scNMT-seq: multi-modal integration and feature selection using projection to latent structures

Al JalalAbadi

LêCao Lab

Melbourne Integrative Genomics, School of Mathematics & Statistics

Mathematical Frameworks for Integrative Analysis of Emerging Biological Data Types (Online)

17 June 2020

Mouse gastrulation

What are the coordinated changes across genomic modalities leading to each lineage commitment?

https://youtu.be/ADIYn0ImTNg

Single cells from different stages of mouse gastrulation

	E4.5	E5.5	E6.5	E7.5
Ectoderm	0	0	0	43
Endoderm	0	0	0	81
Epiblast	60	84	146	44
Mesoderm	0	0	28	141
Primitive_endoderm	43	0	0	0
Primitive_Streak	0	0	43	33
Visceral_endoderm	0	24	45	0

• Multiple donors (mice)

Argelaguet et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature 576, 487–491 (2019)

Transcriptome

Non-linear dimension reduction using UMAP

- Early stage cells are transcriptionally distinct from others
- Putative lineages assigned using transcriptome data

McInnes, Leland, and John Healy. "UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction."

DNA-level measurements are binary calls

Region	# of methylated/accessible (C ⁺)	# of unmethylated/inaccessible (C⁻)
Chr. IV 12,222,872-12,227,112	4	1
Chr. III 81,782,112- 81,837,335	453	103

 $C^+ \sim Binomial (c^+ + c^-, r)$

MAP estimate with $\beta(1,1)$ (pseudo-count) prior: $\hat{r} = \frac{c^{+}+1}{c^{+}+c^{-}+2}$

$$SE[\hat{r}]^{2} = \frac{\hat{r}(1-\hat{r})}{c^{+}+c^{-}}$$

$$W_{feature,cell} = \frac{1}{SE[\hat{r}]^2}$$

Smallwood et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods. 2014

DNA-level measurements summarised over various genomic contexts

Argelaguet et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature 576, 487–491 (2019)

Heterogeneity in size of datasets

		Р	N
	rna	14501	815
	met_genebody	15837	815
	met_promoter	12092	815
LAAK A	met_cgi	5536	815
	met_p300	101	815
	acc_DHS	290	815
<u> </u>			
	acc_genebody	17139	815
	acc_promoter	16518	815
	acc_cgi	4459	815
	acc_p300	138	815
	acc_DHS	290	815
			_

• Integrative analyses could be sensitive to size of te datasets

DNA-level estimates are sparse and noisy

Promoter methylation

0.25

0.50

0.75

- Missing values (dropouts) due to limited coverage
- Estimates vary in levels of uncertainty

scNMT-seq: multi-modal integration and feature selection using projection to latent structures

@aljabadi

DNA-level estimates are sparse and noisy

Feature detection across cells

https://en.wikipedia.org/wiki/CpG_site

GAAGCCCTGGTGCAGAGCTGCCTTTGAGAGTAAGCTGAGGCCTGTCAGGT

GCGT

Methylation modalities have consistently lower feature detection

DNA-level estimates are sparse and noisy

Challenge: effective noise-weighting required to enhance the biological signal

Current methods for single-cell multi-modal analysis

- Most integrative methods developed for integration of **multiple scRNA-seq** datasets
- Seurat uses shared latent space (CCA) to identify corresponding cells in query datasets. Takes one dataset as 'reference'.
- MOFA and LIGER use NMF to get shared and data-specific axes of variation across modalities.

MOFA:

- U Works best when data are assumed to follow a Gaussian distribution (although other models are supported)
- Learned factors could be sensitive to initialization and could be biased towards larger datasets (size homogenisation required)

LIGER:

Needs shared features across modalities

Argelaguet et al. MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data. Genome Biol 21, 111 (2020) Butler et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36, 411–420 (2018) Liu et al. Jointly Defining Cell Types from Multiple Single-Cell Datasets Using LIGER. bioRxiv 2020.04.07.029546

Multi-modal sparse PLS integrative approach

- Variable-selection using the LASSO
- Able to handle (ignore) missing values without the need to impute

Rohart et al. mixOmics: An R package for 'omics feature selection and multiple data integration. PLoS computational biology (2017)

Transcriptome ~ DNA Methylation & Chromatin Accessibility

of components: 2

of features selected per component: variable (min 25, max 50)

- Coordinated variation mainly driven by stages and lineages
- Different modalities contain different levels of covariance with transcriptome (or none!)

RNA markers (component 1)

• First RNA component selects for genes that either switch on or switch off in later stages

Promoter methylation markers

Promoter methylation markers (component 1)

- Selected promoter regions are hypermethylated in late-stage embryonic cells
- Enrichment of regulatory pathways in selected promoter regions

Genebody methylation markers

Genebody methylation markers (component 1)

• Selected genebody regions follow the global methylation behaviour but more strongly

Hypomethylation of selected regions in primitive endoderm cells

Focusing on lineage specification

	E4.5	E5.5	E6.5	E7.5
Ectoderm	0	0	0	43
Endoderm	0	0	0	81
Epiblast	60	84	146	44
Mesoderm	0	0	28	141
Primitive_endoderm	43	0	0	0
Primitive_Streak	0	0	43	33
Visceral_endoderm	0	24	45	0

• A total of 567 epiblast and germline cells

Focusing on lineage specification

- Embryonic stages are still the main driver of shared variation
- Promoter methylation shows less coordinated variation when considering late-stage cells. It could be caused by abundant missing values.

Focusing on lineage specification

RNA markers (component 1 - positive loadings)

enhancer markers (component 1 - positive loadings)

• Putative mesoderm enhancer markers are less accessible in early stage and more accessible in late stage

Summary

- Multi-modal sparse PLS approach integrates multiple modalities of various sizes
- The selected markers mainly characterise the embryonic stages
- Modalities differ widely in their level of covariance with the transcriptome and potentially capture different biological interactions
- So far most of integrative analyses focused on coordinated variation with respect to transcriptome, although it is possible to investigate the interaction between all modalities

Limitations & Challenges

- Only looks at shared axes of variation
- Needs observations on same set of cells
- Needs continuous variables as input
- Where to summarise the calls? Open question

Future work

- Performing supervised integration using the epigenetic data and the assigned lineages
- Investigate the inclusion of weights for each data set in the integrative approach
- Benchmarking against current methods
- Investigate manifold learning using the learned components

Acknowledgements

- **Ricard Argelaguet**, European Bioinformatics Institute; University of Cambridge
- All LêCao lab members
- Heather Lee, The University of Newcastle; Hunter Medical Research Institute
- Elizabeth Mason, Hogan lab, Peter MacCallum Cancer Centre
- Aleksander Dakic, LêCao lab, The University of Melbourne
- Attila Csala, Academic Medical Center, Amsterdam

