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e Intro to identifiability
e Approach via input-output equations and subtleties
e Through the lens of model theory: subtleties — features

e Open problems
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What is identifiability: toy examples

Example

In the model described by x = kx
e x can measured in an experiment
and, therefore, its derivatives can be estimated,

e k is an unknown scalar parameter.
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What is identifiability: toy examples

Example

In the model described by x = kx
e x can measured in an experiment
and, therefore, its derivatives can be estimated,

e k is an unknown scalar parameter.

k=2 — kisidentifiable.
X

Example

In the model described by x = x + ki + k>

e x can measured in an experiment
and, therefore, its derivatives can be estimated,

e ki and kp are unknown scalar parameters.

Impossible to find k; and k», = k; and ky are non-identifiable.
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Identifiability: Motivation

Common problem: more than one parameter value
fits the data.

There are different options

Cause Remedy
Noisy data —>  More measurements

or better equipment
Non-identfiability === Another model or new equipment

Verifying identifiabilty allows a modeller
to find the cause and choose the correct remedy.
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Abstract We consider the dynamics of chemical reaction networks under the
assumption of mass-action kinetics. We show that there exist reaction networks R
for which the reaction rate constants are not uniauelv identifiable. even if we are eiven
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On ldentifiability of Nonlinear
ODE Models and Applications in
Viral Dynamics*

Hongyu Miaof
Xiaohua Xia
Alan S. Perelson®
Hulin Wu'

Abstract. Ordinary differential equations (ODEs) are a powerful tool for modeling dynamic processes
with wide applications in a variety of scientific fields. Over the last two decades, ODEs
have also emerged as a prevailing tool in various biomedical research fields, especially
in infectious disease modeling. In practice, it is important and necessary to determine
unknown parameters in ODE models based on experimental data. Identifiability analysis
is the first step in determining unknown parameters in ODE models and such analysis
techniques for nonlinear ODE models are still under development. In this article, we
review identifiability analysis methodologies for nonlinear ODE models developed in the
past couple of decades, including structural identifiability analysis, practical identifiability



Is this really an issue?
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Review: To be or not to be an identifiable model. Is this a relevant
question in animal science modelling?
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What is a good (useful) mathematical model in animal science? For models constructed for prediction purposes, the question of
model adequacy (usefulness) has been traditionally tackled by statistical analysis applied to observed experimental data relative to
model-predicted variables. However, little attention has been paid to analytic tools that exploit the mathematical properties of the
model equations. For example, in the context of model calibration, before pting a numerical estimation of the model
parameters, we might want to know if we have any chance of success in estimating a unique best value of the model parameters
from available measurements. This question of uniqueness is referred to as structural identifiability; a mathematical property that is
defined on the sole basis of the model structure within a hypothetical ideal experi de ined by a setting of model inputs
(stimuli) and observable variables . Structural identifiability analysis applied to dynamic models described by




Relaxation of the problem: local identifiability

On this slide

e x can be measured in an experiment
and, therefore, its derivatives can be estimated

e /k; and k, are unknown scalar parameters

Equation What happens Identifiable?
X=X+ ki ki =x—x YES
X =X+ ki ki = +v/x —x NO
X = x4+ ki + ko Infinitely many values for k; and k, NO



Relaxation of the problem: local identifiability

On this slide

e x can be measured in an experiment
and, therefore, its derivatives can be estimated

e /k; and k, are unknown scalar parameters

Equation What happens Identifiable?
X =x+ ki ki =% —x Globally

x = x+ k;2 ky = /% — x Locally

X = x4+ ki + ko Infinitely many values for k; and k, NO
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e Jacobian test: Hermann and Krener (1977)
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Local identifiability: state of the art

e Jacobian test: Hermann and Krener (1977)

e Efficient software:

e OBSERVABILITYTEST (2002)
e IDENTIFIABILITYANALYSIS (2012)
e STRIKE-GOLDD (2016)

e Criteria for systems of special form:

Meshkat, Sullivant, Eisenberg (2015)
Meshkat, Rosen, Sullivant (2016)
Baaijens, Draisma (2016)

Gross, Meshkat, Shiu (2018)



The importance of being globally identifiable

e Local identifiability does not guarantee the unigieness of
the parameter value.
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The importance of being globally identifiable

e Local identifiability does not guarantee the unigieness of
the parameter value.

e Lack of global identifiability is hard to detect using
numeric methods.

e |t happens!



It happens: epidemiology (SEIR model)
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Recovered
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It happens: epidemiology (SEIR model)

S/ — _ j%’ Susceptible
== ;% —nE, Exptsed
I"=nE — al, 1

N =0, Infectious
yv1 =N, L

vo = rl. Recovered




It happens: epidemiology (SEIR model)
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It happens: epidemiology (SEIR model)

_ ) Sl
Sl—f,)W,
E= )’% —nkE,
I"=nE — al,
N =0,

)/1:/\/7

Yo = kl.

Turns out:
Only locally identifiable: a, 7,
Nonidentifiable: 3, k.

Susceptible
{
Exposed
l

Infectious

0

Recovered

Furthermore:
An unordered pair {«,n} is

identifiable.
Will see similar in slow-fast
ambiguity later.



Global identifiability: state of the art

Taylor series method Theory: Ponjanpalo, 1978
Software: GENSSI 2.0, 2017
Termination criterion only for special cases

Differential elimination Theory: Diop, Fliess, Ljung, Glad, 1993
for parameters Tackles only small examples

Input-output equations Theory: Ollivier, 1990
Software: DAISY, 2007; COMBOS, 2014
In a few minutes!
Prolongations + Theory: Hong, Ovchinnikov, P., Yap, 2019
symbolc sampling Software: STAN, 2019

10



Input-output equations
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Specification: what we are after

Input
System

where

e x are unknown state variables;
e k are unknown scalar parameters,

e y are outputs measured in experiment.
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Specification: what we are after

Input
System

where

e x are unknown state variables;
e k are unknown scalar parameters,

e y are outputs measured in experiment.

Output

Generators of the field of identifiable rational functions in k.

12



Running example: predator-prey model

x1 = kixy — koxixo,
Xy = —k3xp + kaxyxo,
Yy =X1.

e Xx; - prey

e X, - predators

13



Running example: predator-prey model

x1 = kixy — koxixo,
Xy = —k3xp + kaxyxo,
Yy =X1.

e Xx; - prey

e X, - predators

Globally identifiable: ki, k3, k4
Nonidentifiable: k»
Identifiable functions: C(kq, k3, ka).

13



Step 1: Eliminate

Whereof one cannot speak, thereof one must be silent
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Step 1: Eliminate

Whereof one cannot speak, thereof one must be silent

Idea: we cannot measure x, — let us eliminate it!

X1 = kixy — koxiXo,
%o = —kaxy + kuxixa, = Yy—y’—kay’y—ksyy+kikay*—kiksy® =0

Yy =X1.

Input-output equation - the “minimal” differential equation for y with
coefficients in parameter.

14



Step 2: Extract coefficients

Idea: evaluations of y == linear equations on the coefficients

Yy — ¥ — kay?y — kayy + kiksy® — kiksy? =0
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Step 2: Extract coefficients

Idea: evaluations of y == linear equations on the coefficients

Yy — ¥ — kay?y — kayy + kiksy® — kiksy? =0

y(t)y(t) — y(t)* = kay(t1)?y(tr) + kay(tr)y(tr) — kikay(t1)® + kiksy(t1)?,

y(R)j () — y(t2)* = kiy(t2)?y(t2) + kay(t2)y(t2) — kikay(t2)* + kiksy(t2)?,

y(tn)y(tn) — y(tn)? = kay(tn)*y(tn) + kay(tn)y(tn) — kikay(tn)* + ki ksy(tn)?.
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Step 2: Extract coefficients

Idea: evaluations of y == linear equations on the coefficients

Yy — ¥ — kay?y — kayy + kiksy® — kiksy? =0

y(t)y(t) — y(t)* = kay(t1)?y(tr) + kay(tr)y(tr) — kikay(t1)® + kiksy(t1)?,
y(R)j () — y(t2)* = kiy(t2)?y(t2) + kay(t2)y(t2) — kikay(t2)* + kiksy(t2)?,

y(tn)y(tn) — y(tn)? = kay(tn)*y(tn) + kay(tn)y(tn) — kikay(tn)* + ki ksy(tn)?.

Assume nonsingular: (identifiable <= rational in ks, k3, ki ka, kiks)

Remarks

e Assumption is not always true

e Coefficients are called canonical base in model theory language

15



Subtlety: the assumption does not always hold
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Subtlety: the assumption does not always hold

Not yet an example (twisted harmonic oscillator)

X1 = (vu + (l)Xg,
Xo = —WwxXi,

Yy =X
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Subtlety: the assumption does not always hold

Not yet an example (twisted harmonic oscillator)

X1 = (vu-l-(l)Xg,
X = —wxi, = ytww+a)y=0

Yy =X
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Subtlety: the assumption does not always hold

Not yet an example (twisted harmonic oscillator)

X1 = (Vu-l-(l)Xg,
X = —wxy, — y+vd(w’+(l)y:0
y=x

Example

Assume that « is known
X1 = (w' + X3)X27
Xp = —wx,
).<3 = Oa

Yi=Xx2, Y2 =2X3
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Subtlety: the assumption does not always hold

Not yet an example (twisted harmonic oscillator)

X1 = (Vu-l-(l)Xg,
X = —wxy, — y+vd(w’+(l)y:0
y=x

Example

Assume that « is known
X1 = (w' + X3)X27
Xp = —wxi, . 2 .

, = ntwytwyy2=0, =0

X3 = 0,

Yi=X2, Y2 =2X3

Looks like w is identifiable, but it is NOT.
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Subtlety: the assumption does not always hold

Not yet an example (twisted harmonic oscillator)

X1 = (Vu-l-(l)Xg,
X = —wxy, — y+vd(w’+(l)y:0
y=x

Example

Assume that « is known

X1 = (w' + X3)X27
Xp = —wxi, . 2 .
, = ntwytwyy2=0, =0
X3 = Oa

Yi=X2, Y2 =2X3

Looks like w is identifiable, but it is NOT.

Only w(w + «),« known = quadratic equation in w 6



Why do we care about this method then?
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Why do we care about this method then?

e Used in practice (software: DAISY, COMBOS)
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Why do we care about this method then?

e Used in practice (software: DAISY, COMBOS)
e If the assumption is true, finds all identifiable functions

e Not a bug but a feature (in a few minutes)!

17



Model theory

joint with A. Ovchinnikov, A. Pillay, and T. Scanlon

18



e Language £ ={0,1,+,-/}.

19



e Language £ ={0,1,+,-/}.
e Axioms, part 1 (differential field):

e axioms of fields
e (a+b) =3 + b and (ab) = a'b+ ab’
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e Language £ ={0,1,+,-/}.
e Axioms, part 1 (differential field):
e axioms of fields
e (a+b) =3 + b and (ab) = a'b+ ab’
e Axioms, part 2 (differentially closed field):
there could be a solution = there is one
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e Language £ ={0,1,+,-/}.
e Axioms, part 1 (differential field):

e axioms of fields
e (a+b) =3 + b and (ab) = a'b+ ab’

e Axioms, part 2 (differentially closed field):
there could be a solution = there is one

e Fix such a very big field K

19



Dictionary: types

Type over A C K is a satisfiable set of formulas in LU A.

Realization of a type is an element of K satisfying the formulas.
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20



Dictionary: types

Type over A C K is a satisfiable set of formulas in LU A.
Realization of a type is an element of K satisfying the formulas.

Predator-prey
Let A = {kq, ko, k3, ka} (K is big, a lot of transendental constants over C)

solution (}91(X1,X2,y) = (X{ = k1X1 — k2X1X2),

Pa(x1,x2,y) = (x5 = —ksxa + kax1x2),
<)03(X17X27y) = (y = Xl);
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Dictionary: types

Type over A C K is a satisfiable set of formulas in LU A.
Realization of a type is an element of K satisfying the formulas.

Predator-prey
Let A = {kq, ko, k3, ka} (K is big, a lot of transendental constants over C)

solution 991(X1,X2, ) X{ = k1X1 — k2X1X2)
a(x1, %2, ) = (X = —ksxa + kax1x2),
p3(x1,%2,y) = x1);

(y=
output ¥(y) = Ixt, x2 p1(x1, %2, ¥) & pa(x1, %2, ¥) & @3(x1, X2, ¥)
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Dictionary: types

Type over A C K is a satisfiable set of formulas in LU A.
Realization of a type is an element of K satisfying the formulas.

Predator-prey
Let A = {kq, ko, k3, ka} (K is big, a lot of transendental constants over C)

solution ©;(x1,%2,y) = (x| = kix1 — kaxix2),
Pa(x1,%2,y) = (X0 = —ksxo + kax1x2),
p3(x1, %, ¥) = (v = x1);
output Y(y) = Ix1, x2 w1(x1, X2, ¥) & wa(x1, X2, ¥) & @3(x1, x2, ¥)

generic solution solution + negations of equations that are not
consequences of 1, o, 3
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Dictionary: types

Type over A C K is a satisfiable set of formulas in LU A.
Realization of a type is an element of K satisfying the formulas.

Predator-prey
Let A = {kq, ko, k3, ka} (K is big, a lot of transendental constants over C)

solution ©;(x1,%2,y) = (x| = kix1 — kaxix2),
Pa(x1,%2,y) = (X0 = —ksxo + kax1x2),
w3(x1, %, y) = (y = x1);
output Y(y) = Ix1, x2 w1(x1, X2, ¥) & wa(x1, X2, ¥) & @3(x1, x2, ¥)

generic solution solution + negations of equations that are not
consequences of 1, o, 3

generic output output + negations of all nonconsequences

20



Dictionary: definability

Definition
Let BC K, a€ K.
a is definable over B iff, for every automorphism a: K — K:

(Vb€ Ba(b) =b) = a(a) =a.
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Definition
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a is definable over B iff, for every automorphism a: K — K:

(Vb€ Ba(b) =b) = a(a) =a.

Example

Let a € K - constant, and x - generic solution of x’ = ax.
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Dictionary: definability

Definition
Let BC K, a€ K.
a is definable over B iff, for every automorphism a: K — K:

(Vb€ Ba(b) =b) = a(a) =a.

Example

Let a € K - constant, and x - generic solution of x’ = ax.

ax)=x = afa) =« (

Fact
In differentially closed fields

a definable over B = a=f(B,B',B",...)
21



Dictionary: canonical base

Example

Type over A = {ki, ko, ks, ks } of generic solution of

Yy — ¥ — kay?y — kayy + kiksy® — kiksy? =0

22



Dictionary: canonical base

Example

Type over A = {ki, ko, ks, ks } of generic solution of
¥y —y? — kay®y — ksyy + kikay® — kiksy® = 0

(generic output of the predator-prey model)

22



Dictionary: canonical base

Example

Type over A = {ki, ko, ks, ks } of generic solution of
¥y —y? — kay®y — ksyy + kikay® — kiksy® = 0

(generic output of the predator-prey model)

A canonical base: kg, k3, kiks, kiks

22



Dictionary: canonical base

Example

Type over A = {ki, ko, ks, ks } of generic solution of
Yy = ¥? = kay?y — ksyy + kikay® — kiksy? = 0
(generic output of the predator-prey model)

A canonical base: kg, k3, kiks, kiks

Generate the same field = a canonical base as well, e.g. ki, k3, k4.

22
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Identifiability Model theory
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Identifiability Model theory

(1) coefficients of the 10-equation (1) canonical base of the output
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Translation

Identifiability Model theory
(1) coefficients of the 10-equation (1) canonical base of the output
(2) « is identifiable (2) « is definable over output
(3) « is rational in the coefficients (3) « is definable over the

of the 10-equation canonical base
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Translation

Identifiability Model theory

(1) coefficients of the 10-equation

(1) canonical base of the output
(2) « is identifiable

(2) « is definable over output
(3) « is rational in the coefficients
of the 10-equation

(4) Assumption: (2) < (3)

(3) « is definable over the
canonical base

23



Translation

Identifiability
(1) coefficients of the 10-equation
(2) « is identifiable

(3) « is rational in the coefficients
of the 10-equation

(4) Assumption: (2) < (3)

Model theory

(1) canonical base of the output
(2) « is definable over output

(3) « is definable over the
canonical base

(4) type of output “is” one-based

23



Translation

Identifiability
(1) coefficients of the 10-equation
(2) « is identifiable

(3) « is rational in the coefficients
of the 10-equation

(4) Assumption: (2) < (3)

One?

Are there two-based, three-based, etc?

Model theory

(1) canonical base of the output
(2) « is definable over output

(3) « is definable over the
canonical base

(4) type of output “is” one-based

23



From one to many

Defintion
Type is n-based <=  canonical base is definable

from n independent realizations

24



From one to many

Defintion
Type is n-based <=  canonical base is definable

from n independent realizations

In other words

The coefficients of the input-output equation are identifiable from n
experiments with different initial conditions.
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From one to many

Defintion
Type is n-based <= canonical base is definable
from n independent realizations

In other words
The coefficients of the input-output equation are identifiable from n
experiments with different initial conditions.

Theorem

The following are equal

(1) the field generated by the coefficient of the 10-equations;

(2) the set of rational functions in parameter identifiable from

sufficiently many experiments.
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From one to many

Defintion
Type is n-based <= canonical base is definable

from n independent realizations
In other words

The coefficients of the input-output equation are identifiable from n
experiments with different initial conditions.

Theorem

The following are equal

(1) the field generated by the coefficient of the 10-equations;

(2) the set of rational functions in parameter identifiable from
sufficiently many experiments.

Corollary
The [0-equations method solves the multiexperimental identifiability

problem. o



Example: Twisted harmonic oscillator

)'(1 = (vu + X3)X2,
X2 = —wxi,
)-<3 = 07

Yi=2X2, y2=2X3

25



Example: Twisted harmonic oscillator

Canonical base: w.

)'(1 = (vu + X3)X2,
5(2 = —WwXi,
X3 =0,

Yi=2Xx2, Y2 =2X3
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Example: Twisted harmonic oscillator

x1 = (w4 x3)x,
X2 = —wxi,

B =0,

Yi=X2, Y2 =2X3

Canonical base: w. From a single experiment, we find ¢ := w(w + y»).
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Example: Twisted harmonic oscillator

)'(1 = (;«,‘ + X3)X2,
5(2 = —WwXi,

X3 =0,

Yi=2x2, y2=2Xx3

Canonical base: w. From a single experiment, we find ¢ := w(w + y»).
After two experiments:

a=ww+y21),
C = w(w + y272).

We can cancel w? and get a linear equation in w.
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Example: Twisted harmonic oscillator

)'(1 = (;«,‘ + X3)X2,
5(2 = —WwXi,

X3 =0,

Yi=2x2, y2=2Xx3

Canonical base: w. From a single experiment, we find ¢ := w(w + y»).
After two experiments:

a=ww+y21),
C = w(w + y272).

We can cancel w? and get a linear equation in w.
The type of output is two-based, w is 2-experimental identifiable.

25



Example: slow-fast ambiguity
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Example: slow-fast ambiguity

Chemical reaction
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Example: slow-fast ambiguity

Chemical reaction

Equations

XA = —kixa,
xg = kixa — koxg,

XC = kQXCv
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Chemical reaction

Equations

XA = —kixa,
xg = kixa — koxg,

XC = kQXCv

Y1 = Xc,

Y2 = €aXa + X + ccXc,
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Chemical reaction

Equations

XA = —kixa,

xg = kixa — koxg,

XC = kQXCv
Ea=0,
Y1 = Xc,

Y2 = €aXa + X + ccXc,

Y3 =E€a
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Example: slow-fast ambiguity

Chemical reaction

K K
AL B S C e From one experiment:
ki + ko, kiko, ec
Equations
Xa = —kixa,

xg = kixa — koxg,

XC = kQXCv
Ea=0,
Y1 = Xc,

Y2 = €aXa + X + ccXc,

Y3 =E€a
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Example: slow-fast ambiguity

Chemical reaction

k k
A= B=C e From one experiment:
ki + ko, kika, ec
f i : k ,
Equations e Canonical base: ki, ks, ep,ec
).(A - _klea

xg = kixa — koxg,

XC = k2XC7
Ea=0,
Y1 = Xc,

Y2 = €aXa + X + ccXc,

Y3 =E€a
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Example: slow-fast ambiguity

Chemical reaction

k
A—=B—=C e From one experiment:
ki + ka2, kika, ec
e e Canonical base: ki, ks, ep,ec
e Two experiments are sufficient
Xa = —kixa,

xg = kixa — koxg,

XC = k2XC7
Ea=0,
Y1 = Xc,

Y2 = €aXa + X + ccXc,

Y3 =E€a

26



e Structural identifiability: important problem
Naturally connected to algebra
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e Structural identifiability: important problem
Naturally connected to algebra

e Computational differential algebra and algebraic geometry:
algorithms to tackle this problem
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e Structural identifiability: important problem
Naturally connected to algebra

e Computational differential algebra and algebraic geometry:
algorithms to tackle this problem

e Model theory:
understanding what these algorithms are actually doing
(and design new; tell you next time)

27



Open problems
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Role of the initial conditions

Example: why different _

x = ax with x generic = ais identifiable as a = %

29



Role of the initial conditions

Example: why different _

x = ax with x generic = ais identifiable as a = %

But if x(0) = 0, then x(t) =0 = no information about a
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Role of the initial conditions

Example: why different _

x = ax with x generic = ais identifiable as a = %

But if x(0) = 0, then x(t) =0 = no information about a

Question
Given fixed initial conditions, is it decidable whether a parameter is

identifiable?
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Role of the initial conditions

Example: why different _

x = ax with x generic = ais identifiable as a = 7.

But if x(0) = 0, then x(t) =0 = no information about a

Question
Given fixed initial conditions, is it decidable whether a parameter is

identifiable?

Theorem (Hong, Ovchinnikov, P., Yap)
Let there are n state variables and ¢ parameters. Then

(1) parameter k is identifiable iff
(2) k is a rational function of n+ ¢ + 1 derivatives of outputs at t = 0.
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Role of the initial conditions

Example: why different _

x = ax with x generic = ais identifiable as a = 7.

But if x(0) = 0, then x(t) =0 = no information about a

Question
Given fixed initial conditions, is it decidable whether a parameter is

identifiable?

Theorem (Hong, Ovchinnikov, P., Yap)
Let there are n state variables and ¢ parameters. Then

(1) parameter k is identifiable iff
(2) k is a rational function of n+ ¢ + 1 derivatives of outputs at t = 0.

Not true for fixed initial conditions
Let x =1+ ax! y = x, x(0) =0,
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Role of the initial conditions

Example: why different _

x = ax with x generic = ais identifiable as a = %

But if x(0) = 0, then x(t) =0 = no information about a

Question
Given fixed initial conditions, is it decidable whether a parameter is

identifiable?

Theorem (Hong, Ovchinnikov, P., Yap)
Let there are n state variables and ¢ parameters. Then

(1) parameter k is identifiable iff
(2) k is a rational function of n+ ¢ + 1 derivatives of outputs at t = 0.

Not true for fixed initial conditions
Let x =1+ ax! y = x, x(0) =0,

Then x(0) =1, x(0) = ... = x(®)(0) = 0, but x(*%°)(0) = 100!a.
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Role of the initial conditions

Example: why different _

x = ax with x generic = ais identifiable as a = 7.
But if x(0) =0, then x(t) =0 = no information about a
Question
Given fixed initial conditions, is it decidable whether a parameter is

identifiable?

Theorem (Hong, Ovchinnikov, P., Yap)
Let there are n state variables and ¢ parameters. Then

(1) parameter k is identifiable iff
(2) k is a rational function of n+ ¢ + 1 derivatives of outputs at t = 0.

Not true for fixed initial conditions
Let x =1+ ax! y = x, x(0) =0,

Then x(0) =1, x(0) = ... = x(®)(0) = 0, but x(*%°)(0) = 100!a.

Question
Is there a bound in terms of, for example, degrees? 29



State-of-the-art

e To the best of my knowledge, all algorithms for global identifiability
work over C;
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e It is not clear how to define identifiability over R: might be several
typical behaviours
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State-of-the-art

e To the best of my knowledge, all algorithms for global identifiability
work over C;

e It is not clear how to define identifiability over R: might be several
typical behaviours

Why C matters?

e |dentifiable over C — “identifiable” over R;

o Nonidentifiability over C indicates hidden symmetries;
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State-of-the-art
e To the best of my knowledge, all algorithms for global identifiability
work over C;

e It is not clear how to define identifiability over R: might be several
typical behaviours

Why C matters?

e |dentifiable over C — “identifiable” over R;

o Nonidentifiability over C indicates hidden symmetries;

Questions

e How to define and assess identifiability over R?

o Parameter k is nonidentifiable over C = nonidentifiable over R on
an open subset?

30



Reparametrization

Example: predator-prey
x1 = kixy — kaxixa,
Xo = —kaxo + kaxixo,

Yy =X1.
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Reparametrization

Example: predator-prey
x1 = kixy — kaxixa,
Xo = —kaxo + kaxixo,
y = x1.

Make a change of variables: z, := koxp, then:

x1 = kixa — X122,
22 = —/(322 + /<4X122.
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Reparametrization

Example: predator-prey
x1 = kixi — kaxix2,
Xo = —kaxo + kaxixo,
Yy =X1.

Make a change of variables: z, := koxp, then:
X1 = kix1 — x122,
22 = —/(322 + k4X122.

All parameters are identifiable now!

Questions

e How to search for such reparametrizations?
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Reparametrization

Example: predator-prey
x1 = kixy — kaxixa,
Xo = —kaxo + kaxixo,
Yy =X1.
Make a change of variables: z, := koxp, then:
X1 = kix1 — X122,
22 = —/(322 + k4X122.
All parameters are identifiable now!

Questions

e How to search for such reparametrizations?

o Can one always write a system of ODEs with coefficients being
identifiable (or in canonical base) with the same input-output

| ?
equations! -
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