dxN · · · dx1

=

∫
K

· · ·
∫
K

∫
Rn

N∏
i=1

1xi+riC (y) dy dxN · · · dx1

=

∫
Rn

∫
K

· · ·
∫
K

N∏
i=1

1y+riC (xi ) dxN · · · dx1 dy =

∫
Rn

N∏
i=1

(∫
K

1y+riC (xi ) dxi
)
dy

=

∫
Rn

N∏
i=1

|K ∩ (y + riC)| dy =

∫
Rn

N∏
i=1

|(K − y) ∩ (riC)| dy .
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Random ball polyhedra

Lower bound

Let K be a symmetric convex body of volume 1 in Rn and x1, . . . , xN be independent
random points uniformly distributed in K . Then, for any symmetric convex body C in Rn

and any r1, . . . , rN > 0,

EµN
K

(∣∣∣ N⋂
i=1

B(xi , r)
∣∣∣) > nB(n, nN + 1) |K + rC |

N∏
i=1

|K ∩ riC |,

where r = min{r1, . . . , rN}.

For each i = 1, . . . ,N consider the function ui : K + riC → [0,∞) with
ui (y) = |(K − y) ∩ riC |1/n. Using the Brunn-Minkowski inequality and the convexity
of K and C we easily check that ui is an even concave function.

Let % denote the radial function of K + rC on Sn−1. Then,

EµN
K

(∣∣∣ N⋂
i=1

(xi + rC)
∣∣∣) = nωn

∫
Sn−1

∫ %(ξ)

0

tn−1
N∏
i=1

un
i (tξ) dt dσ(ξ).
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Random ball polyhedra

Since each ui is concave, we have

ui (tξ) > (1− t/%(ξ))ui (0) + (t/%(ξ))ui (%(ξ)ξ) > (1− t/%(ξ))ui (0).

Therefore,

EµN
K

(∣∣∣ N⋂
i=1

(xi + rC)
∣∣∣)

> nωn

N∏
i=1

un
i (0)

∫
Sn−1

∫ %(ξ)

0

tn−1
(

1− t

%(ξ)

)nN
dt dσ(ξ)

= nωn

N∏
i=1

|K ∩ riC |
∫
Sn−1

∫ 1

0

%n(ξ)sn−1(1− s)nN ds dσ(ξ)

= n
N∏
i=1

|K ∩ riC | · ωn

∫
Sn−1

%n(ξ) dσ(ξ) ·
∫ 1

0

sn−1(1− s)nN ds

= nB(n, nN + 1)|K + rC |
N∏
i=1

|K ∩ riC |.
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Random ball polyhedra
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Random ball polyhedra

A natural question is to determine the best constant in the lower bound.

Note that the behavior of EµN
K

∣∣∣⋂N
i=1(xi + rC)

∣∣∣ is different for small and large values

of r .

One can check that

lim
r→∞

1

|K + rC | · |K ∩ rC |N EµN
K

∣∣∣ N⋂
i=1

(xi + rC)
∣∣∣ = 1

and |K + rC | · |K ∩ rC |N ∼ |rC | as r →∞.

Also,

lim
r→0+

1

|K + rC | · |K ∩ rC |N EµN
K

∣∣∣ N⋂
i=1

(xi + rC)
∣∣∣ = 1

and |K + rC | · |K ∩ rC |N ∼ |rC |N as r → 0+.
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