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Notation

» K,L C R" will denote convex bodies (compact, non-empty
interior)

» |K| denotes the volume of K, but |x| denotes the Euclidean
norm of a vector x € R".

> hk : R" — R denotes the support function,

hi(y) = max (x,y)

» The Minkowski sum K + tL is defined implicitly by
hk+e = hk + thy,
or explicitly by

K+tlL={x+ty: xeKandyel}.



Surface area measures

Theorem
For every K there exists a unique Borel measure Sk on the unit
sphere S"~1 such that for every L we have

K+tl|— |K
lim M :/ h;dSk.
Sn—l

t—0+ t

Sk is called the surface area measure of K. It has an explicit
description: for A C R"” we have

Sic(A) = 1" (Vi (A))

where H"~! is the (n-1)-dimensional Hausdorff measure and
vk : OK — S"1is the Gauss map (defined H"~!-a.e.). In other



Log-concave functions

» A function f : R" — [0, 00) is log-concave if
F((1=MN)x+Xy) = F(x) A ()

forall x,y e R"and 0 < A < 1.
» We will always assume our log-concave functions are upper
semi-continuous and that 0 < [ f < oco.
» Examples: f = 1k for a convex body K, f(x) = e x*/2,
» We want to consider log-concave functions as “generalized

convex bodies”. This proved to be extremely useful in the
past.

» For this we need “volume” (easy, take [ f), “support
function” and “addition”.



Addition and Support functions

Theorem (R. '13)

Assume we associate to every log-concave function f a convex
support function hy such that

1. f < g ifandonly if hr < hg.

2. hy = hk.

3. hfgg = hr + hg for some addition ©.
Then he(x) = L - (—log f)* (Cx), where

¢"(y) = sup ({x,y) — ¢(x))
x€eRn
is the Legendre transform. Also,

(fFog)(x)=(fxg)(x) = sup F(y)g(x —y)

is the sup-convolution. The corresponding scalar multiplication is

(t-f)(x)=f (%)



Functional surface area measure

Definition
For a log-concave function f = e~% : R” — R, it surface area
measure Sr is a Borel measure on R” defined by

5S¢ = (v¢)ﬁ (fdx)

This is well defined, since ¢ is differentiable fdx-a.e.

Examples
If f = e=1xI"/2 then Vo =Id, so S = fdx.
If £ — e maxnhmzlnbnl} then Sy — S Gid,,. where

Ck = /]l{f_e“w}fdx.

If f =1k then 5S¢ = ‘K| - 0p.
Also note that S¢ (R") = [ f, which is the “volume” of f, not its
“surface area”.



First variation

Why should we think of S¢ as a surface area measure? Because
“sometimes”

jim L g /h ds;.

t—0t

Theorem (Colesanti-Fragala)
This holds for f = e~ 9, g = e P if
» ¢, 3:R"— R are finite and C?r.
> iMoo % = lim 00 % = to0.

> ¢* — cB* is convex for small enough ¢ > 0.

Theorem (R.)
This holds for f = e~1x/2 (and all g ).



Sub-differential may be easier

Klartag and Cordero-Erausquin proved a very related result. To
explain it we define two functionals on convex functions:
> F(y)=—log[e ¥
The Prékopa-Leindler inequality is exactly the statement that
F is convex.
» l¢(¢)) = [dSr, where f is a fixed log-concave function.
Obviously ¢ is linear.

The identity
i 0=,
t—0+ t

can be written compactly as VF (hf) = —%.

Since F is convex we can ask an easier question: Is it true that

—% € OF (he) ?



Essential Continuity

Definition
A log-concave function f is called essentially continuous if

H"1 ({x € R": f is not continuous at x}) = 0.

Write K = support (f) = {x : f(x) > 0}. f is always continuous
outside of K, and for x € 0K we have by upper semi-continuity

Jim £(y) = £(x).
yeK

Therefore f is essentially continuous if and only f =0 H" -a.e.
on OK.

Theorem (Klartag—Cordero)
—% € OF (hf) if and only if f is essentially continuous.



Main Theorem

The Klartag-Cordero result is not comparable to Colesanti-Fragala.
The assumptions are much weaker (and optimal!), but the
conclusion is also weaker.

Theorem (R.)

Assume f is essentially continuous. Then for all g

im f(f*(t‘g))‘ff:/hgdsf.

t—0+t t

Moreover, this equality for g = 1gy also implies that f is
essentially continuous.

This theorem is stronger than both Klartag-Cordero and
Colesanti-Fragala and implies both.

Perhaps more importantly, it gives a nice explanation for the
importance of essential continuity.



Proof Sketch

Unraveling notation, we have convex functions 1) = hr, a = hg
and we want to show

d [ewrer = [a(vsye,
t=0*

dt
where ¢ = ¢* = —log f. We follow the following steps, which
doesn’t use essential continuity:

1. Show that

d

_F e~ (WHt) () = o (V(x)) e ™)

t=0+

if ¢ is finite and differentiable at x (so e~?dx-a.e.). This is
fairly standard.

After step 1 we “just” need to differentiate under the integral.
Surprisingly, this is the interesting part.



Proof Sketch — Contd.

d *
- —(Pp+te)” _ —¢
1. Show that
d e~ (Hta)"(x) _ (Vo(x)) e ?x)
dt t=0+

if ¢ is finite and differentiable at x (so e ?dx-a.e.). This is
fairly standard.

2. Reduce to the case that a(x) < m|x| + ¢ for some m,c > 0.
This is done by clever approximation and uses
Prékopa—Leindler.

3. Reduce to the case a(x) = m|x|+ c. This is a simple
measure theoretic argument. For this talk take m=1, ¢ =0.



The Case a(x) = |x]
d

4 ~wrt) — [ 1vele—?
dt t=0+ /e /| ¢| ¢

Write f = 7% so 1) = ¢* = hs. On the RHS we have [|Vf].
On the LHS we have

ft(x) = e*(1/1+t\x|)*(x) = |:f* (t . ]lBg):| (X) = ‘supl f(y)
y: ly—x|<t

By layer cake decomposition

/ft:/ ][ft>s]\ds:/ I[f > s] + tB] ds,
0 0

> /d
fi = —
t=0+ / t A (dt

= /OO HL([f = s])ds
0

SO

d
— f tB3| | d
= Il > s+ eB3]) as



The Punch Line

The whole theorem reduced to the case a(x) = |x|. We computed
that the required result in this case is exactly

/ HL( ds—/\Vf]
0

i.e. the co-area formulal

Theorem
For every log-concave function f : R" — [0, 00) one has

/ H"‘l([f:s])ds:/\Vf\Jr/ FAH™ 1.
0 A(support(f))

The proof uses the divergence theorem for Lipschitz domains and
the co-area formula for BV functions.



Outline

@ [P-Minkowski theorem, 0 < p < 1
LP surface area measures
Our Theorem and Proof Sketch



Alexandrov Bodies and Functions

» Given 9 : "1 — (—o00, ], the Alexandrov body of ) is the
largest convex body K with hx < ). Explicitly

K={x: (x,0) <9(0) forall 6  S"1}.

» Similarly, given ¢ : R” — (—o00, 00| we define its Alexandrov
function f = [¢)] to be the largest log-concave function with
he < 1. Explicitly f = %",

Fact
Let ¢ : R" — (—o00, 0] be lower semi-continuous and f = [¢] be
its Alexandrov function. Then hy = 1 at Sg-almost every point.



LP-addition

> Fix 0 < p < 1. For bodies K and L containing the origin,
K +p t - L is the Alexandrov body of (hk + thf)l/p.
> We then have
K+,t- L —|K
Kt L =K

t—0+ t

1 '
p/h’L’hK PdSk.

» For log-concave functionsf, g with he, hy > 0 we define
f xp t - g to be the Alexandrov function of (h? + thg)l/p.

» Under technical conditions we then have

INRIGACT ESTRE Y P
t—0+ t p




p-surface area measures

Definition

The p-surface area measure Sk , of a convex body K containing
the origin is dSk , = h}(_pdSK.

Definition

The p-surface area measure S¢ ,, of a log-concave function f with
he > 0is dSs, = hy PdS;.

We are interested in the p-Minkowski existence theorem: Given
0 < p <1 and a measure u, find a log-concave function f with



LP-Minkowski theorem for symmetric bodies

Theorem (Lutwak)

Let . be an even finite Borel measure on S™~ which is not
supported on any hyperplane. Then for every 0 < p # n there
exists a symmetric convex body K with Sk , = j1. For p = n there
exists a symmetric convex body K with Sk , = c - ju for some
c>0.

» Uniqueness is much harder and is related to the
LP-Brunn-Minkowski inequality.

» The non-even case is also much harder.

Sketch of the proof.

Let K be the minimizer of /(K) = |K]_% + Jsn—1 hidp. The
condition VI(K) = 0 is exactly Sk , = ¢ - p. For p # n we can use
homogeneity to make ¢ = 1.



Minkowski theorem for log-concave functions (p = 1)

Theorem (Cordero-Klartag)

Let i be a centered probability Borel measure which is not
supported on any hyperplane. Then there exists a unique
essentially continuous log-concave function f with S¢ = pu.

Sketch of the proof of existence.
Let f be the minimizer of

I(f) _/ hfd,u—log/f.
Sn—1

The condition VI(f) = 0 is exactly S = ¢ - .
Since S = ¢ - S we can again make ¢ = 1.



LP-Minkowski Theorem for Log-Concave Functions

Theorem (R.)

Fix 0 < p < 1. Let p be an even finite Borel measure with finite
first moment that is not supported on any hyperplane. Then there
exists an even log-concave function f with hf > 0 such that

Sfp = c-p for some ¢ > 0.

» The main issue is lack of invariance: In general S..f , is not
proportional to S¢ , for any notion of dilation.

» Therefore f cannot be found by solving an unconstrained
optimization problem.

» Instead, we solve the constrained problem

min/h'f’d,u subject to /f =a

and use “Lagrange multipliers”.



Some more details

Define

_J .. fiseven, log-concave
D{f' and hf >0 }

And define I(f) = [ hRdp and J(f) = [ f. Then we:
1. Show that / attains a minimum under the constraint J = a.

2. Show that if a is large enough the minimizer f belongs to the
interior of D, i.e. hg(0) > 0.

3. Prove the “Lagrange multiplier” condition VI = c - VJ.
4. Compute both sides and deduce that 5¢, = c - p.



Thank you
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