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“Nature (likely) has Structure. And many models in natural sciences inherit a part of it.
Therefore, understanding and exploiting the structure of a model at hand might be
crucial to make the model useful. Algebra and logic offer a variety of tools to work

with structures and greatly benefit from new types of structures and structural questions
coming from other areas.”



‘Modularity is a widespread property in biological systems.’



https://www.pnas.org/content/103/23/8577



Concepts in Boolean network modeling :
What do they all mean?
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https://www.sciencedirect.com/science/article/pii/S200103701930460X



A polynomial dynamical system (PDS) over a finite field k is a function

f=(f1,.---,fn) : E" — k",

with the coordinate functions f; : K — k in the polynomial ring
klzy,...,x,).

Iteration of f results in a time discrete dynamical system over the
space k™.

Note: Any function £ — k can be expressed as a polynomial.
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The number of periodic points

Theorem 3 Let f be a conjunctive Boolean network whose dependency
graph is strongly connected and has loop number c. If c = 1, then f has the
two fixed points (0,0,...,0)and (1,1,...,1) and no other limit cycles of
any length. If ¢ > 1 and m is a divisor of c, then the number of periodic
states of period m is

1 1
|A(m)| — Z “ s Z (_1)‘1+‘2+"+1r2p:1 —‘IP:Q_‘?“_p:r—ir ’
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where m = [];_, pf" is the prime factorization of m, that is py,. .., p, are
distinct primes and k; > 1 for all i.
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Theorem 6.2. Consider the function
L@r.z)=) (DY TT z
TR J€Nseg

Then for any conjunctive Boolean network f with subnetworks hy, ..., h; and Q2 its set of
maximal antichains in the poset of f., we have

L(C(hy),....C(hy)) <C(f). 9)

Here, the function L is evaluated using the “multiplication” described in Corollary 3.5.
This inequality provides a sharp lower bound on the number of limit cycles of f of a given
length|
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Modularity for dynamic biological systems/models

e Given a model, compute its modules, their attractor structure, and
information about the attractor structure of the model itself.

* Characterize the “degrees of freedom” to combine simple models.



A “Holder Program” for BNs

|dentify a class of “decomposable” BNs.

Identify a class of decomposable BNs that are “simple” and
sufficiently “rich.”

Define a notion of “quotient” of a BN by a subnetwork.

Show that each decomposable BN has a filtration by
subnetworks so that each successive quotient is a simple
network.

Classify the different ways in which decomposable BNs can
be built as extensions of two BNs that are simpler.

Rigorous definition of “dynamic equivalence” of BNs.
Develop a category-theoretic foundation for this program.



Available online at www.sciencedirect.com
o & 4

"2° ScienceDirect PHYSICA [

Physica D 233 (2007) 167-174

www.elsevier.com/locate/physd

Nested canalyzing, unate cascade, and polynomial functions™

Abdul Salam Jarrah®*, Blessilda Raposab, Reinhard Laubenbacher?

4 Virginia Bioinformatics Institute (0477), Virginia Tech, Blacksburg, VA 24061, USA
 Mathematics Department, De La Salle University, 2401 Taft Avenue, Manila, Philippines



Jxp,x2, .00, Xn)
= (x; —apllxz —a)l...[(xp—1 — ap—[(xp — ap)
+ (bp — bp—1)]1 + (bn—1 — bp—2)]...]
+ (b2 — b1)] + by

or, equivalently,
n
fx1,x2,...,xp) = l_[(xi — aj)
i=1

n—1

n—j
+ Z |:(bn—j+1 — by—j) l_[(xi = ai)] + by.
i=1

j=1



Prevalence of canalization
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» Nested canalizing functions (and therefore? canalizing functions)
are overrepresented in GRNs.

Courtesy C. Kadelka
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Future work

Find a version of the classification of monomial networks in the
language of computational algebra.

Study the properties of nested canalizing polynomials.

Carry out the Holder Program for larger classes of networks, for
instance, AND-NOT networks.
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