On depth 1 Frege systems

Pavel Pudlák

Mathematical Institute, Czech Academy of Sciences, Prague¹

Proof Complexity 2020, Banff, January 2020

¹supported by EPAC, grant 19-27871X of the Czech Grant Agency

Overview

- 1. Bounded depth Frege systems, the separation problem, and Bounded Arithmetic
- 2. Canonical and interpolations pairs of bounded depth Frege systems
- 3. Monotone interpolation by game-schemas
- 4. Two characterizations of the interpolation pair of depth 1 Frege system
- 5. Generalized monotone Boolean circuits

Bounded depth Frege systems

- \$\mathcal{F}_d\$ depth \$d\$ Frege system = depth \$d\$ Sequent Calculus for propositional logic
- literals have depth 0, conjunctions and disjunctions of literals have depth 1, etc.
- a sequent A_1, \ldots, A_n is semantically $A_1 \vee \ldots A_n$
- Resolution = \mathcal{F}_0
- ▶ in *F*₁ sequents are *sequences of conjunctions*, semantically DNFs

Canonical and interpolations pairs

[Razborov'94] Let P be a propositional proof system. The canonical pair C_P of P is the pair of disjoint **NP** sets (A, B) where

$$A = \{(\phi, 1^m) : \phi \text{ is satisfiable}\}$$
$$B = \{(\phi, 1^m) : \phi \text{ has a } P \text{-refutation of size at most } m\}.$$

Canonical and interpolations pairs

[Razborov'94] Let P be a propositional proof system. The canonical pair C_P of P is the pair of disjoint **NP** sets (A, B) where

$$\begin{aligned} & A = \{(\phi, 1^m) : \phi \text{ is satisfiable} \} \\ & B = \{(\phi, 1^m) : \phi \text{ has a } P \text{-refutation of size at most } m \}. \end{aligned}$$

[P'03] Let Δ_P be the set of triples (ϕ, ψ, π) where ψ and ϕ are propositional formulas in disjoint variables and π is a *P*-refutation of $\phi \wedge \psi$. The interpolation pair \mathcal{I}_P is the pair of disjoint **NP** sets (A, B) where

$$egin{aligned} & \mathcal{A} = \{(\phi,\psi,\pi)\in\Delta_{\mathcal{P}}: \ \phi ext{ is satisfiable}\}\ & \mathcal{B} = \{(\phi,\psi,\pi)\in\Delta_{\mathcal{P}}: \ \psi ext{ is satisfiable}\}. \end{aligned}$$

- polynomial separability of the canonical pair of P = automatability of P
- polynomial separability of the interpolation pair of P = feasible interpolation for P

- 1. The interpolation pair of \mathcal{F}_0 (Resolution) is polynomially separable (\equiv feasible interpolation) [Krajíček, 1994]
- 2. For every $d \ge 0$, the canonical pair of the proof systems \mathcal{F}_d is equivalent to the interpolation pair of \mathcal{F}_{d+1} . [BPT'14]

Problem

Is the canonical pair of \mathcal{F}_0 (resolution) polynomially separable, i.e., is Resolution weakly automatable?

Equivalently, is the interpolation pair of \mathcal{F}_1 polynomially separable?

Definition (NP pairs of combinatorial games)

Let *G* be a combinatorial 2-player game with a concept of a *positional strategy*. Suppose the concept of a *positional winning strategy is in* **NP**. Then we associate a disjoint **NP** pair (A, B) with *G* defined by

 $A = \{G : Player 1 has a positional winning strategy\}$ $B = \{G : Player 2 has a positional winning strategy\}.$

 $^{^{2}}$ Moreover, it seems that the characterization can be extended to (unbounded depth) *Frege systems*.

Definition (**NP** pairs of combinatorial games)

Let *G* be a combinatorial 2-player game with a concept of a *positional strategy*. Suppose the concept of a *positional winning strategy is in* **NP**. Then we associate a disjoint **NP** pair (A, B) with *G* defined by

 $A = \{G : Player 1 has a positional winning strategy\}$ $B = \{G : Player 2 has a positional winning strategy\}.$

- The canonical and interpolation pairs of *F_d* can be characterized by the canonical pairs of certain games [P'19].²
- The canonical pair of Resolution (= interpolation pair of F₁) is also characterized by the canonical pair of the *point-line game* [BPT'14].

 $^{^{2}}$ Moreover, it seems that the characterization can be extended to (unbounded depth) *Frege systems*.

From disjoint **NP** pairs to partial monotone Boolean functions

Suppose that the definition of a game has a parameter $\bar{z} \in \{0,1\}^n$ which may be

- initial position, or
- string that determines the winning positions.

Then we call the same concept with \bar{z} as a variable a *game schema*.

Let $G(\bar{z})$ be a game schema. Then it determines a partial Boolean function:

For $\bar{a} \in \{0,1\}^n$,

 $F(\bar{a}) = 1$ if Player 1 has a positional winning strategy $F(\bar{a}) = 0$ if Player 2 has a positional winning strategy

otherwise undefined.

Let $G(\bar{z})$ be a game schema. Then it determines a partial Boolean function:

For $\bar{a} \in \{0,1\}^n$,

 $F(\bar{a}) = 1$ if Player 1 has a positional winning strategy $F(\bar{a}) = 0$ if Player 2 has a positional winning strategy

otherwise undefined.

- If 1s in ā are the winning positions for Player 1, then the function is monotone.
- ► For the point-line game where \bar{z} determines the initial position, the function is monotone.
- ▶ We can compare game schemas using projections.

Basic example: monotone Boolean circuit

Let $C(\bar{z})$ be a monotone Boolean Circuit and $\bar{a} \in \{0,1\}^n$.

- 1. (C, a) as a game
 - \blacktriangleright players \bigvee and \bigwedge
 - \blacktriangleright V wants to reach an input with 1, \bigwedge wants 0
- 2. $C(\bar{z})$ is a game schema

Basic example: monotone Boolean circuit

Let $C(\bar{z})$ be a monotone Boolean Circuit and $\bar{a} \in \{0,1\}^n$.

- 1. (C, a) as a game
 - \blacktriangleright players \bigvee and \bigwedge
 - \blacktriangleright V wants to reach an input with 1, \bigwedge wants 0
- 2. $C(\bar{z})$ is a game schema

N.B. if a player has a winning strategy then (s)he also has a *positional* winning strategy.

Monotone interpolation by game schemas

Theorem (P'19)

Let $\Phi(\bar{x}, \bar{z})$ and $\Psi(\bar{y}, \bar{z})$ be two CNF formulas whose only common variables are \bar{z} and they occur in Φ only positively and in Ψ only negatively. Let an \mathcal{F}_d refutation of $\Phi(\bar{x}, \bar{z}) \wedge \Psi(\bar{y}, \bar{z})$ be given.

Then it is possible to construct in polynomial time a depth d + 1 game schema $S(\bar{z})$ such that for every assignment $\bar{a} : \bar{z} \to \{0, 1\}$,

- If Φ(x̄, ā) is satisfiable, then Player I has a positional wining strategy in S(ā) and
- If Ψ(ȳ, ā) is satisfiable, then Player II has a positional wining strategy in S(ā).

Depth 2 games and game schemas

Definition (Depth 2 game)

Two players alternate filling a $2 \times m$ matrix

$$\left(\begin{array}{cccc} u_1 & u_2 & \dots & u_{m-1} & u_m \\ v_1 & v_2 & \dots & v_{m-1} & v_m \end{array}\right)$$

in the order $u_1u_2 \ldots u_{m-1}u_mv_mv_{m-1} \ldots v_2v_1$, $u_i, v_j \in A$.

Legal moves (and positional strategies) are

- for u_i , determined by i, u_{i-1} ,
- for v_i , determined by i, u_i , and v_{i+1} .

Player 1 wins if $v_1 \in W$, otherwise Player 2.

Depth 2 games and game schemas

Definition (Depth 2 game)

Two players alternate filling a $2 \times m$ matrix

$$\left(\begin{array}{cccc} u_1 & u_2 & \dots & u_{m-1} & u_m \\ v_1 & v_2 & \dots & v_{m-1} & v_m \end{array}\right)$$

in the order $u_1u_2\ldots u_{m-1}u_mv_mv_{m-1}\ldots v_2v_1$, $u_i, v_j \in A$.

Legal moves (and positional strategies) are

- for u_i , determined by i, u_{i-1} ,
- for v_i , determined by i, u_i , and v_{i+1} .

Player 1 wins if $v_1 \in W$, otherwise Player 2.

```
Definition (depth 2 game schema) same, except W is not fixed.
```

equivalent definition

- 1. In the 1st round players alternate constructing a monotone Boolean circuit *C*.
- 2. In the 2nd round they play the game determined by C and an input $a \in \{0, 1\}^n$.

equivalent definition

- 1. In the 1st round players alternate constructing a monotone Boolean circuit *C*.
- In the 2nd round they play the game determined by C and an input a ∈ {0,1}ⁿ.
- In more detail
 - the circuit they construct will be a straight-line program
 - ▶ at step *i*, the player can choose an instruction from some fixed set *I_i* (e.g., *I_i* can be {*y_k* := *x_l* ∧ *y_p*, *y_k* := *y_q* ∨ *y_r*})
 - they construct the program in the reverse order.

The point-line game

- DAG (G, E) (nodes and arrows)
- nodes labeled B and W (the players)
- for every node A, a set P_A (points of A)
- ▶ for every arrow $A \rightarrow B$, a partial matching between P_A and P_B (lines)
- one source
- each sink has exactly one point
- game starts with black and white pebbles on the points of the source
- players pick arrows and move pebbles along the lines
- the winner is whose pebble ends up in a sink

A different way of playing the point-line game

- do not move pebbles, only construct the path
- after reaching a leaf, determine the color by following the lines back

Proposition

Point-line game schemas and depth 2 game schemas are reducible to each other using projections and at most polynomial increase of the size of the games.

Proof (only the easy direction - simulation of point-line games by depth 2 games).

We will use the definition of depth 2 games based on circuits.

Let a point-line game G be given. Think of the points as variables. When a player decides to go from node P to node Q where $p_1 \rightarrow q_1, \ldots, p_k \rightarrow q_k$ is the matching of lines, then in the depth 2 game the player will play

$$q_1 := p_1, \ldots, q_k := p_k$$

Furthermore, we may assume w.l.o.g. that there is a unique sink in the point-line game. The variable assigned to the point y in it will be the output variable of the constructed circuit.

The resulting circuit will contain instructions

$$r_2 := r_1, r_3 := r_2, \ldots, y := r_{m-1},$$

where r_1, \ldots, r_{m-1}, y is the path from point r_1 in the input node to y, the point in the sink.

Generalized monotone Boolean circuits

Monotone Boolean circuits as a calculus

Axioms: $0, 1, x_1, x_2, \ldots$

Rules:

$$\frac{f g}{f \wedge g} \qquad \frac{f g}{f \vee g}$$

Generalized monotone Boolean circuits

Monotone Boolean circuits as a calculus

Axioms: $0, 1, x_1, x_2, \ldots$

Rules:

$$\frac{f g}{f \wedge g} \qquad \frac{f g}{f \vee g}$$

Generalized monotone Boolean circuits as a calculus

+ substitution rule:

$$\frac{f(y_1,\ldots,y_r)}{f(z_1,\ldots,z_r)}$$

where y_1, \ldots, y_r are distinct variables and z_1, \ldots, z_r are variables or constants.

The *size* of the (generalized) circuit is the *length of the derivation* (not counting substitutions).

Given a point-line game schema, one can construct a generalized circuit of the same size that computes who has a winning strategy.

Given a point-line game schema, one can construct a generalized circuit of the same size that computes who has a winning strategy.

Proof idea.

By induction, construct generalized circuits for all nodes of the given point-line game schema. Nodes of Black (White) will correspond to \lor (to \land). Substitutions are determined by matchings between the nodes.

Given a point-line game schema, one can construct a generalized circuit of the same size that computes who has a winning strategy.

Proof idea.

By induction, construct generalized circuits for all nodes of the given point-line game schema. Nodes of Black (White) will correspond to \lor (to \land). Substitutions are determined by matchings between the nodes.

Problem

Determine for which inputs there is a positional winning strategy.

Given a point-line game schema, one can construct a generalized circuit of the same size that computes who has a winning strategy.

Proof idea.

By induction, construct generalized circuits for all nodes of the given point-line game schema. Nodes of Black (White) will correspond to \lor (to \land). Substitutions are determined by matchings between the nodes.

Problem

Determine for which inputs there is a positional winning strategy.

Remark. If the graph of the point-line game is a tree, we can eliminate substitutions and get a monotone Boolean formula.

Problems

1. Prove a superpolynomial lower bounds on generalized monotone circuits for explicit functions.

Problems

- 1. Prove a superpolynomial lower bounds on generalized monotone circuits for explicit functions.
- 2. Extend the calculus defining generalized monotone circuits to include information about *positional* winning strategies.

Problems

- 1. Prove a superpolynomial lower bounds on generalized monotone circuits for explicit functions.
- 2. Extend the calculus defining generalized monotone circuits to include information about *positional* winning strategies.
- 3. Use 2. to prove a lower bound on point-line game schemas representing a partial monotone function.

WPHP has quasipolynomial \mathcal{F}_1 proofs

Corollary

- 1. Depth 2 game schemas are exponentially more powerful than monotone Boolean circuits.
- 2. Generalized monotone circuits are exponentially more powerful than monotone Boolean circuits.

Corollary

For every n, there exists an $m = n^{O(n)}$ and a formula $\phi(\bar{x}, \bar{y})$ where \bar{x} occur negatively in ϕ , $|\bar{x}| = n$, such that every monotone circuit $C(\bar{x})$ such that for every $\bar{a} \in \{0, 1\}^n$,

$$C(\bar{a}) = 1$$
 if $\phi(\bar{a}, y)$ has a \mathcal{F}_1 refutation of size $\leq m$
 $C(\bar{a}) = 0$ if $\phi(\bar{a}, y)$ is satisfiable

has exponential size.

I.e., \mathcal{F}_1 is not weakly automatable by monotone Boolean circuits.

Corollary

For every n, there exists an $m = n^{O(n)}$ and a formula $\phi(\bar{x}, \bar{y})$ where \bar{x} occur negatively in ϕ , $|\bar{x}| = n$, such that every monotone circuit $C(\bar{x})$ such that for every $\bar{a} \in \{0, 1\}^n$,

$$C(\bar{a}) = 1$$
 if $\phi(\bar{a}, y)$ has a \mathcal{F}_1 refutation of size $\leq m$
 $C(\bar{a}) = 0$ if $\phi(\bar{a}, y)$ is satisfiable

has exponential size.

I.e., \mathcal{F}_1 is not weakly automatable by monotone Boolean circuits.

Problem

Can we prove the same for Resolution?

Thank you