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Omics integration - Overlapping samples

Exploratory analysis:

- PCA/MFA

- Correspondence Analysis or multi-block PCA 

(CCA/MCIA)

Same samples
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Same samples

Phenotype

Prediction problem - Generalization of PLS

- Concordance analysis/(sparse) multi-block PLS

- Implemented in MixOmics?

Same samples
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Omics integration – Partially overlapping samples

How should we approach integrating partially-overlapping proteomic data 

collected on different patients with similar phenotypes?

MBPCA – projection-re-construction the missing samples in HUG95 

Least square regression: training linear model using Agilent, HGU133 and 

HGU133Plus2

60 cell lines

Agilent

HGU133

HGU133Plus2

HGU95

https://github.com/mengchen18/BIRSBioIntegrationWorkshop
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Omics integration – Partially overlapping proteins
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How should we approach integrating partially-overlapping proteomic data 

collected on different patients with similar phenotypes?

MBPCA – projection-reconstruction the missing proteins in the purple patient

Least square regression: training linear model using other patients than the 

purple and make predictions using purple

Mass tag data

39 proteins

https://github.com/mengchen18/BIRSBioIntegrationWorkshop
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Can MBPCA be better? – RV coefficient

Normalization
• Row wise (centering, scaling)

• Column wise (centering, VSN)

• Data wise (MFA, STATIS, weighting matrices according to their similarity to the matrix to be predicted)

RV coefficient matrix of 

the massTag data

RV coefficient matrix of 

the NCI60 data
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Omics integration – phenotype overlapping

No overlapping samples/cells

Different molecule measured

All we have is the samples/cells shares similar phenotypes e.g. cell types
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Omics integration – phenotype overlapping
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Forth corner/RLQ

Application:

Prediction

Feature selection
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Final remarks

• Matrix decomposition has a great potential for integration analysis of multi-omics 

data

• A proper normalization of dataset (on all levels) is essential

• Adaptation/extension of current method is important to fit the needs of specific 

biological questions

• (Interactive) visualization and integration with prior knowledge (GO, pathway) will 

be a critical factor whether people will use it


