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Single cells from different stages of mouse gastrulation

• Multiple donors (mice)
Argelaguet et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature 576, 487–491 (2019)

obtained from scNMT-seq to single-cell libraries profiled using
scM&T-seq3, scBS-seq13 and bulk BS-seq18, finding that most of
the cell-to-cell variation is not attributed to protocol or study but
to changes in the mean methylation rate (first principal
component, 51% variance) (Supplementary Fig. 6). To validate
the accessibility measurements, we generated a synthetic pseudo-
bulk dataset by merging data from all cells, which we compared to
published bulk DNase-seq data from the same cell type19.
Globally, we observed high consistency between datasets (Relative
accessibility profiles, Pearson R= 0.74, Supplementary Fig. 7). A
notable difference was that scNMT-seq data captured, within
single cells, oscillating profiles with peaks spaced ~180 to ~200 bp
apart, indicating the positions of nucleosomes (Fig. 1d, e and
Supplementary Fig. 8), which is consistent with accessibility
profiles obtained using bulk NOMe-seq11, demonstrating high
resolution of our accessibility measurements.

As a final quality assessment, we analysed associations between
molecular layers within individual cells (across all genes), which is
similar to approaches used to investigate linkages using bulk data
(see Fig. 2 upper panel for a graphical representation).
Reassuringly, this confirmed the expected negative correlations
for methylation with transcription12 and methylation with

accessibility8 (Fig. 2, lower panel) and positive correlations
between accessibility and expression18 (for most genomic
contexts with the notable exception of active enhancers for
which there is little evidence for a correlation between
accessibility and expression in our data or in published data).
These results indicate that our method recapitulates, within single
cells, known trends from bulk data.

Taken together, these results demonstrate that our method is
able to robustly profile gene expression, DNA methylation and
chromatin accessibility within the same single cell.

Identifying genomic loci with coordinated variability. Having
established the efficacy of our method, we next explored its
potential for identifying loci with coordinated epigenetic and
transcriptional heterogeneity. To obtain a dataset with a larger
degree of heterogeneity than observed in ES cells, we prepared a
second dataset obtained from serum grown ES cells that we
removed from LIF for 3 days to initiate differentiation into
embryoid bodies (EBs). We sequenced 43 cells, which clearly
clustered into two sub-populations based on RNA-seq profiles,
corresponding to pluripotent and differentiating states (Supple-
mentary Fig. 9). First, we examined cell-to-cell variance in the

b ca

ed
S

M
A

R
T-

S
eq

2

GC

GC

G
C G
C

m

m

scBS

Promoters

Genes

Enhancers

p300

CpG islands

Theoretical percentage of loci 
covered with at least 5 Cs

Sequencing and
mapping

Sequencing,
mapping and

splitting

Promoters

Genes

Enhancers

p300

CpG islands

Observed percentage of loci
covered with at least 5 Cs

All CpG
NOMe-seq CpG
NOMe-seq GpC

CpG methylation

GpC accessibility

Transcriptome DNA methylation Accessibility

0 25 50 75 100 0 25 50 75 100

Lysis

GpC methylase

GpC methylase treatment

–1000 0 1000

Genomic distance from TSS

GpC accessibility
CpG methylation

40%

20%

60%

High
Medium
Low

DNase hypersensitive sites Promoters

−1000 0 1000

Distance from center of region (bp)

GpC accessibility
CpG methylation

R
at

e 40%

20%

60%

Fig. 1 scNMT-seq overview and genome-wide coverage. a Protocol overview. Single-cells are lysed and accessible DNA is labelled using GpC
methyltransferase. RNA is then separated and sequenced using Smart-seq2, whilst DNA undergoes scBS-seq library preparation and sequencing.
Methylation and chromatin accessibility data are separated bioinformatically. b Theoretical maximum CpG coverage of genomic contexts with known
regulatory roles. Shown is the proportion of loci in different contexts that contain at least 5 cytosines. ‘All CpG’ considers any C-G dinucleotides (e.g., as in
scBS-seq), ‘NOMe-seq CpG’ considers A–C–G and T–C–G trinucleotides and ‘NOMe-seq GpC’ considers G–C–A, G–C–C and G–C–T trinucleotides. c
Empirical coverage in 61 mouse ES cells considering the same contexts as in b. Shown is the coverage distribution across cells after QC; box plots show
median coverage and the first and third quartile, whiskers show 1.5 × the interquartile range above and below the box. d CpG methylation and GpC
accessibility profiles at published DNase hypersensitive sites19. The profiles were computed as a running average in 50 bp windows. Shading denotes
standard deviation across cells. e CpG methylation and GpC accessibility profiles at gene promoters. Promoters are stratified by average expression level of
the corresponding gene (log normalised counts less than 2 (low), between 2 and 6 (medium) and higher than 6 (high). The profile is generated by
computing a running average in 50 bp windows
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obtained from scNMT-seq to single-cell libraries profiled using
scM&T-seq3, scBS-seq13 and bulk BS-seq18, finding that most of
the cell-to-cell variation is not attributed to protocol or study but
to changes in the mean methylation rate (first principal
component, 51% variance) (Supplementary Fig. 6). To validate
the accessibility measurements, we generated a synthetic pseudo-
bulk dataset by merging data from all cells, which we compared to
published bulk DNase-seq data from the same cell type19.
Globally, we observed high consistency between datasets (Relative
accessibility profiles, Pearson R= 0.74, Supplementary Fig. 7). A
notable difference was that scNMT-seq data captured, within
single cells, oscillating profiles with peaks spaced ~180 to ~200 bp
apart, indicating the positions of nucleosomes (Fig. 1d, e and
Supplementary Fig. 8), which is consistent with accessibility
profiles obtained using bulk NOMe-seq11, demonstrating high
resolution of our accessibility measurements.

As a final quality assessment, we analysed associations between
molecular layers within individual cells (across all genes), which is
similar to approaches used to investigate linkages using bulk data
(see Fig. 2 upper panel for a graphical representation).
Reassuringly, this confirmed the expected negative correlations
for methylation with transcription12 and methylation with

accessibility8 (Fig. 2, lower panel) and positive correlations
between accessibility and expression18 (for most genomic
contexts with the notable exception of active enhancers for
which there is little evidence for a correlation between
accessibility and expression in our data or in published data).
These results indicate that our method recapitulates, within single
cells, known trends from bulk data.

Taken together, these results demonstrate that our method is
able to robustly profile gene expression, DNA methylation and
chromatin accessibility within the same single cell.

Identifying genomic loci with coordinated variability. Having
established the efficacy of our method, we next explored its
potential for identifying loci with coordinated epigenetic and
transcriptional heterogeneity. To obtain a dataset with a larger
degree of heterogeneity than observed in ES cells, we prepared a
second dataset obtained from serum grown ES cells that we
removed from LIF for 3 days to initiate differentiation into
embryoid bodies (EBs). We sequenced 43 cells, which clearly
clustered into two sub-populations based on RNA-seq profiles,
corresponding to pluripotent and differentiating states (Supple-
mentary Fig. 9). First, we examined cell-to-cell variance in the
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Fig. 1 scNMT-seq overview and genome-wide coverage. a Protocol overview. Single-cells are lysed and accessible DNA is labelled using GpC
methyltransferase. RNA is then separated and sequenced using Smart-seq2, whilst DNA undergoes scBS-seq library preparation and sequencing.
Methylation and chromatin accessibility data are separated bioinformatically. b Theoretical maximum CpG coverage of genomic contexts with known
regulatory roles. Shown is the proportion of loci in different contexts that contain at least 5 cytosines. ‘All CpG’ considers any C-G dinucleotides (e.g., as in
scBS-seq), ‘NOMe-seq CpG’ considers A–C–G and T–C–G trinucleotides and ‘NOMe-seq GpC’ considers G–C–A, G–C–C and G–C–T trinucleotides. c
Empirical coverage in 61 mouse ES cells considering the same contexts as in b. Shown is the coverage distribution across cells after QC; box plots show
median coverage and the first and third quartile, whiskers show 1.5 × the interquartile range above and below the box. d CpG methylation and GpC
accessibility profiles at published DNase hypersensitive sites19. The profiles were computed as a running average in 50 bp windows. Shading denotes
standard deviation across cells. e CpG methylation and GpC accessibility profiles at gene promoters. Promoters are stratified by average expression level of
the corresponding gene (log normalised counts less than 2 (low), between 2 and 6 (medium) and higher than 6 (high). The profile is generated by
computing a running average in 50 bp windows
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obtained from scNMT-seq to single-cell libraries profiled using
scM&T-seq3, scBS-seq13 and bulk BS-seq18, finding that most of
the cell-to-cell variation is not attributed to protocol or study but
to changes in the mean methylation rate (first principal
component, 51% variance) (Supplementary Fig. 6). To validate
the accessibility measurements, we generated a synthetic pseudo-
bulk dataset by merging data from all cells, which we compared to
published bulk DNase-seq data from the same cell type19.
Globally, we observed high consistency between datasets (Relative
accessibility profiles, Pearson R= 0.74, Supplementary Fig. 7). A
notable difference was that scNMT-seq data captured, within
single cells, oscillating profiles with peaks spaced ~180 to ~200 bp
apart, indicating the positions of nucleosomes (Fig. 1d, e and
Supplementary Fig. 8), which is consistent with accessibility
profiles obtained using bulk NOMe-seq11, demonstrating high
resolution of our accessibility measurements.

As a final quality assessment, we analysed associations between
molecular layers within individual cells (across all genes), which is
similar to approaches used to investigate linkages using bulk data
(see Fig. 2 upper panel for a graphical representation).
Reassuringly, this confirmed the expected negative correlations
for methylation with transcription12 and methylation with

accessibility8 (Fig. 2, lower panel) and positive correlations
between accessibility and expression18 (for most genomic
contexts with the notable exception of active enhancers for
which there is little evidence for a correlation between
accessibility and expression in our data or in published data).
These results indicate that our method recapitulates, within single
cells, known trends from bulk data.

Taken together, these results demonstrate that our method is
able to robustly profile gene expression, DNA methylation and
chromatin accessibility within the same single cell.

Identifying genomic loci with coordinated variability. Having
established the efficacy of our method, we next explored its
potential for identifying loci with coordinated epigenetic and
transcriptional heterogeneity. To obtain a dataset with a larger
degree of heterogeneity than observed in ES cells, we prepared a
second dataset obtained from serum grown ES cells that we
removed from LIF for 3 days to initiate differentiation into
embryoid bodies (EBs). We sequenced 43 cells, which clearly
clustered into two sub-populations based on RNA-seq profiles,
corresponding to pluripotent and differentiating states (Supple-
mentary Fig. 9). First, we examined cell-to-cell variance in the
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Fig. 1 scNMT-seq overview and genome-wide coverage. a Protocol overview. Single-cells are lysed and accessible DNA is labelled using GpC
methyltransferase. RNA is then separated and sequenced using Smart-seq2, whilst DNA undergoes scBS-seq library preparation and sequencing.
Methylation and chromatin accessibility data are separated bioinformatically. b Theoretical maximum CpG coverage of genomic contexts with known
regulatory roles. Shown is the proportion of loci in different contexts that contain at least 5 cytosines. ‘All CpG’ considers any C-G dinucleotides (e.g., as in
scBS-seq), ‘NOMe-seq CpG’ considers A–C–G and T–C–G trinucleotides and ‘NOMe-seq GpC’ considers G–C–A, G–C–C and G–C–T trinucleotides. c
Empirical coverage in 61 mouse ES cells considering the same contexts as in b. Shown is the coverage distribution across cells after QC; box plots show
median coverage and the first and third quartile, whiskers show 1.5 × the interquartile range above and below the box. d CpG methylation and GpC
accessibility profiles at published DNase hypersensitive sites19. The profiles were computed as a running average in 50 bp windows. Shading denotes
standard deviation across cells. e CpG methylation and GpC accessibility profiles at gene promoters. Promoters are stratified by average expression level of
the corresponding gene (log normalised counts less than 2 (low), between 2 and 6 (medium) and higher than 6 (high). The profile is generated by
computing a running average in 50 bp windows
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obtained from scNMT-seq to single-cell libraries profiled using
scM&T-seq3, scBS-seq13 and bulk BS-seq18, finding that most of
the cell-to-cell variation is not attributed to protocol or study but
to changes in the mean methylation rate (first principal
component, 51% variance) (Supplementary Fig. 6). To validate
the accessibility measurements, we generated a synthetic pseudo-
bulk dataset by merging data from all cells, which we compared to
published bulk DNase-seq data from the same cell type19.
Globally, we observed high consistency between datasets (Relative
accessibility profiles, Pearson R= 0.74, Supplementary Fig. 7). A
notable difference was that scNMT-seq data captured, within
single cells, oscillating profiles with peaks spaced ~180 to ~200 bp
apart, indicating the positions of nucleosomes (Fig. 1d, e and
Supplementary Fig. 8), which is consistent with accessibility
profiles obtained using bulk NOMe-seq11, demonstrating high
resolution of our accessibility measurements.

As a final quality assessment, we analysed associations between
molecular layers within individual cells (across all genes), which is
similar to approaches used to investigate linkages using bulk data
(see Fig. 2 upper panel for a graphical representation).
Reassuringly, this confirmed the expected negative correlations
for methylation with transcription12 and methylation with

accessibility8 (Fig. 2, lower panel) and positive correlations
between accessibility and expression18 (for most genomic
contexts with the notable exception of active enhancers for
which there is little evidence for a correlation between
accessibility and expression in our data or in published data).
These results indicate that our method recapitulates, within single
cells, known trends from bulk data.

Taken together, these results demonstrate that our method is
able to robustly profile gene expression, DNA methylation and
chromatin accessibility within the same single cell.

Identifying genomic loci with coordinated variability. Having
established the efficacy of our method, we next explored its
potential for identifying loci with coordinated epigenetic and
transcriptional heterogeneity. To obtain a dataset with a larger
degree of heterogeneity than observed in ES cells, we prepared a
second dataset obtained from serum grown ES cells that we
removed from LIF for 3 days to initiate differentiation into
embryoid bodies (EBs). We sequenced 43 cells, which clearly
clustered into two sub-populations based on RNA-seq profiles,
corresponding to pluripotent and differentiating states (Supple-
mentary Fig. 9). First, we examined cell-to-cell variance in the
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Fig. 1 scNMT-seq overview and genome-wide coverage. a Protocol overview. Single-cells are lysed and accessible DNA is labelled using GpC
methyltransferase. RNA is then separated and sequenced using Smart-seq2, whilst DNA undergoes scBS-seq library preparation and sequencing.
Methylation and chromatin accessibility data are separated bioinformatically. b Theoretical maximum CpG coverage of genomic contexts with known
regulatory roles. Shown is the proportion of loci in different contexts that contain at least 5 cytosines. ‘All CpG’ considers any C-G dinucleotides (e.g., as in
scBS-seq), ‘NOMe-seq CpG’ considers A–C–G and T–C–G trinucleotides and ‘NOMe-seq GpC’ considers G–C–A, G–C–C and G–C–T trinucleotides. c
Empirical coverage in 61 mouse ES cells considering the same contexts as in b. Shown is the coverage distribution across cells after QC; box plots show
median coverage and the first and third quartile, whiskers show 1.5 × the interquartile range above and below the box. d CpG methylation and GpC
accessibility profiles at published DNase hypersensitive sites19. The profiles were computed as a running average in 50 bp windows. Shading denotes
standard deviation across cells. e CpG methylation and GpC accessibility profiles at gene promoters. Promoters are stratified by average expression level of
the corresponding gene (log normalised counts less than 2 (low), between 2 and 6 (medium) and higher than 6 (high). The profile is generated by
computing a running average in 50 bp windows
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obtained from scNMT-seq to single-cell libraries profiled using
scM&T-seq3, scBS-seq13 and bulk BS-seq18, finding that most of
the cell-to-cell variation is not attributed to protocol or study but
to changes in the mean methylation rate (first principal
component, 51% variance) (Supplementary Fig. 6). To validate
the accessibility measurements, we generated a synthetic pseudo-
bulk dataset by merging data from all cells, which we compared to
published bulk DNase-seq data from the same cell type19.
Globally, we observed high consistency between datasets (Relative
accessibility profiles, Pearson R= 0.74, Supplementary Fig. 7). A
notable difference was that scNMT-seq data captured, within
single cells, oscillating profiles with peaks spaced ~180 to ~200 bp
apart, indicating the positions of nucleosomes (Fig. 1d, e and
Supplementary Fig. 8), which is consistent with accessibility
profiles obtained using bulk NOMe-seq11, demonstrating high
resolution of our accessibility measurements.

As a final quality assessment, we analysed associations between
molecular layers within individual cells (across all genes), which is
similar to approaches used to investigate linkages using bulk data
(see Fig. 2 upper panel for a graphical representation).
Reassuringly, this confirmed the expected negative correlations
for methylation with transcription12 and methylation with

accessibility8 (Fig. 2, lower panel) and positive correlations
between accessibility and expression18 (for most genomic
contexts with the notable exception of active enhancers for
which there is little evidence for a correlation between
accessibility and expression in our data or in published data).
These results indicate that our method recapitulates, within single
cells, known trends from bulk data.

Taken together, these results demonstrate that our method is
able to robustly profile gene expression, DNA methylation and
chromatin accessibility within the same single cell.

Identifying genomic loci with coordinated variability. Having
established the efficacy of our method, we next explored its
potential for identifying loci with coordinated epigenetic and
transcriptional heterogeneity. To obtain a dataset with a larger
degree of heterogeneity than observed in ES cells, we prepared a
second dataset obtained from serum grown ES cells that we
removed from LIF for 3 days to initiate differentiation into
embryoid bodies (EBs). We sequenced 43 cells, which clearly
clustered into two sub-populations based on RNA-seq profiles,
corresponding to pluripotent and differentiating states (Supple-
mentary Fig. 9). First, we examined cell-to-cell variance in the
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Fig. 1 scNMT-seq overview and genome-wide coverage. a Protocol overview. Single-cells are lysed and accessible DNA is labelled using GpC
methyltransferase. RNA is then separated and sequenced using Smart-seq2, whilst DNA undergoes scBS-seq library preparation and sequencing.
Methylation and chromatin accessibility data are separated bioinformatically. b Theoretical maximum CpG coverage of genomic contexts with known
regulatory roles. Shown is the proportion of loci in different contexts that contain at least 5 cytosines. ‘All CpG’ considers any C-G dinucleotides (e.g., as in
scBS-seq), ‘NOMe-seq CpG’ considers A–C–G and T–C–G trinucleotides and ‘NOMe-seq GpC’ considers G–C–A, G–C–C and G–C–T trinucleotides. c
Empirical coverage in 61 mouse ES cells considering the same contexts as in b. Shown is the coverage distribution across cells after QC; box plots show
median coverage and the first and third quartile, whiskers show 1.5 × the interquartile range above and below the box. d CpG methylation and GpC
accessibility profiles at published DNase hypersensitive sites19. The profiles were computed as a running average in 50 bp windows. Shading denotes
standard deviation across cells. e CpG methylation and GpC accessibility profiles at gene promoters. Promoters are stratified by average expression level of
the corresponding gene (log normalised counts less than 2 (low), between 2 and 6 (medium) and higher than 6 (high). The profile is generated by
computing a running average in 50 bp windows
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obtained from scNMT-seq to single-cell libraries profiled using
scM&T-seq3, scBS-seq13 and bulk BS-seq18, finding that most of
the cell-to-cell variation is not attributed to protocol or study but
to changes in the mean methylation rate (first principal
component, 51% variance) (Supplementary Fig. 6). To validate
the accessibility measurements, we generated a synthetic pseudo-
bulk dataset by merging data from all cells, which we compared to
published bulk DNase-seq data from the same cell type19.
Globally, we observed high consistency between datasets (Relative
accessibility profiles, Pearson R= 0.74, Supplementary Fig. 7). A
notable difference was that scNMT-seq data captured, within
single cells, oscillating profiles with peaks spaced ~180 to ~200 bp
apart, indicating the positions of nucleosomes (Fig. 1d, e and
Supplementary Fig. 8), which is consistent with accessibility
profiles obtained using bulk NOMe-seq11, demonstrating high
resolution of our accessibility measurements.

As a final quality assessment, we analysed associations between
molecular layers within individual cells (across all genes), which is
similar to approaches used to investigate linkages using bulk data
(see Fig. 2 upper panel for a graphical representation).
Reassuringly, this confirmed the expected negative correlations
for methylation with transcription12 and methylation with

accessibility8 (Fig. 2, lower panel) and positive correlations
between accessibility and expression18 (for most genomic
contexts with the notable exception of active enhancers for
which there is little evidence for a correlation between
accessibility and expression in our data or in published data).
These results indicate that our method recapitulates, within single
cells, known trends from bulk data.

Taken together, these results demonstrate that our method is
able to robustly profile gene expression, DNA methylation and
chromatin accessibility within the same single cell.

Identifying genomic loci with coordinated variability. Having
established the efficacy of our method, we next explored its
potential for identifying loci with coordinated epigenetic and
transcriptional heterogeneity. To obtain a dataset with a larger
degree of heterogeneity than observed in ES cells, we prepared a
second dataset obtained from serum grown ES cells that we
removed from LIF for 3 days to initiate differentiation into
embryoid bodies (EBs). We sequenced 43 cells, which clearly
clustered into two sub-populations based on RNA-seq profiles,
corresponding to pluripotent and differentiating states (Supple-
mentary Fig. 9). First, we examined cell-to-cell variance in the
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Fig. 1 scNMT-seq overview and genome-wide coverage. a Protocol overview. Single-cells are lysed and accessible DNA is labelled using GpC
methyltransferase. RNA is then separated and sequenced using Smart-seq2, whilst DNA undergoes scBS-seq library preparation and sequencing.
Methylation and chromatin accessibility data are separated bioinformatically. b Theoretical maximum CpG coverage of genomic contexts with known
regulatory roles. Shown is the proportion of loci in different contexts that contain at least 5 cytosines. ‘All CpG’ considers any C-G dinucleotides (e.g., as in
scBS-seq), ‘NOMe-seq CpG’ considers A–C–G and T–C–G trinucleotides and ‘NOMe-seq GpC’ considers G–C–A, G–C–C and G–C–T trinucleotides. c
Empirical coverage in 61 mouse ES cells considering the same contexts as in b. Shown is the coverage distribution across cells after QC; box plots show
median coverage and the first and third quartile, whiskers show 1.5 × the interquartile range above and below the box. d CpG methylation and GpC
accessibility profiles at published DNase hypersensitive sites19. The profiles were computed as a running average in 50 bp windows. Shading denotes
standard deviation across cells. e CpG methylation and GpC accessibility profiles at gene promoters. Promoters are stratified by average expression level of
the corresponding gene (log normalised counts less than 2 (low), between 2 and 6 (medium) and higher than 6 (high). The profile is generated by
computing a running average in 50 bp windows
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McInnes, Leland, and John Healy. "UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction."

• Early stage cells are transcriptionally distinct from others

• Putative lineages assigned using transcriptome data

Non-linear dimension reduction using UMAP
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𝐶!~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑐!+ 𝑐", r)

MAP estimate with 𝛽 1,1 (pseudo-count) prior:  �̂� = #!!$
#!!#"!%

Region
# of methylated/accessible 

(c+)
# of unmethylated/inaccessible

(c-)
Chr. IV   12,222,872-12,227,112 4 1

Chr. III   81,782,112- 81,837,335 453 103

DNA-level measurements are binary calls

obtained from scNMT-seq to single-cell libraries profiled using
scM&T-seq3, scBS-seq13 and bulk BS-seq18, finding that most of
the cell-to-cell variation is not attributed to protocol or study but
to changes in the mean methylation rate (first principal
component, 51% variance) (Supplementary Fig. 6). To validate
the accessibility measurements, we generated a synthetic pseudo-
bulk dataset by merging data from all cells, which we compared to
published bulk DNase-seq data from the same cell type19.
Globally, we observed high consistency between datasets (Relative
accessibility profiles, Pearson R= 0.74, Supplementary Fig. 7). A
notable difference was that scNMT-seq data captured, within
single cells, oscillating profiles with peaks spaced ~180 to ~200 bp
apart, indicating the positions of nucleosomes (Fig. 1d, e and
Supplementary Fig. 8), which is consistent with accessibility
profiles obtained using bulk NOMe-seq11, demonstrating high
resolution of our accessibility measurements.

As a final quality assessment, we analysed associations between
molecular layers within individual cells (across all genes), which is
similar to approaches used to investigate linkages using bulk data
(see Fig. 2 upper panel for a graphical representation).
Reassuringly, this confirmed the expected negative correlations
for methylation with transcription12 and methylation with

accessibility8 (Fig. 2, lower panel) and positive correlations
between accessibility and expression18 (for most genomic
contexts with the notable exception of active enhancers for
which there is little evidence for a correlation between
accessibility and expression in our data or in published data).
These results indicate that our method recapitulates, within single
cells, known trends from bulk data.

Taken together, these results demonstrate that our method is
able to robustly profile gene expression, DNA methylation and
chromatin accessibility within the same single cell.

Identifying genomic loci with coordinated variability. Having
established the efficacy of our method, we next explored its
potential for identifying loci with coordinated epigenetic and
transcriptional heterogeneity. To obtain a dataset with a larger
degree of heterogeneity than observed in ES cells, we prepared a
second dataset obtained from serum grown ES cells that we
removed from LIF for 3 days to initiate differentiation into
embryoid bodies (EBs). We sequenced 43 cells, which clearly
clustered into two sub-populations based on RNA-seq profiles,
corresponding to pluripotent and differentiating states (Supple-
mentary Fig. 9). First, we examined cell-to-cell variance in the
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Fig. 1 scNMT-seq overview and genome-wide coverage. a Protocol overview. Single-cells are lysed and accessible DNA is labelled using GpC
methyltransferase. RNA is then separated and sequenced using Smart-seq2, whilst DNA undergoes scBS-seq library preparation and sequencing.
Methylation and chromatin accessibility data are separated bioinformatically. b Theoretical maximum CpG coverage of genomic contexts with known
regulatory roles. Shown is the proportion of loci in different contexts that contain at least 5 cytosines. ‘All CpG’ considers any C-G dinucleotides (e.g., as in
scBS-seq), ‘NOMe-seq CpG’ considers A–C–G and T–C–G trinucleotides and ‘NOMe-seq GpC’ considers G–C–A, G–C–C and G–C–T trinucleotides. c
Empirical coverage in 61 mouse ES cells considering the same contexts as in b. Shown is the coverage distribution across cells after QC; box plots show
median coverage and the first and third quartile, whiskers show 1.5 × the interquartile range above and below the box. d CpG methylation and GpC
accessibility profiles at published DNase hypersensitive sites19. The profiles were computed as a running average in 50 bp windows. Shading denotes
standard deviation across cells. e CpG methylation and GpC accessibility profiles at gene promoters. Promoters are stratified by average expression level of
the corresponding gene (log normalised counts less than 2 (low), between 2 and 6 (medium) and higher than 6 (high). The profile is generated by
computing a running average in 50 bp windows
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obtained from scNMT-seq to single-cell libraries profiled using
scM&T-seq3, scBS-seq13 and bulk BS-seq18, finding that most of
the cell-to-cell variation is not attributed to protocol or study but
to changes in the mean methylation rate (first principal
component, 51% variance) (Supplementary Fig. 6). To validate
the accessibility measurements, we generated a synthetic pseudo-
bulk dataset by merging data from all cells, which we compared to
published bulk DNase-seq data from the same cell type19.
Globally, we observed high consistency between datasets (Relative
accessibility profiles, Pearson R= 0.74, Supplementary Fig. 7). A
notable difference was that scNMT-seq data captured, within
single cells, oscillating profiles with peaks spaced ~180 to ~200 bp
apart, indicating the positions of nucleosomes (Fig. 1d, e and
Supplementary Fig. 8), which is consistent with accessibility
profiles obtained using bulk NOMe-seq11, demonstrating high
resolution of our accessibility measurements.

As a final quality assessment, we analysed associations between
molecular layers within individual cells (across all genes), which is
similar to approaches used to investigate linkages using bulk data
(see Fig. 2 upper panel for a graphical representation).
Reassuringly, this confirmed the expected negative correlations
for methylation with transcription12 and methylation with

accessibility8 (Fig. 2, lower panel) and positive correlations
between accessibility and expression18 (for most genomic
contexts with the notable exception of active enhancers for
which there is little evidence for a correlation between
accessibility and expression in our data or in published data).
These results indicate that our method recapitulates, within single
cells, known trends from bulk data.

Taken together, these results demonstrate that our method is
able to robustly profile gene expression, DNA methylation and
chromatin accessibility within the same single cell.

Identifying genomic loci with coordinated variability. Having
established the efficacy of our method, we next explored its
potential for identifying loci with coordinated epigenetic and
transcriptional heterogeneity. To obtain a dataset with a larger
degree of heterogeneity than observed in ES cells, we prepared a
second dataset obtained from serum grown ES cells that we
removed from LIF for 3 days to initiate differentiation into
embryoid bodies (EBs). We sequenced 43 cells, which clearly
clustered into two sub-populations based on RNA-seq profiles,
corresponding to pluripotent and differentiating states (Supple-
mentary Fig. 9). First, we examined cell-to-cell variance in the
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Fig. 1 scNMT-seq overview and genome-wide coverage. a Protocol overview. Single-cells are lysed and accessible DNA is labelled using GpC
methyltransferase. RNA is then separated and sequenced using Smart-seq2, whilst DNA undergoes scBS-seq library preparation and sequencing.
Methylation and chromatin accessibility data are separated bioinformatically. b Theoretical maximum CpG coverage of genomic contexts with known
regulatory roles. Shown is the proportion of loci in different contexts that contain at least 5 cytosines. ‘All CpG’ considers any C-G dinucleotides (e.g., as in
scBS-seq), ‘NOMe-seq CpG’ considers A–C–G and T–C–G trinucleotides and ‘NOMe-seq GpC’ considers G–C–A, G–C–C and G–C–T trinucleotides. c
Empirical coverage in 61 mouse ES cells considering the same contexts as in b. Shown is the coverage distribution across cells after QC; box plots show
median coverage and the first and third quartile, whiskers show 1.5 × the interquartile range above and below the box. d CpG methylation and GpC
accessibility profiles at published DNase hypersensitive sites19. The profiles were computed as a running average in 50 bp windows. Shading denotes
standard deviation across cells. e CpG methylation and GpC accessibility profiles at gene promoters. Promoters are stratified by average expression level of
the corresponding gene (log normalised counts less than 2 (low), between 2 and 6 (medium) and higher than 6 (high). The profile is generated by
computing a running average in 50 bp windows
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obtained from scNMT-seq to single-cell libraries profiled using
scM&T-seq3, scBS-seq13 and bulk BS-seq18, finding that most of
the cell-to-cell variation is not attributed to protocol or study but
to changes in the mean methylation rate (first principal
component, 51% variance) (Supplementary Fig. 6). To validate
the accessibility measurements, we generated a synthetic pseudo-
bulk dataset by merging data from all cells, which we compared to
published bulk DNase-seq data from the same cell type19.
Globally, we observed high consistency between datasets (Relative
accessibility profiles, Pearson R= 0.74, Supplementary Fig. 7). A
notable difference was that scNMT-seq data captured, within
single cells, oscillating profiles with peaks spaced ~180 to ~200 bp
apart, indicating the positions of nucleosomes (Fig. 1d, e and
Supplementary Fig. 8), which is consistent with accessibility
profiles obtained using bulk NOMe-seq11, demonstrating high
resolution of our accessibility measurements.

As a final quality assessment, we analysed associations between
molecular layers within individual cells (across all genes), which is
similar to approaches used to investigate linkages using bulk data
(see Fig. 2 upper panel for a graphical representation).
Reassuringly, this confirmed the expected negative correlations
for methylation with transcription12 and methylation with

accessibility8 (Fig. 2, lower panel) and positive correlations
between accessibility and expression18 (for most genomic
contexts with the notable exception of active enhancers for
which there is little evidence for a correlation between
accessibility and expression in our data or in published data).
These results indicate that our method recapitulates, within single
cells, known trends from bulk data.

Taken together, these results demonstrate that our method is
able to robustly profile gene expression, DNA methylation and
chromatin accessibility within the same single cell.

Identifying genomic loci with coordinated variability. Having
established the efficacy of our method, we next explored its
potential for identifying loci with coordinated epigenetic and
transcriptional heterogeneity. To obtain a dataset with a larger
degree of heterogeneity than observed in ES cells, we prepared a
second dataset obtained from serum grown ES cells that we
removed from LIF for 3 days to initiate differentiation into
embryoid bodies (EBs). We sequenced 43 cells, which clearly
clustered into two sub-populations based on RNA-seq profiles,
corresponding to pluripotent and differentiating states (Supple-
mentary Fig. 9). First, we examined cell-to-cell variance in the
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Fig. 1 scNMT-seq overview and genome-wide coverage. a Protocol overview. Single-cells are lysed and accessible DNA is labelled using GpC
methyltransferase. RNA is then separated and sequenced using Smart-seq2, whilst DNA undergoes scBS-seq library preparation and sequencing.
Methylation and chromatin accessibility data are separated bioinformatically. b Theoretical maximum CpG coverage of genomic contexts with known
regulatory roles. Shown is the proportion of loci in different contexts that contain at least 5 cytosines. ‘All CpG’ considers any C-G dinucleotides (e.g., as in
scBS-seq), ‘NOMe-seq CpG’ considers A–C–G and T–C–G trinucleotides and ‘NOMe-seq GpC’ considers G–C–A, G–C–C and G–C–T trinucleotides. c
Empirical coverage in 61 mouse ES cells considering the same contexts as in b. Shown is the coverage distribution across cells after QC; box plots show
median coverage and the first and third quartile, whiskers show 1.5 × the interquartile range above and below the box. d CpG methylation and GpC
accessibility profiles at published DNase hypersensitive sites19. The profiles were computed as a running average in 50 bp windows. Shading denotes
standard deviation across cells. e CpG methylation and GpC accessibility profiles at gene promoters. Promoters are stratified by average expression level of
the corresponding gene (log normalised counts less than 2 (low), between 2 and 6 (medium) and higher than 6 (high). The profile is generated by
computing a running average in 50 bp windows

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03149-4 ARTICLE

NATURE COMMUNICATIONS | �(2018)�9:781� | DOI: 10.1038/s41467-018-03149-4 |www.nature.com/naturecommunications 3

𝑆𝐸 �̂� 2 =
�̂� (1 − �̂�)
𝑐! + 𝑐"

Smallwood et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods. 2014

𝑊&'()*+',#'-- = $
./ +̂ !



@aljabadiscNMT-seq: multi-modal integration and feature selection using projection to latent structures

DNA-level measurements summarised over various genomic contexts

obtained from scNMT-seq to single-cell libraries profiled using
scM&T-seq3, scBS-seq13 and bulk BS-seq18, finding that most of
the cell-to-cell variation is not attributed to protocol or study but
to changes in the mean methylation rate (first principal
component, 51% variance) (Supplementary Fig. 6). To validate
the accessibility measurements, we generated a synthetic pseudo-
bulk dataset by merging data from all cells, which we compared to
published bulk DNase-seq data from the same cell type19.
Globally, we observed high consistency between datasets (Relative
accessibility profiles, Pearson R= 0.74, Supplementary Fig. 7). A
notable difference was that scNMT-seq data captured, within
single cells, oscillating profiles with peaks spaced ~180 to ~200 bp
apart, indicating the positions of nucleosomes (Fig. 1d, e and
Supplementary Fig. 8), which is consistent with accessibility
profiles obtained using bulk NOMe-seq11, demonstrating high
resolution of our accessibility measurements.

As a final quality assessment, we analysed associations between
molecular layers within individual cells (across all genes), which is
similar to approaches used to investigate linkages using bulk data
(see Fig. 2 upper panel for a graphical representation).
Reassuringly, this confirmed the expected negative correlations
for methylation with transcription12 and methylation with

accessibility8 (Fig. 2, lower panel) and positive correlations
between accessibility and expression18 (for most genomic
contexts with the notable exception of active enhancers for
which there is little evidence for a correlation between
accessibility and expression in our data or in published data).
These results indicate that our method recapitulates, within single
cells, known trends from bulk data.

Taken together, these results demonstrate that our method is
able to robustly profile gene expression, DNA methylation and
chromatin accessibility within the same single cell.

Identifying genomic loci with coordinated variability. Having
established the efficacy of our method, we next explored its
potential for identifying loci with coordinated epigenetic and
transcriptional heterogeneity. To obtain a dataset with a larger
degree of heterogeneity than observed in ES cells, we prepared a
second dataset obtained from serum grown ES cells that we
removed from LIF for 3 days to initiate differentiation into
embryoid bodies (EBs). We sequenced 43 cells, which clearly
clustered into two sub-populations based on RNA-seq profiles,
corresponding to pluripotent and differentiating states (Supple-
mentary Fig. 9). First, we examined cell-to-cell variance in the
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Fig. 1 scNMT-seq overview and genome-wide coverage. a Protocol overview. Single-cells are lysed and accessible DNA is labelled using GpC
methyltransferase. RNA is then separated and sequenced using Smart-seq2, whilst DNA undergoes scBS-seq library preparation and sequencing.
Methylation and chromatin accessibility data are separated bioinformatically. b Theoretical maximum CpG coverage of genomic contexts with known
regulatory roles. Shown is the proportion of loci in different contexts that contain at least 5 cytosines. ‘All CpG’ considers any C-G dinucleotides (e.g., as in
scBS-seq), ‘NOMe-seq CpG’ considers A–C–G and T–C–G trinucleotides and ‘NOMe-seq GpC’ considers G–C–A, G–C–C and G–C–T trinucleotides. c
Empirical coverage in 61 mouse ES cells considering the same contexts as in b. Shown is the coverage distribution across cells after QC; box plots show
median coverage and the first and third quartile, whiskers show 1.5 × the interquartile range above and below the box. d CpG methylation and GpC
accessibility profiles at published DNase hypersensitive sites19. The profiles were computed as a running average in 50 bp windows. Shading denotes
standard deviation across cells. e CpG methylation and GpC accessibility profiles at gene promoters. Promoters are stratified by average expression level of
the corresponding gene (log normalised counts less than 2 (low), between 2 and 6 (medium) and higher than 6 (high). The profile is generated by
computing a running average in 50 bp windows
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obtained from scNMT-seq to single-cell libraries profiled using
scM&T-seq3, scBS-seq13 and bulk BS-seq18, finding that most of
the cell-to-cell variation is not attributed to protocol or study but
to changes in the mean methylation rate (first principal
component, 51% variance) (Supplementary Fig. 6). To validate
the accessibility measurements, we generated a synthetic pseudo-
bulk dataset by merging data from all cells, which we compared to
published bulk DNase-seq data from the same cell type19.
Globally, we observed high consistency between datasets (Relative
accessibility profiles, Pearson R= 0.74, Supplementary Fig. 7). A
notable difference was that scNMT-seq data captured, within
single cells, oscillating profiles with peaks spaced ~180 to ~200 bp
apart, indicating the positions of nucleosomes (Fig. 1d, e and
Supplementary Fig. 8), which is consistent with accessibility
profiles obtained using bulk NOMe-seq11, demonstrating high
resolution of our accessibility measurements.

As a final quality assessment, we analysed associations between
molecular layers within individual cells (across all genes), which is
similar to approaches used to investigate linkages using bulk data
(see Fig. 2 upper panel for a graphical representation).
Reassuringly, this confirmed the expected negative correlations
for methylation with transcription12 and methylation with

accessibility8 (Fig. 2, lower panel) and positive correlations
between accessibility and expression18 (for most genomic
contexts with the notable exception of active enhancers for
which there is little evidence for a correlation between
accessibility and expression in our data or in published data).
These results indicate that our method recapitulates, within single
cells, known trends from bulk data.

Taken together, these results demonstrate that our method is
able to robustly profile gene expression, DNA methylation and
chromatin accessibility within the same single cell.

Identifying genomic loci with coordinated variability. Having
established the efficacy of our method, we next explored its
potential for identifying loci with coordinated epigenetic and
transcriptional heterogeneity. To obtain a dataset with a larger
degree of heterogeneity than observed in ES cells, we prepared a
second dataset obtained from serum grown ES cells that we
removed from LIF for 3 days to initiate differentiation into
embryoid bodies (EBs). We sequenced 43 cells, which clearly
clustered into two sub-populations based on RNA-seq profiles,
corresponding to pluripotent and differentiating states (Supple-
mentary Fig. 9). First, we examined cell-to-cell variance in the
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Fig. 1 scNMT-seq overview and genome-wide coverage. a Protocol overview. Single-cells are lysed and accessible DNA is labelled using GpC
methyltransferase. RNA is then separated and sequenced using Smart-seq2, whilst DNA undergoes scBS-seq library preparation and sequencing.
Methylation and chromatin accessibility data are separated bioinformatically. b Theoretical maximum CpG coverage of genomic contexts with known
regulatory roles. Shown is the proportion of loci in different contexts that contain at least 5 cytosines. ‘All CpG’ considers any C-G dinucleotides (e.g., as in
scBS-seq), ‘NOMe-seq CpG’ considers A–C–G and T–C–G trinucleotides and ‘NOMe-seq GpC’ considers G–C–A, G–C–C and G–C–T trinucleotides. c
Empirical coverage in 61 mouse ES cells considering the same contexts as in b. Shown is the coverage distribution across cells after QC; box plots show
median coverage and the first and third quartile, whiskers show 1.5 × the interquartile range above and below the box. d CpG methylation and GpC
accessibility profiles at published DNase hypersensitive sites19. The profiles were computed as a running average in 50 bp windows. Shading denotes
standard deviation across cells. e CpG methylation and GpC accessibility profiles at gene promoters. Promoters are stratified by average expression level of
the corresponding gene (log normalised counts less than 2 (low), between 2 and 6 (medium) and higher than 6 (high). The profile is generated by
computing a running average in 50 bp windows
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obtained from scNMT-seq to single-cell libraries profiled using
scM&T-seq3, scBS-seq13 and bulk BS-seq18, finding that most of
the cell-to-cell variation is not attributed to protocol or study but
to changes in the mean methylation rate (first principal
component, 51% variance) (Supplementary Fig. 6). To validate
the accessibility measurements, we generated a synthetic pseudo-
bulk dataset by merging data from all cells, which we compared to
published bulk DNase-seq data from the same cell type19.
Globally, we observed high consistency between datasets (Relative
accessibility profiles, Pearson R= 0.74, Supplementary Fig. 7). A
notable difference was that scNMT-seq data captured, within
single cells, oscillating profiles with peaks spaced ~180 to ~200 bp
apart, indicating the positions of nucleosomes (Fig. 1d, e and
Supplementary Fig. 8), which is consistent with accessibility
profiles obtained using bulk NOMe-seq11, demonstrating high
resolution of our accessibility measurements.

As a final quality assessment, we analysed associations between
molecular layers within individual cells (across all genes), which is
similar to approaches used to investigate linkages using bulk data
(see Fig. 2 upper panel for a graphical representation).
Reassuringly, this confirmed the expected negative correlations
for methylation with transcription12 and methylation with

accessibility8 (Fig. 2, lower panel) and positive correlations
between accessibility and expression18 (for most genomic
contexts with the notable exception of active enhancers for
which there is little evidence for a correlation between
accessibility and expression in our data or in published data).
These results indicate that our method recapitulates, within single
cells, known trends from bulk data.

Taken together, these results demonstrate that our method is
able to robustly profile gene expression, DNA methylation and
chromatin accessibility within the same single cell.

Identifying genomic loci with coordinated variability. Having
established the efficacy of our method, we next explored its
potential for identifying loci with coordinated epigenetic and
transcriptional heterogeneity. To obtain a dataset with a larger
degree of heterogeneity than observed in ES cells, we prepared a
second dataset obtained from serum grown ES cells that we
removed from LIF for 3 days to initiate differentiation into
embryoid bodies (EBs). We sequenced 43 cells, which clearly
clustered into two sub-populations based on RNA-seq profiles,
corresponding to pluripotent and differentiating states (Supple-
mentary Fig. 9). First, we examined cell-to-cell variance in the
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Fig. 1 scNMT-seq overview and genome-wide coverage. a Protocol overview. Single-cells are lysed and accessible DNA is labelled using GpC
methyltransferase. RNA is then separated and sequenced using Smart-seq2, whilst DNA undergoes scBS-seq library preparation and sequencing.
Methylation and chromatin accessibility data are separated bioinformatically. b Theoretical maximum CpG coverage of genomic contexts with known
regulatory roles. Shown is the proportion of loci in different contexts that contain at least 5 cytosines. ‘All CpG’ considers any C-G dinucleotides (e.g., as in
scBS-seq), ‘NOMe-seq CpG’ considers A–C–G and T–C–G trinucleotides and ‘NOMe-seq GpC’ considers G–C–A, G–C–C and G–C–T trinucleotides. c
Empirical coverage in 61 mouse ES cells considering the same contexts as in b. Shown is the coverage distribution across cells after QC; box plots show
median coverage and the first and third quartile, whiskers show 1.5 × the interquartile range above and below the box. d CpG methylation and GpC
accessibility profiles at published DNase hypersensitive sites19. The profiles were computed as a running average in 50 bp windows. Shading denotes
standard deviation across cells. e CpG methylation and GpC accessibility profiles at gene promoters. Promoters are stratified by average expression level of
the corresponding gene (log normalised counts less than 2 (low), between 2 and 6 (medium) and higher than 6 (high). The profile is generated by
computing a running average in 50 bp windows
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Argelaguet et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature 576, 487–491 (2019)
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Heterogeneity in size of datasets

• Integrative analyses could be sensitive to size of te datasets
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• Methylation modalities have consistently lower feature detection https://en.wikipedia.org/wiki/CpG_site

Feature detection across cells



@aljabadiscNMT-seq: multi-modal integration and feature selection using projection to latent structures

DNA-level estimates are sparse and noisy

Challenge: effective noise-weighting required to enhance the biological signal
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Current methods for single-cell multi-modal analysis 

* Paired
• Most integrative methods developed for integration of multiple scRNA-seq datasets

• Seurat uses shared latent space (CCA) to identify corresponding cells in query datasets. Takes one dataset as ‘reference’.

• MOFA and LIGER use NMF to get shared and data-specific axes of variation across modalities.

MOFA:
q Works best when data are assumed to follow a Gaussian distribution (although other models are supported)
q Learned factors could be sensitive to initialization and could be biased towards larger datasets (size homogenisation required)

LIGER:
q Needs shared features across modalities

Argelaguet et al. MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data. Genome Biol 21, 111 (2020)
Butler et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36, 411–420 (2018)
Liu et al. Jointly Defining Cell Types from Multiple Single-Cell Datasets Using LIGER. bioRxiv 2020.04.07.029546
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• Variable-selection using the LASSO
• Able to handle (ignore) missing values without the need to impute
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Rohart et al. mixOmics: An R package for 'omics feature selection and multiple data integration. PLoS computational biology (2017) 
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Transcriptome ~ DNA Methylation & Chromatin Accessibility 

Data integration & feature selection

• Coordinated variation mainly driven by stages and lineages
• Different modalities contain different levels of covariance with transcriptome (or none!)

# of components:  2
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component: variable
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https://github.com/bioFAM/MOFA2
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Promoter methylation markers
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Data integration & feature selection

• Selected promoter regions are hypermethylated in late-stage embryonic cells
• Enrichment of regulatory pathways in selected promoter regions
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Data integration & feature selection

• Selected genebody regions follow the global methylation behaviour but more strongly
• Hypomethylation of selected regions in primitive endoderm cells 
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Focusing on lineage specification

• A total of 567 epiblast and germline cells
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Focusing on lineage specification

• Embryonic stages are still the main driver of shared variation
• Promoter methylation shows less coordinated variation when considering late-stage cells. It could be caused by abundant missing values.
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Focusing on lineage specification

Ac
ce

ss
bi

lit
y

(c
en

tre
d)

Ac
ce

ss
bi

lit
y

(c
en

tre
d)

Ex
pr

es
si

on
 (l

og
-n

or
m

al
iz

ed
)

Ex
pr

es
si

on
 (l

og
-n

or
m

al
iz

ed
)

• Putative mesoderm enhancer markers are less accessible in early stage and more accessible in late stage  
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• Multi-modal sparse PLS approach integrates multiple modalities of various sizes
• The selected markers mainly characterise the embryonic stages 
• Modalities differ widely in their level of covariance with the transcriptome and potentially capture different biological 

interactions
• So far most of integrative analyses focused on coordinated variation with respect to transcriptome, although it is possible 

to investigate the interaction between all modalities

Summary

Future work
• Performing supervised integration using the epigenetic data and the assigned lineages
• Investigate the inclusion of weights for each data set in the integrative approach
• Benchmarking against current methods
• Investigate manifold learning using the learned components

Limitations & Challenges
• Only looks at shared axes of variation
• Needs observations on same set of cells
• Needs continuous variables as input
• Where to summarise the calls? Open question
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