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Overview

1. Bounded depth Frege systems, the separation problem, and
Bounded Arithmetic

2. Canonical and interpolations pairs of bounded depth Frege
systems

3. Monotone interpolation by game-schemas

4. Two characterizations of the interpolation pair of depth 1
Frege system

5. Generalized monotone Boolean circuits
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Bounded depth Frege systems

I Fd - depth d Frege system = depth d Sequent Calculus for
propositional logic

I literals have depth 0, conjunctions and disjunctions of literals
have depth 1, etc.

I a sequent A1, . . . ,An is semantically A1 ∨ . . .An

I Resolution = F0

I in F1 sequents are sequences of conjunctions, semantically
DNFs
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Canonical and interpolations pairs

[Razborov’94] Let P be a propositional proof system. The
canonical pair CP of P is the pair of disjoint NP sets (A,B) where

A = {(φ, 1m) : φ is satisfiable}
B = {(φ, 1m) : φ has a P-refutation of size at most m}.

[P’03] Let ∆P be the set of triples (φ, ψ, π) where ψ and φ are
propositional formulas in disjoint variables and π is a P-refutation
of φ ∧ ψ. The interpolation pair IP is the pair of disjoint NP sets
(A,B) where

A = {(φ, ψ, π) ∈ ∆P : φ is satisfiable}
B = {(φ, ψ, π) ∈ ∆P : ψ is satisfiable}.
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I polynomial separability of the canonical pair of P =
automatability of P

I polynomial separability of the interpolation pair of P =
feasible interpolation for P
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Proposition

1. The interpolation pair of F0 (Resolution) is polynomially
separable (≡ feasible interpolation) [Kraj́ıček, 1994]

2. For every d ≥ 0, the canonical pair of the proof systems Fd is
equivalent to the interpolation pair of Fd+1. [BPT’14]

Problem
Is the canonical pair of F0 (resolution) polynomially separable, i.e.,
is Resolution weakly automatable?
Equivalently, is the interpolation pair of F1 polynomially separable?
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Definition (NP pairs of combinatorial games)

Let G be a combinatorial 2-player game with a concept of a
positional strategy. Suppose the concept of a positional winning
strategy is in NP. Then we associate a disjoint NP pair (A,B)
with G defined by

A = {G : Player 1 has a positional winning strategy}
B = {G : Player 2 has a positional winning strategy}.

I The canonical and interpolation pairs of Fd can be
characterized by the canonical pairs of certain games [P’19].2

I The canonical pair of Resolution (= interpolation pair of F1)
is also characterized by the canonical pair of the point-line
game [BPT’14].

2Moreover, it seems that the characterization can be extended to
(unbounded depth) Frege systems.
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From disjoint NP pairs to partial monotone Boolean
functions

Suppose that the definition of a game has a parameter z̄ ∈ {0, 1}n
which may be

I initial position, or

I string that determines the winning positions.

Then we call the same concept with z̄ as a variable a game schema.
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Let G (z̄) be a game schema. Then it determines a partial Boolean
function:

For ā ∈ {0, 1}n,

F (ā) = 1 if Player 1 has a positional winning strategy

F (ā) = 0 if Player 2 has a positional winning strategy

otherwise undefined.

I If 1s in ā are the winning positions for Player 1, then the
function is monotone.

I For the point-line game where z̄ determines the initial
position, the function is monotone.

I We can compare game schemas using projections.
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Basic example: monotone Boolean circuit

Let C (z̄) be a monotone Boolean Circuit and ā ∈ {0, 1}n.

1. (C , a) as a game
I players

∨
and

∧
I
∨

wants to reach an input with 1,
∧

wants 0

2. C (z̄) is a game schema

N.B. if a player has a winning strategy then (s)he also has a
positional winning strategy.
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Monotone interpolation by game schemas

Theorem (P’19)

Let Φ(x̄ , z̄) and Ψ(ȳ , z̄) be two CNF formulas whose only common
variables are z̄ and they occur in Φ only positively and in Ψ only
negatively. Let an Fd refutation of Φ(x̄ , z̄) ∧Ψ(ȳ , z̄) be given.

Then it is possible to construct in polynomial time a depth d + 1
game schema S(z̄) such that for every assignment ā : z̄ → {0, 1},

I if Φ(x̄ , ā) is satisfiable, then Player I has a positional wining
strategy in S(ā) and

I if Ψ(ȳ , ā) is satisfiable, then Player II has a positional wining
strategy in S(ā).
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Depth 2 games and game schemas

Definition (Depth 2 game)

Two players alternate filling a 2×m matrix(
u1 u2 . . . um−1 um

v1 v2 . . . vm−1 vm

)
in the order u1u2 . . . um−1umvmvm−1 . . . v2v1, ui , vj ∈ A.

Legal moves (and positional strategies) are

I for ui , determined by i , ui−1,

I for vi , determined by i , ui , and vi+1.

Player 1 wins if v1 ∈W , otherwise Player 2.

Definition (depth 2 game schema)

same, except W is not fixed.
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equivalent definition

1. In the 1st round players alternate constructing a monotone
Boolean circuit C .

2. In the 2nd round they play the game determined by C and an
input a ∈ {0, 1}n.

In more detail

I the circuit they construct will be a straight-line program

I at step i , the player can choose an instruction from some
fixed set Ii (e.g., Ii can be {yk := xl ∧ yp, yk := yq ∨ yr})

I they construct the program in the reverse order.
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The point-line game

I DAG (G ,E ) (nodes and arrows)

I nodes labeled B and W (the players)

I for every node A, a set PA (points of A)

I for every arrow A→ B, a partial matching between PA and
PB (lines)

I one source

I each sink has exactly one point

I game starts with black and white pebbles on the points of the
source

I players pick arrows and move pebbles along the lines

I the winner is whose pebble ends up in a sink
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A different way of playing the point-line game

I do not move pebbles, only construct the path

I after reaching a leaf, determine the color by following the lines
back

Proposition

Point-line game schemas and depth 2 game schemas are reducible
to each other using projections and at most polynomial increase of
the size of the games.
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Proof (only the easy direction - simulation of point-line games
by depth 2 games).

We will use the definition of depth 2 games based on circuits.

Let a point-line game G be given. Think of the points as variables.
When a player decides to go from node P to node Q where
p1 → q1, . . . , pk → qk is the matching of lines, then in the depth 2
game the player will play

q1 := p1, . . . , qk := pk

Furthermore, we may assume w.l.o.g. that there is a unique sink in
the point-line game. The variable assigned to the point y in it will
be the output variable of the constructed circuit.

The resulting circuit will contain instructions

r2 := r1, r3 := r2, . . . , y := rm−1,

where r1, . . . , rm−1, y is the path from point r1 in the input node
to y , the point in the sink.
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Generalized monotone Boolean circuits
Monotone Boolean circuits as a calculus

Axioms: 0, 1, x1, x2, . . .

Rules:
f g

f ∧ g

f g

f ∨ g

Generalized monotone Boolean circuits as a calculus

+ substitution rule:
f (y1, . . . , yr )

f (z1, . . . , zr )

where y1, . . . , yr are distinct variables and z1, . . . , zr are variables
or constants.

The size of the (generalized) circuit is the length of the derivation
(not counting substitutions).
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Proposition

Given a point-line game schema, one can construct a generalized
circuit of the same size that computes who has a winning strategy.

Proof idea.
By induction, construct generalized circuits for all nodes of the
given point-line game schema. Nodes of Black (White) will
correspond to ∨ (to ∧). Substitutions are determined by
matchings between the nodes.

Problem
Determine for which inputs there is a positional winning strategy.

Remark. If the graph of the point-line game is a tree, we can
eliminate substitutions and get a monotone Boolean formula.

[22]
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Problems

1. Prove a superpolynomial lower bounds on generalized
monotone circuits for explicit functions.

2. Extend the calculus defining generalized monotone circuits to
include information about positional winning strategies.

3. Use 2. to prove a lower bound on point-line game schemas
representing a partial monotone function.
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WPHP has quasipolynomial F1 proofs

Corollary

1. Depth 2 game schemas are exponentially more powerful than
monotone Boolean circuits.

2. Generalized monotone circuits are exponentially more powerful
than monotone Boolean circuits.
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Corollary

For every n, there exists an m = nO(n) and a formula φ(x̄ , ȳ) where
x̄ occur negatively in φ, |x̄ | = n, such that every monotone circuit
C (x̄) such that for every ā ∈ {0, 1}n,

C (ā) = 1 if φ(ā, y) has a F1 refutation of size ≤ m

C (ā) = 0 if φ(ā, y) is satisfiable

has exponential size.

I.e., F1 is not weakly automatable by monotone Boolean circuits.

Problem
Can we prove the same for Resolution?

[25]
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C (ā) = 0 if φ(ā, y) is satisfiable

has exponential size.

I.e., F1 is not weakly automatable by monotone Boolean circuits.

Problem
Can we prove the same for Resolution?

[25]



Thank you
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