Monopoles and difference modules

Takuro Mochizuki
RIMS, Kyoto University

2021 February

Introduction

It is interesting to obtain a natural correspondence between objects in differential geometry and objects in algebraic geometry.

Theorem (rough statement)
Differential Geometry Algebraic Geometry

Periodic monopoles \longleftrightarrow Additive difference modules (Difference modules on \mathbb{C})

Doubly periodic monopoles \longleftrightarrow Multiplicative difference modules q-Difference modules, Difference modules on \mathbb{C}^{*})

Triply periodic monopoles
$\longleftrightarrow \quad$ Elliptic difference modules Difference modules on elliptic curves

Monopoles
M : an oriented 3-dimensional Riemannian manifold
(E, h) : a vector bundle with a Hermitian metric on M
∇ : a unitary connection of (E, h)
ϕ : an anti-Hermitian endomorphism of E (called Higgs field)
Definition (E, h, ∇, ϕ) is called monopole on M if

$$
F(\nabla)=* \nabla \phi \quad \text { (Bogomolny equation). }
$$

Here, * denote the Hodge star operator.

Let Γ be a discrete subgroup of \mathbb{R}^{3}. Set $\mathscr{M}_{\Gamma}:=\mathbb{R}^{3} / \Gamma$ with $\sum d x_{i} d x_{i}$. In this talk, we are interested in monopoles on $\mathscr{M}_{\Gamma} \backslash Z$ (Z : finite subset).

- Periodic monopole $\Longleftrightarrow \Gamma \simeq \mathbb{Z}$
- Doubly periodic monopole $\Longleftrightarrow \Gamma \simeq \mathbb{Z}^{2}$
- Triply periodic monopole $\Longleftrightarrow \Gamma \simeq \mathbb{Z}^{3}$.

Difference modules

Let R be a commutative algebra over \mathbb{C}. Let Φ^{*} be an automorphism of R, i.e., $\Phi^{*}: R \longrightarrow R$, \mathbb{C}-linear isomorphism, $\Phi^{*}\left(f_{1} f_{2}\right)=\Phi^{*}\left(f_{1}\right) \Phi^{*}\left(f_{2}\right)\left(\forall f_{i} \in R\right)$.

Definition A difference module over $\left(R, \Phi^{*}\right)$ is an R-module \boldsymbol{V} equipped with a \mathbb{C}-linear isomorphism $\Phi_{V}^{*}: V \longrightarrow V$ such that

$$
\Phi_{\boldsymbol{V}}^{*}(f s)=\Phi^{*}(f) \Phi_{\boldsymbol{V}}^{*}(s) \quad(\forall f \in R, \forall s \in \boldsymbol{V})
$$

- additive difference modules $\Longleftrightarrow R=\mathbb{C}(y), \Phi^{*}(f)(y)=f(y+\alpha)(\alpha \in \mathbb{C})$ Φ^{*} is induced by the automorphism $\Phi: \mathbb{C} \longrightarrow \mathbb{C}, \Phi(y)=y+\alpha$.
- multiplicative difference modules $\Longleftrightarrow R=\mathbb{C}(y), \Phi^{*}(f)(y)=f(q y)\left(q \in \mathbb{C}^{*}\right)$ Φ^{*} is induced by the automorphism $\Phi: \mathbb{C}^{*} \longrightarrow \mathbb{C}^{*}, \Phi(y)=q y$.
- elliptic difference modules $\Longleftrightarrow R$ is the field of meromorphic functions on an elliptic curve C, and Φ^{*} is induced by $\Phi: C \longrightarrow C, \Phi(y)=y+\alpha(\alpha \in C)$.

Theorem (rough statement)

Differential Geometry Algebraic Geometry

Periodic monopoles \longleftrightarrow Additive difference modules

Doubly periodic monopoles \longleftrightarrow Multiplicative difference modules

Triply periodic monopoles $\longleftrightarrow \quad$ Elliptic difference modules
We need to impose the asymptotic condition to monopoles, and we should enhance difference modules with parabolic structure and stability condition.

- Non-abelian Hodge theory for harmonic bundles on Riemann surfaces.
(Higgs bundles \longleftrightarrow harmonic bundles \longleftrightarrow flat bundles)
- Classification of monopoles by algebraic data.

Previous works on classification of monopoles
Donaldson, Hitchin
$S U(2)$-monopoles on \mathbb{R}^{3}
(L^{2}-curvature)
$\longleftrightarrow \mathbb{P}^{1} \longrightarrow \mathbb{P}^{1}$ holomorphic
Hurtubise, Murray, Jarvis
G-monopoles on $\mathbb{R}^{3} \quad \longleftrightarrow \quad \mathbb{P}^{1} \longrightarrow$ flag varieties holomorphic

Let Σ be a compact Riemann surface.
Norbury
Singular monopoles on $\{0 \leq t \leq 1\} \times \Sigma$ (boundary condition)

Holomorphic bundles on Σ with Hecke modifications
(Recently, it was generalized to the Higgs case by He-Walpuski.)

Charbonneau-Hurtubise
Holomorphic bundles on Σ

Singular monopoles on $S^{1} \times \Sigma$ with a meromorphic auto. and Hecke modifications (stability condition)

We recall more details of the theorem of Charbonneau-Hurtubise.

Review of the theorem of Charbonneau-Hurtubise

- $S^{1}:=\mathbb{R} / \mathbb{Z}$ with the standard metric $d t d t$.
- Σ : a compact Riemann surface with a Kähler metric.
- Z: a finite subset of $S^{1} \times \Sigma$. (Assume $Z \cap(\{0\} \times \Sigma)=\emptyset$ for simplicity.)

We consider a monopole (E, h, ∇, ϕ) on $\left(S^{1} \times \Sigma\right) \backslash Z$.
Condition Each $P \in Z$ is Dirac type singularity of (E, h, ∇, ϕ), i.e., for a neighbourhood U_{P} of P in $S^{1} \times \Sigma$,

$$
(E, h, \nabla, \phi)_{\mid U_{P} \backslash\{P\}} \sim\binom{\text { a direct sum of }}{\text { Dirac monopoles }}
$$

The induced differential operators We obtain $\nabla_{\mid \Sigma}^{0,1}: E \longrightarrow E \otimes \Omega_{\Sigma}^{0,1}$ induced by

$$
\nabla: E \longrightarrow E \otimes\left(\Omega_{S^{1}}^{1} \otimes \mathbb{C} \oplus \Omega_{\Sigma}^{0,1} \oplus \Omega_{\Sigma}^{1,0}\right)
$$

We also set $\partial_{t}:=\nabla_{t}-\sqrt{-1} \phi$.
Key lemma $\quad\left[\partial_{t}, \nabla_{\mid \Sigma}^{0,1}\right]=0 \quad(\because$ Bogomolny equation $)$

The induced holomorphic vector bundles

- We obtain the vector bundle $E^{0}:=E_{\mid\{0\} \times \Sigma}$ on Σ with the holomorphic structure $\nabla_{\mid \Sigma}^{0,1}$.
- More generally, for any $0 \leq t \leq 1$, we obtain the vector bundle $E^{t}:=E_{\mid(\{t\} \times \Sigma) \backslash Z}$ with the holomorphic structure $\nabla_{\mid \Sigma}^{0,1}$ on $(\{t\} \times \Sigma) \backslash Z$.
- $E^{1}=E^{0}$. (Recall $S^{1}=\mathbb{R} / \mathbb{Z}$.)

Notation

- Let \mathscr{E}^{t} denote the sheaf of holomorphic sections of $\left(E^{t}, \nabla_{\mid \Sigma}^{0,1}\right)$.
- For a finite subset $S \subset \Sigma$, let $\mathscr{E}^{t}(* S)$ denote the sheaf of meromorphic sections of \mathscr{E}^{t}, which may have poles along S.

Scattering map (1)
Take $0 \leq t_{1}<t_{2} \leq 1$.
If $Z \cap\left(\left\{t_{1} \leq t \leq t_{2}\right\} \times \Sigma\right)=\emptyset$, we obtain the isomorphism $F^{t_{2}, t_{1}}: E^{t_{1}} \simeq E^{t_{2}}$ as the parallel transport with respect to ∂_{t}.

Proposition $F^{t_{2}, t_{1}}$ is holomorphic $\left(\because\left[\partial_{t}, \nabla_{[\Sigma}^{0,1}\right]=0\right)$, i.e., $F^{t_{2}, t_{1}}: \mathscr{E}^{t_{1}} \simeq \mathscr{E}^{t_{2}}$.

Scattering map (2)
Suppose $Z \cap\left(\left\{t_{1} \leq t \leq t_{2}\right\} \times \Sigma\right)=Z \cap\left(\left\{t_{0}\right\} \times \Sigma\right)=: D_{t_{0}} \neq \emptyset\left(t_{1}<t_{0}<t_{2}\right)$. We obtain the holomorphic isomorphism $F^{t_{2}, t_{1}}: E_{\mid \Sigma \backslash D_{t_{0}}}^{t_{1}} \simeq E_{\mid \Sigma \backslash D_{t_{0}}}^{t_{2}}$.

Proposition

$F^{t_{2}, t_{1}}$ is meromorphic at $D_{t_{0}}$, i.e., $F^{t_{2}, t_{1}}: \mathscr{E}^{t_{1}}\left(* D_{t_{0}}\right) \simeq \mathscr{E}^{t_{2}}\left(* D_{t_{0}}\right)$.
(\because Dirac type singularity)

For any $Q \in D_{t_{0}}$, we obtain a Hecke modification, i.e., there are two lattices of the stalk $\mathscr{E}^{t_{1}}(* D)_{Q} \simeq \mathscr{E}^{t_{2}}(* D)_{Q}$

$$
\mathscr{E}_{Q}^{t_{1}} \subset \mathscr{E}^{t_{1}}(* D)_{Q} \simeq \mathscr{E}^{t_{2}}(* D)_{Q} \supset \mathscr{E}_{Q}^{t_{2}}
$$

Algebraic data associated to monopoles on $S^{1} \times \Sigma$
From (E, h, ∇, ϕ), we obtain $\left(\mathscr{E}, F,\left\{t_{Q, i}\right\},\left\{\mathscr{L}_{Q, i}\right\}\right)$.

- a holomorphic vector bundle $\mathscr{E}:=\mathscr{E}^{0}$ on Σ
- an automorphism F of $\mathscr{E}(* D)$ by setting D as the image of Z by $S^{1} \times \Sigma \longrightarrow \Sigma$:

$$
\mathscr{E}(* D)=\mathscr{E}^{0}(* D) \stackrel{F^{1,0}}{\simeq} \mathscr{E}^{1}(* D)=\mathscr{E}^{0}(* D)=\mathscr{E}(* D) .
$$

- a sequence $0 \leq t_{Q, 1}<\cdots<t_{Q, m(Q)}<1$ for $Q \in D$ by

$$
Z \cap\left(S^{1} \times\{Q\}\right)=\left\{\left(t_{Q, i}, Q\right)\right\}
$$

- lattices $\mathscr{L}_{Q, i}(i=0, \ldots, m(Q))$ of $\mathscr{E}(* D)_{Q}$:

We set $\mathscr{L}_{Q, 0}=\mathscr{L}_{Q, m(Q)}:=\mathscr{E}_{Q}$, and

$$
\mathscr{L}_{Q, i}:=\mathscr{E}_{Q}^{t} \subset \mathscr{E}^{t}(* D)_{Q} \simeq \mathscr{E}^{0}(* D)_{Q}=\mathscr{E}(* D)_{Q} \quad\left(t_{Q, i}<t<t_{Q, i+1}\right)
$$

Degree of subobjects of algebraic data
Suppose that $\left(\mathscr{E}, F,\left\{t_{Q, i}\right\},\left\{\mathscr{L}_{Q, i}\right\}\right)$ is given (not necessarily induced by a monopole). Let $\mathscr{E}^{\prime} \subset \mathscr{E}$ be a non-zero holomorphic subbundle such that $F\left(\mathscr{E}^{\prime}(* D)\right)=\mathscr{E}^{\prime}(* D)$. We obtain lattices $\mathscr{L}_{Q, i}^{\prime}(i=0, \ldots, m(Q))$ of $\mathscr{E}^{\prime}(* D)_{Q}$ by setting

$$
\mathscr{L}_{Q, i}^{\prime}:=\mathscr{L}_{Q, i} \cap \mathscr{E}^{\prime}(* D)_{Q} \quad \text { in } \mathscr{E}(* D)_{Q}
$$

Definition (degree)

$$
\operatorname{deg}\left(\mathscr{E}^{\prime} ; F,\left\{t_{Q, i}\right\},\left\{\mathscr{L}_{Q, i}\right\}\right):=\operatorname{deg}\left(\mathscr{E}^{\prime}\right)+\sum_{Q \in D} \sum_{i=1}^{m(Q)}\left(1-t_{Q, i}\right) \operatorname{deg}\left(\mathscr{L}_{Q, i}^{\prime}, \mathscr{L}_{Q, i-1}^{\prime}\right)
$$

Here, we put

$$
\operatorname{deg}\left(\mathscr{L}_{Q, i}^{\prime}, \mathscr{L}_{Q, i-1}^{\prime}\right):=\operatorname{dim}_{\mathbb{C}}\left(\mathscr{L}_{Q, i}^{\prime} /\left(\mathscr{L}_{Q, i}^{\prime} \cap \mathscr{L}_{Q, i-1}^{\prime}\right)\right)-\operatorname{dim}_{\mathbb{C}}\left(\mathscr{L}_{Q, i-1}^{\prime} /\left(\mathscr{L}_{Q, i}^{\prime} \cap \mathscr{L}_{Q, i-1}^{\prime}\right)\right)
$$

Remark \exists a naturally induced family of holomorphic vector bundles $\left(\mathscr{E}^{\prime}\right)^{t}$, and

$$
\operatorname{deg}\left(\mathscr{E}^{\prime}, F,\left\{t_{Q, i}\right\},\left\{\mathscr{L}_{Q, i}\right\}\right)=\int_{0}^{1} \operatorname{deg}\left(\mathscr{E}^{\prime}\right)^{t} d t
$$

Stability condition

Definition Suppose that $\operatorname{deg}\left(\mathscr{E} ; F,\left\{t_{Q, i}\right\},\left\{\mathscr{L}_{Q, i}\right\}\right)=0$ (for simplicity).

- $\left(\mathscr{E}, F,\left\{t_{Q, i}\right\},\left\{\mathscr{L}_{Q, i}\right\}\right)$ is stable if

$$
\operatorname{deg}\left(\mathscr{E}^{\prime} ; F,\left\{t_{Q, i}\right\},\left\{\mathscr{L}_{Q, i}\right\}\right)<0
$$

for any non-zero subbundle $\mathscr{E}^{\prime} \subsetneq \mathscr{E}$ such that $F\left(\mathscr{E}^{\prime}(* D)\right)=\mathscr{E}^{\prime}(* D)$.

- $\left(\mathscr{E}, F,\left\{t_{Q, i}\right\},\left\{\mathscr{L}_{Q, i}\right\}\right)$ is polystable if it is a direct sum of stable objects of degree 0 , i.e.,

$$
\left(\mathscr{E}, F,\left\{t_{Q, i}\right\},\left\{\mathscr{L}_{Q, i}\right\}\right)=\bigoplus_{j}\left(\mathscr{E}_{j}, F_{j},\left\{t_{Q, i}\right\},\left\{\mathscr{L}_{j, Q, i}\right\}\right)
$$

such that $\left(\mathscr{E}_{j}, F_{j},\left\{t_{Q, i}\right\},\left\{\mathscr{L}_{j, Q, i}\right\}\right)$ are stable of degree 0.

Theorem (Charbonneau-Hurtubise)

- If $\left(\mathscr{E}, F,\left\{t_{Q, i}\right\},\left\{\mathscr{L}_{Q, i}\right\}\right)$ is induced by a monopole with Dirac singularity on $\left(S^{1} \times \Sigma\right) \backslash Z$, then $\left(\mathscr{E}, F,\left\{t_{Q, i}\right\},\left\{\mathscr{L}_{Q, i}\right\}\right)$ is polystable of degree 0 .
- The above correspondence induces an equivalence

$$
\binom{\text { monopoles on }\left(S^{1} \times \Sigma\right) \backslash Z}{(\text { Dirac type singularity) }} \longleftrightarrow\left(\begin{array}{c}
\text { holomorphic vector bundles } \mathscr{E} \text { on } \Sigma \\
\text { with an automorphism } F \text { at } D \\
\text { and lattices }\left\{\mathscr{L}_{Q, i}\right\} \\
\text { (polystable w.r.t. }\left\{t_{Q, i}\right\}_{Q \in D} \text {) }
\end{array}\right)
$$

(D and $\left\{t_{Q, i}\right\}$ are determined by Z.)

Remark Let $\mathfrak{K}(\Sigma)$ denote the field of meromorphic functions on Σ.

$$
V=\{\text { meromorphic sections of } \mathscr{E} \text { on } \Sigma\}
$$

is naturally a finite dimensional $\mathfrak{K}(\Sigma)$-vector space with an automorphism F.
We may regard (\boldsymbol{V}, F) as a difference module over $(\mathfrak{K}(\Sigma)$, id).
The tuple $\left(\mathscr{E},\left\{t_{Q, i}\right\},\left\{\mathscr{L}_{Q, i}\right\}\right)$ is regarded as a parabolic structure of (\boldsymbol{V}, F).

Equivalence for periodic monopoles (product case)

Periodic monopoles of GCK-type
Let Γ be a non-trivial discrete subgroup of \mathbb{R}^{3} with $\Gamma \simeq \mathbb{Z}$. Let Z be a finite subset of $\mathscr{M}_{\Gamma}=\left(\mathbb{R}^{3} / \Gamma\right)$.

Definition A monopole (E, h, ∇, ϕ) on $\mathscr{M}_{\Gamma} \backslash Z$ is called of GCK-type (generalized Cherkis-Kapustin type) if

- each $P \in Z$ is Dirac type singularity of (E, h, ∇, ϕ),
- $\left|\phi_{P}\right|=O\left(\log d\left(P, P_{0}\right)\right)$ and $\left|F(\nabla)_{P}\right| \longrightarrow 0$ as P goes to infinity.

Remark We can prove that a monopole of GCK type satisfies much stronger condition at infinity.

```
Product case
Assume }\Gamma={(n,0)|n\in\mathbb{Z}}\subset\mathbb{R}\times\mathbb{C}\simeq\mp@subsup{\mathbb{R}}{}{3}\mathrm{ (isometry).
We obtain an isometry }\mp@subsup{\mathscr{M}}{\Gamma}{}\simeq\mp@subsup{S}{}{1}\times\mathbb{C}\mathrm{ .
```

First, we shall explain what kind of algebraic objects appear in this product case. For simplicity, we assume $Z \cap(\{0\} \times \mathbb{C})=\emptyset$.

Remark There are different isometries $\mathbb{R}^{3} \simeq \mathbb{R}_{t_{0}} \times \mathbb{C}_{\beta_{0}}$ such that $\Gamma \not \subset \mathbb{R} \times\{0\}$, from which we obtain different equivalences between monopoles and algebraic objects (explained later).

Preliminary

Everything goes similarly on \mathbb{C}.

- We obtain the operators $\partial_{E, t}=\nabla_{t}-\sqrt{-1} \phi$ and $\partial_{E, \bar{w}}=\nabla_{\bar{w}}$ of E.
- For $0 \leq t \leq 1$, we obtain holomorphic vector bundles on $(\{t\} \times \mathbb{C}) \backslash Z \subset \mathbb{C}$:

$$
\mathscr{E}^{t}=\left(E_{\mid(\{t\} \times \mathbb{C}) \backslash Z}, \nabla_{\bar{w}}\right)
$$

In particular, we set $\mathscr{E}:=\mathscr{E}^{0}=\mathscr{E}^{1}$.

- Let D denote the image of Z by the projection $\mathscr{M}_{\Gamma}=S^{1} \times \mathbb{C} \longrightarrow \mathbb{C}$. Then, $\partial_{E, t}$ induces

$$
F: \mathscr{E}(* D)=\mathscr{E}^{0}(* D) \simeq \mathscr{E}^{1}(* D)=\mathscr{E}(* D)
$$

- We also obtain tuples of numbers $0 \leq t_{Q, 1}<\cdots<t_{Q, m(Q)}<1$ and lattices $\mathscr{L}_{Q, i}$ $(i=0, \ldots, m(Q))$ for $Q \in D$.

Remark However, $\left(\mathscr{E}, F,\left\{t_{Q, i}\right\},\left\{\mathscr{L}_{Q, i}\right\}\right)$ is transcendental object on \mathbb{C}. We would like to extend it to an algebraic object on \mathbb{P}^{1} by using h.

Acceptability

Theorem $\left(\mathscr{E}^{t}, h^{t}:=h_{\mid\{t\} \times \mathbb{C}}\right)$ is acceptable, i.e.,

$$
\left|F\left(\nabla_{h^{t}}\right)\right|_{h^{t}}=O\left(\frac{d w d \bar{w}}{|w|^{2}(\log |w|)^{2}}\right)
$$

Here, $\nabla_{h^{t}}$ denotes the Chern connection of $\left(\mathscr{E}^{t}, h^{t}\right)$, and $F\left(\nabla_{h^{t}}\right)$ denotes the curvature.

Remark We may apply a general theory to extend acceptable bundles on \mathbb{C} to a filtered bundle on (\mathbb{P}, ∞) (Cornalba-Griffiths, Simpson).

Extension of acceptable bundles to filtered bundles
For any $a \in \mathbb{R}, \underline{\mathscr{E}^{t} \text { on } \mathbb{C} \backslash D_{t}}$ extends to the sheaf $\underline{\mathscr{P}_{a} \mathscr{E}^{t} \text { on } \mathbb{P}^{1} \backslash D_{t}}$ as follows.

- For any neighbourhood $U \subset \mathbb{P}^{1}$ of ∞,

$$
\mathscr{P}_{a} \mathscr{E}^{t}(U)=\left\{\left.s \in \mathscr{E}^{\mathscr{t}}(U \backslash\{\infty\})| | s\right|_{h}=O\left(|w|^{a+\varepsilon}\right) \forall \varepsilon>0\right\} .
$$

We obtain an increasing sequence of $\mathscr{O}_{\mathbb{P}^{1} \backslash D_{t}}$-modules $\mathscr{P}_{* \mathscr{E}} \mathscr{E}^{t}=\left(\mathscr{P}_{a} \mathscr{E}^{t} \mid a \in \mathbb{R}\right)$.
We also set $\mathscr{P} \mathscr{E} \mathscr{E}^{t}=\bigcup_{a \in \mathbb{R}} \mathscr{P}_{a} \mathscr{E} t$.
Theorem (Cornalba-Griffiths, Simpson) $\mathscr{P}_{a} \mathscr{E}^{t}$ are locally free $\mathscr{O}_{\mathbb{P}^{1} \backslash D_{t}}$-modules. ($\because\left(\mathscr{E}^{t}, h^{t}\right)$ is acceptable.)
Hence, $\mathscr{P}_{\mathscr{E}}{ }^{t}$ is a locally free $\mathscr{O}_{\mathbb{P}^{1} \backslash D_{t}}(* \infty)$-module.

Remark This kind of increasing sequence $\mathscr{P}_{* \mathscr{E}}$ is called a filtered bundle on $\left(\mathbb{P}^{1} \backslash D_{t}, \infty\right)$.
Lemma The automorphism F of $\mathscr{E}^{0}(* D)$ induces an automorphism F of $\mathscr{P}_{\mathscr{E}}{ }^{0}(* D)$. (But, not necessarily, $F\left(\mathscr{P}_{a} \mathscr{E}^{0}(* D)\right) \subset \mathscr{P}_{a} \mathscr{E}^{0}(* D)$.)

The associated difference module with parabolic structure in the product case We obtain a finite dimensional $\mathbb{C}(w)$-vector space V :

$$
\boldsymbol{V}=H^{0}\left(\mathbb{P}^{1}, \mathscr{P}_{\mathscr{E}} \mathscr{E}^{0}\right) \otimes_{\mathbb{C}[w]} \mathbb{C}(w)
$$

It is equipped with the $\mathbb{C}(w)$-linear automorphism F. We regard (\boldsymbol{V}, F) as a difference module on $\left(\mathbb{C}(w), \operatorname{id}_{\mathbb{C}(w)}\right)$. It is equipped with the parabolic structure

- a filtered bundle $\mathscr{P}_{* \mathscr{E}}=\mathscr{P}_{* \mathscr{E}} \mathscr{E}^{0}$ on $\left(\mathbb{P}^{1}, \infty\right)$
- a sequence $\left\{t_{Q, i}\right\}_{Q \in D}$
- lattices $\mathscr{L}_{Q, i}$ of $\mathscr{P} \mathscr{E}(* D)_{Q}$.

Remark We need to clarify the compatibility condition of F and $\mathscr{P}_{*} \mathscr{E}$ (similar to the case of wild harmonic bundles).

Eigenvalues of F at ∞
We may regard the stalk $\mathscr{P}_{\mathscr{E}}^{\infty}$ of the sheaf $\mathscr{P} \mathscr{E}$ at ∞ as a finite dimensional vector space over $\mathbb{C}\left(\left\{w^{-1}\right\}\right)$.

$$
\mathbb{C}\left(\left\{w^{-1}\right\}\right)=\left\{\text { convergent Laurent power series of } w^{-1}\right\}=\mathscr{O}_{\mathbb{P}^{1}}(* \infty)_{\infty} .
$$

The vector space $\mathscr{P}_{\mathscr{E}}^{\infty}$ is equipped with the $\mathbb{C}\left(\left\{w^{-1}\right\}\right)$-linear automorphism F.

$$
\operatorname{Sp}(F):=\{\text { eigenvalue of } F\}
$$

Unramified case If $\operatorname{Sp}(F) \subset \mathbb{C}\left(\left\{w^{-1}\right\}\right), \exists$ the generalized eigen decomposition:

$$
\mathscr{P} \mathscr{E}_{\infty}=\bigoplus_{\alpha \in \operatorname{Sp}(F)} \mathbb{E}_{\alpha} .
$$

Each $\alpha \in \operatorname{Sp}(F)$ is expressed as

$$
\alpha=w^{-\omega(\alpha)} \beta(\alpha)\left(1+\sum_{j=1}^{\infty} \gamma_{j}(\alpha) w^{-j}\right) \quad\left(\omega(\alpha) \in \mathbb{Z}, \beta(\alpha) \in \mathbb{C}^{*}, \gamma_{j}(\alpha) \in \mathbb{C} .\right)
$$

The equivalence relation \sim on $\operatorname{Sp}(F): \alpha_{1} \sim \alpha_{2} \Leftrightarrow \omega\left(\alpha_{1}\right)=\omega\left(\alpha_{2}\right), \beta\left(\alpha_{1}\right)=\beta\left(\alpha_{2}\right)$.
For $[\alpha] \in \operatorname{Sp}(F) / \sim$, we define $\omega([\alpha]):=\omega(\alpha)$ and $\beta([\alpha]):=\beta(\alpha)$. We also set $\mathbb{E}_{[\alpha]}=\bigoplus_{\alpha_{1} \sim \alpha} \mathbb{E}_{\alpha_{1}}$. We obtain the decomposition

$$
\mathscr{P}_{\mathscr{E}}^{\infty}=\bigoplus_{\operatorname{Sp}(F) / \sim} \mathbb{E}_{[\alpha]}
$$

Compatibility condition

- $\mathscr{P}_{a} \mathscr{E}_{\infty}=\oplus\left(\mathscr{P}_{a} \mathscr{E}_{\infty} \cap \mathbb{E}_{[\alpha]}\right)$ for any $a \in \mathbb{R}$.
- $\left(w^{\omega([\alpha])} \beta([\alpha])^{-1} F-\mathrm{id}_{\mathbb{E}_{[\alpha]}}\right)\left(\mathscr{P}_{a} \mathscr{E}_{\infty} \cap \mathbb{E}_{[\alpha]}\right) \subset w^{-1} \mathscr{P}_{a} \mathscr{E}_{\infty} \cap \mathbb{E}_{[\alpha]}$ for any $a \in \mathbb{R}$.

Ramified case
$\exists \ell$ such that

$$
\operatorname{Sp}(F) \subset \mathbb{C}\left(\left\{w^{-1 / \ell}\right\}\right)
$$

\exists the generalized eigen decomposition:

$$
\mathscr{P}^{(\ell)} \mathscr{E}_{\infty}:=\mathscr{P}_{\mathscr{E}} \otimes_{\mathbb{C}\left(\left\{w^{-1}\right\}\right)} \mathbb{C}\left(\left\{w^{-1 / \ell}\right\}\right)=\bigoplus_{\alpha \in \operatorname{Sp}(F)} \mathbb{E}_{\alpha}
$$

Each $\alpha \in \operatorname{Sp}(F)$ is expressed as

$$
\alpha=w^{-\omega(\alpha)} \cdot \beta(\alpha) \cdot\left(1+\sum_{j=1}^{\infty} \gamma_{j / \ell}(\alpha) w^{-j / \ell}\right) \quad\left(\omega(\alpha) \in \mathbb{Q}, \beta(\alpha) \in \mathbb{C}^{*}, \gamma_{j / \ell}(\alpha) \in \mathbb{C} .\right)
$$

We define the equivalence relation on $\operatorname{Sp}(F)$ by

$$
\alpha_{1} \sim \alpha_{2} \Longleftrightarrow \omega\left(\alpha_{1}\right)=\omega\left(\alpha_{2}\right), \beta\left(\alpha_{1}\right)=\beta\left(\alpha_{2}\right), \gamma_{j / \ell}\left(\alpha_{1}\right)=\gamma_{j / \ell}\left(\alpha_{2}\right)(1 \leq j<\ell)
$$

For $[\alpha] \in \operatorname{Sp}(F) / \sim$, we define $\omega([\alpha]):=\omega(\alpha), \beta([\alpha]):=\beta(\alpha)$ and $\gamma_{j / \ell}([\alpha]):=\gamma_{j / \ell}(\alpha)(1 \leq j<\ell)$. We set $\mathbb{E}_{[\alpha]}=\bigoplus_{\alpha_{1} \sim \alpha} \mathbb{E}_{\alpha}$. We obtain the decomposition

$$
\mathscr{P}^{(\ell)} \mathscr{E}_{\infty}=\bigoplus_{\operatorname{Sp}(F) / \sim} \mathbb{E}_{[\alpha]}
$$

There exists the natural filtration of $\mathscr{P}^{(\ell)} \mathscr{E}_{\infty}$:

$$
\mathscr{P}_{a}^{(\ell)} \mathscr{E}_{\infty}:=\sum_{\ell b+n \leq a} w^{-n / \ell} \mathscr{P}_{b} \mathscr{E}_{\infty} \otimes_{\mathbb{C}\left\{w^{-1}\right\}} \mathbb{C}\left\{w^{-1 / \ell}\right\}
$$

Here, $\mathbb{C}\left\{w^{-1}\right\}$ denotes the ring of the convergent power series of w^{-1}.
Compatibility condition

- $\mathscr{P}_{a}^{(\ell)} \mathscr{E}_{\infty}=\oplus\left(\mathscr{P}_{a}^{(\ell)} \mathscr{E}_{\infty} \cap \mathbb{E}_{[\alpha]}\right)$ for any $a \in \mathbb{R}$.
- $\left(w^{\omega([\alpha])} \beta([\alpha])^{-1} F-\left(1+\sum_{j=1}^{\ell-1} \gamma_{j / \ell}([\alpha]) w^{-j / \ell}\right) \operatorname{id}_{\mathbb{E}_{[\alpha]}}\right) \mathscr{P}_{a}^{(\ell)} \mathscr{E}_{\infty} \cap \mathbb{E}_{[\alpha]} \subset w^{-1} \mathscr{P}_{a}^{(\ell)} \mathscr{E}_{\infty} \cap \mathbb{E}_{[\alpha]}$ for any $a \in \mathbb{R}$.

Remark This type of compatibility condition is standard in the study of wild harmonic bundles, and it should be useful for the classification.

Degree and stability condition
Let $0 \neq \boldsymbol{V}^{\prime} \subset \boldsymbol{V}$ be a $\mathbb{C}(w)$-subspace such that $F\left(\boldsymbol{V}^{\prime}\right)=\boldsymbol{V}^{\prime}$.
$\mathscr{O}_{\mathbb{P}^{1}}(* \infty)$-submodule $\mathscr{P} \mathscr{E}^{\prime} \subset \mathscr{P} \mathscr{E}$ such that $H^{0}\left(\mathbb{P}^{1}, \mathscr{P} \mathscr{E}^{\prime}\right)=\boldsymbol{V}^{\prime} \cap H^{0}\left(\mathbb{P}^{1}, \mathscr{P} \mathscr{E}\right)$.

$$
\text { lattices } \mathscr{L}_{Q, i}^{\prime}=\mathscr{P}_{\mathscr{E}}^{\prime}(* D)_{Q} \cap \mathscr{L}_{Q, i} \quad(Q \in D, 0 \leq i \leq m(Q))
$$

filtration $\mathscr{P}_{a} \mathscr{E}^{\prime}=\mathscr{P}_{a} \mathscr{E} \cap \mathscr{P} \mathscr{E}^{\prime}$.
decomposition $\mathscr{P}^{(\ell)} \mathscr{E}_{\infty}^{\prime}=\bigoplus_{[\alpha] \in \operatorname{Sp}(F)}\left(\mathbb{E}_{[\alpha]} \cap \mathscr{P}^{(\ell)} \mathscr{E}_{\infty}^{\prime}\right)$.
Definition

$$
\begin{align*}
& \operatorname{deg}\left(\boldsymbol{V}^{\prime} ; \mathscr{P}_{* \mathscr{E}}, F,\left\{t_{Q, i}\right\},\left\{\mathscr{L}_{Q, i}\right\}\right):=\operatorname{deg}\left(\mathscr{P}_{0} \mathscr{E}^{\prime \prime}\right)-\sum_{-1<a \leq 0} a \operatorname{dim}_{\mathbb{C}}\left(\mathscr{P}_{a} \mathscr{E}^{\prime} / \mathscr{P}_{<a} \mathscr{E}^{\prime \prime}\right) \\
& +\sum_{Q \in D} \sum_{i=1}^{m(Q)}\left(1-t_{i}\right) \operatorname{deg}\left(\mathscr{L}_{Q, i}^{\prime}, \mathscr{L}_{Q, i-1}^{\prime}\right)+\sum_{[\alpha] \in \operatorname{Sp}(F) / \sim} \frac{\omega([\alpha])}{2} \operatorname{rank}\left(\mathscr{P}^{(e)} \mathscr{E}^{\prime} \cap \mathbb{E}_{[\alpha]}\right) \tag{1}
\end{align*}
$$

We define stability and polystability conditions for $\left(\boldsymbol{V}, F ; \mathscr{P}_{*} \mathscr{E},\left\{t_{Q, i}\right\},\left\{\mathscr{L}_{Q, i}\right\}\right)$ by using the degree in the standard way.

Equivalence in the product case
Theorem

- If $\left(V, F ; \mathscr{P}_{*} \mathscr{E},\left\{t_{Q, i}\right\},\left\{\mathscr{L}_{Q, i}\right\}\right)$ is induced by a monopole of GCK-type on $\mathscr{M}_{\Gamma} \backslash Z$, then the compatibility condition is satisfied, and $\left(\boldsymbol{V}, F ; \mathscr{P}_{*} \mathscr{E},\left\{t_{Q, i}\right\},\left\{\mathscr{L}_{Q, i}\right\}\right)$ is polystable of degree 0 .
- This correspondence induces an equivalence

$$
\binom{\text { Singular monopoles }}{\text { on } \mathscr{M}_{\Gamma} \text { of GCK-type }} \longleftrightarrow\left(\begin{array}{c}
\text { Difference modules over }(\mathbb{C}(w), \text { id }) \\
\text { with parabolic structure } \\
\text { (compatible, polystable, degree } 0)
\end{array}\right)
$$

Remark It can be generalized from $S^{1} \times \mathbb{C}$ to $S^{1} \times(\Sigma \backslash S)$ such that $\Sigma \backslash S$ around Q $(Q \in S)$ are isometric to $\{w \in \mathbb{C}||w|>R\}$.

Example 1

Take a finite set $S \subset \mathbb{C}$ and $\ell: S \longrightarrow \mathbb{Z}_{>0}$. Assume $\exists a_{0} \in S$ such that $\ell\left(a_{0}\right)$ odd. Consider $P(y)=\prod_{a \in S}(y-a)^{\ell(a)} \in \mathbb{C}(y)$.
We set $V:=\mathbb{C}(y) e_{1} \oplus \mathbb{C}(y) e_{2}$ with a $\mathbb{C}(y)$-linear automorphism Φ_{V}^{*} :

$$
\Phi_{V}^{*}\left(e_{1}, e_{2}\right)=\left(e_{1}, e_{2}\right)\left(\begin{array}{cc}
0 & P(y) \\
1 & 0
\end{array}\right)
$$

Let $\mathscr{P} \mathscr{E}$ be the locally free $\mathscr{O}_{\mathbb{P}^{1}}(* \infty)$-module induced by $\mathbb{C}[y] e_{1} \oplus \mathbb{C}[y] e_{2}$.
Take any $\left(t_{a}\right)_{a \in S} \in\{0 \leq x<1\}^{S}$. Set $Z:=\left\{\left(t_{a}, a\right) \mid a \in S\right\} \subset S^{1} \times \mathbb{C}$.

Proposition

$\operatorname{deg}_{y}(P)$ even: Monopoles of GCK-type on $\left(S^{1} \times \mathbb{C}\right) \backslash Z$ inducing $\left(\boldsymbol{V}, \Phi_{\boldsymbol{V}}^{*}, \mathscr{P} \mathscr{E}\right)$ are naturally parameterized by \mathbb{R}.
$\operatorname{deg}_{y}(P)$ odd: There uniquely exists a monopole of GCK-type on $\left(S^{1} \times \mathbb{C}\right) \backslash Z$ which induces $\left(V, \Phi_{\boldsymbol{V}}^{*}, \mathscr{P} \mathscr{E}\right)$.

If V^{\prime} is a $\mathbb{C}(y)$-subspace of V such that $\Phi_{V}^{*}\left(V^{\prime}\right)=V^{\prime}$, then V^{\prime} is V or 0 . Hence, the stability condition is trivially satisfied in this case.

It is enough to classify $\mathscr{P}_{*} \mathscr{E}$ over $\mathscr{P}_{\mathscr{E}}$ satisfying the compatibility condition with Φ_{V}^{*} and the degree 0 condition (an easy algebraic problem).

- If $\operatorname{deg}(P)$ is even, $\left(\mathscr{P}_{\mathscr{E}_{\infty},}, \Phi_{V}^{*}\right)$ is unramified. The compatibility condition implies

$$
\mathscr{P}_{* \mathscr{E}_{\infty}}=\left(\mathscr{P}_{*} \mathscr{E}_{\infty} \cap \mathbb{E}_{\left[\alpha_{1}\right]}\right) \oplus\left(\mathscr{P}_{* \mathscr{E}} \cap \mathbb{E}_{\left[\alpha_{2}\right]}\right) .
$$

The filtrations $\left(\mathscr{P}_{*} \mathscr{E}_{\infty} \cap \mathbb{E}_{\left[\alpha_{i}\right]}\right)$ are determined by numbers $d_{i}(i=1,2)$. The degree 0 condition implies $d_{1}+d_{2}+\sum_{a \in S}\left(1-t_{a}\right) \ell(a)$. (We choose appropriate frames of $\mathbb{E}_{\left[\alpha_{i}\right]}$.)

- If $\operatorname{deg}(P)$ is odd, $\left(\mathscr{P} \mathscr{E}_{\infty}, \Phi_{V}^{*}\right)$ is ramified at infinity. The compatibility condition implies

$$
\mathscr{P}_{*}^{(2)} \mathscr{E}_{\infty}=\left(\mathscr{P}_{*}^{(2)} \mathscr{E}_{\infty} \cap \mathbb{E}_{[\alpha]}\right) \oplus\left(\mathscr{P}_{*}^{(2)} \mathscr{E}_{\infty} \cap \mathbb{E}_{[-\alpha]}\right) .
$$

By the Galois action, the filtrations $\mathscr{P}_{*}^{(2)} \mathscr{E}_{\infty} \cap \mathbb{E}_{[\alpha]}$ and $\mathscr{P}_{*}^{(2)} \mathscr{E}_{\infty} \cap \mathbb{E}_{[-\alpha]}$ are determined by a number d. By the degree 0 condition, d is uniquely determined.

Example 2

Take a polynomial $Q(y) \in \mathbb{C}[y]$. Consider $V=\mathbb{C}(y) e_{1} \oplus \mathbb{C}(y) e_{2}$ with the automorphism

$$
\Phi^{*}\left(e_{1}, e_{2}\right)=\left(e_{1}, e_{2}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & Q
\end{array}\right)
$$

Let $\mathscr{P} \mathscr{E}$ be the $\mathscr{O}_{\mathbb{P}^{1}}(* \infty)$-module induced by $\mathbb{C}[y] e_{1} \oplus \mathbb{C}\left[e_{2}\right]$.
Proposition
Monopoles of GCK-type on $S^{1} \times \mathbb{C}$ inducing $\left(\boldsymbol{V}, \Phi^{*}, \mathscr{P} \mathscr{E}\right)$ are naturally parameterized by \mathbb{R}.

Equivalence for periodic monopoles (non-product case)

We explained the case $\Gamma \subset \mathbb{R} \times\{0\} \subset \mathbb{R} \times \mathbb{C}$ under $\mathbb{R}^{3} \simeq \mathbb{R} \times \mathbb{C}$. There are many isometry $\mathbb{R}^{3} \simeq \mathbb{R} \times \mathbb{C}$ (parameterized by \mathbb{P}^{1}).
It is natural to expect to obtain additive difference modules in the case $\Gamma \not \subset \mathbb{R} \times\{0\}$.

A coordinate system
Let λ be any complex number.
We introduce a coordinate system $\left(t_{0}, \beta_{0}\right)$ on $\mathbb{R}_{t} \times \mathbb{C}_{w}$:

$$
\left(t_{0}, \beta_{0}\right)=\frac{1}{1+|\lambda|^{2}}\left(\left(1-|\lambda|^{2}\right) t+2 \operatorname{Im}(\lambda \bar{w}), w+2 \sqrt{-1} \lambda t+\lambda^{2} \bar{w}\right) \in \mathbb{R} \times \mathbb{C}
$$

- $d t_{0} d t_{0}+d \beta_{0} d \bar{\beta}_{0}=d t d t+d w d \bar{w}$.
- Γ is described as

$$
\Gamma=\left\{\left.\frac{n}{1+|\lambda|^{2}}\left(1-|\lambda|^{2}, 2 \sqrt{-1} \lambda\right) \right\rvert\, n \in \mathbb{Z}\right\}
$$

- We set $\partial_{E, t_{0}}:=\nabla_{t_{0}}-\sqrt{-1} \phi$ and $\partial_{E, \bar{\beta}_{0}}:=\nabla_{\bar{\beta}_{0}}$. Then, $\left[\partial_{E, t_{0}}, \partial_{E, \bar{\beta}_{0}}\right]=0$.
- We obtain the holomorphic vector bundles $\left(E_{\mid\left(\left\{t_{0}\right\} \times \mathbb{C}_{\beta_{0}}\right) \backslash Z}, \nabla_{\bar{\beta}_{0}}\right)$. There exist meromorphic isomorphisms

$$
\left(E_{\mid\left\{t_{0}\right\} \times\left(\mathbb{C}_{\beta_{0}} \backslash D\left(t_{0}, t_{0}^{\prime}\right)\right)}, \nabla_{\bar{\beta}_{0}}\right) \simeq\left(E_{\mid\left\{t_{0}^{\prime}\right\} \times\left(\mathbb{C}_{\beta_{0}} \backslash D\left(t_{0}, t_{0}^{\prime}\right)\right)}, \nabla_{\bar{\beta}_{0}}\right) \quad\left(\exists D\left(t_{0}, t_{0}^{\prime}\right) \subset \mathbb{C}, \text { finite }\right)
$$

If $|\lambda| \neq 1$, we set

$$
T(\lambda):=\frac{1-|\lambda|^{2}}{1+|\lambda|^{2}}
$$

$\partial_{E, t_{0}}$ induces a meromorphic isomorphism

$$
E_{\mid\{0\} \times \mathbb{C}_{\beta_{0}}}(* D) \simeq E_{\mid\{T(\lambda)\} \times \mathbb{C}_{\beta_{0}}}(* D) . \quad(\exists D \subset \mathbb{C}, \text { finite })
$$

For the automorphism $\Phi_{0}: \mathbb{C} \longrightarrow \mathbb{C}$ defined by

$$
\Phi_{0}\left(\beta_{0}\right)=\beta_{0}+\frac{2 \sqrt{-1} \lambda}{1+|\lambda|^{2}}
$$

we have the natural identification $\Phi_{0}^{*} E_{\mid\{T(\lambda)\} \times \mathbb{C}}=E_{\mid\{0\} \times \mathbb{C}}$.

Remark It is natural to expect to obtain difference modules by using these isomorphisms (it could be done in some cases), but....

- we do not obtain a difference module in the case $|\lambda|=1$, i.e., $T(\lambda)=0$.
- in general, $\left(E_{\mid\left\{t_{0}\right\} \times \mathbb{C}_{\beta_{0}}}, \nabla_{\bar{\beta}_{0}}\right)$ with $h_{\mid\left\{t_{0}\right\} \times \mathbb{C}_{\beta_{0}}}$ is not acceptable. It is not clear how to extend $\left(E_{\mid\left\{t_{0}\right\} \times \mathbb{C}_{\beta_{0}}}, \nabla_{\bar{\beta}_{0}}\right)$ to a meromorphic object on \mathbb{P}^{1}.

Another coordinate system
We introduce another coordinate system $\left(t_{1}, \beta_{1}\right)$:

$$
\left(t_{1}, \beta_{1}\right)=\left(t_{0}+\operatorname{Im}\left(\bar{\lambda} \beta_{0}\right),\left(1+|\lambda|^{2}\right) \beta_{0}\right)=\left(t+\operatorname{Im}(\lambda \bar{w}), w+2 \sqrt{-1} \lambda t+\lambda^{2} \bar{w}\right) .
$$

Γ is described as $\Gamma=\{n \cdot(1,2 \sqrt{-1} \lambda) \mid n \in \mathbb{Z}\}$.
Remark $\mathbb{R}_{t_{1}} \times\{0\}$ and $\{0\} \times \mathbb{C}_{\beta_{1}}$ are not orthogonal if $\lambda \neq 0$.

Note that

$$
\partial_{t_{1}}=\partial_{t_{0}}, \quad \partial_{\bar{\beta}_{1}}=\frac{\lambda}{1+|\lambda|^{2}} \frac{1}{2 \sqrt{-1}} \partial_{t_{0}}+\frac{1}{1+|\lambda|^{2}} \partial_{\bar{\beta}_{0}} .
$$

Lemma We define the differential operators acting on E :

$$
\partial_{E, t_{1}}:=\partial_{E, t_{0}}, \quad \partial_{E, \bar{\beta}_{1}}:=\frac{\lambda}{1+|\lambda|^{2}} \frac{1}{2 \sqrt{-1}} \partial_{E, t_{0}}+\frac{1}{1+|\lambda|^{2}} \partial_{E, \bar{\beta}_{0}} .
$$

Then, $\partial_{E, t_{1}}$ and $\partial_{E, \bar{\beta}_{1}}$ are commutative.

Remark It is more systematic to consider mini-holomorphic bundles on mini-complex manifolds. $\left(t_{0}, \beta_{0}\right)$ and $\left(t_{1}, \beta_{1}\right)$ determines the same mini-complex structure.

Theorem The holomorphic bundle $\mathscr{E}^{t_{1}}=\left(E_{\mid\left\{t_{1}\right\} \times \mathbb{C}_{\beta_{1}}}, \partial_{E, \bar{\beta}_{1}}\right)$ with the metric $h_{\mid\left\{t_{1}\right\} \times \mathbb{C}_{\beta_{1}}}$ is acceptable. In particular, it extends to a filtered bundle $\mathscr{P}_{*} \mathscr{E}^{t_{1}}$ on $\left(\mathbb{P}^{1},\{\infty\}\right)$.

We obtain the meromorphic isomorphism induced by $\partial_{E, t_{1}}$.

$$
\mathscr{P}_{\mathscr{E}}{ }^{0}(* D) \simeq \mathscr{P}_{\mathscr{E}}{ }^{1}(* D) \quad(\exists D \subset \mathbb{C} \text { finite })
$$

For the automorphism $\Phi_{1}: \mathbb{C} \longrightarrow \mathbb{C}$ defined by $\Phi_{1}\left(\beta_{1}\right)=\beta_{1}+2 \sqrt{-1} \lambda$, we have

$$
\Phi_{1}^{*}\left(\mathscr{P}_{* \mathscr{E}}{ }^{1}\right)=\mathscr{P}_{*} \mathscr{E}^{0}
$$

- V$:=H^{0}\left(\mathbb{P}^{1}, \mathscr{P} \mathscr{E}^{0}\right) \otimes_{\mathbb{C}\left[\beta_{1}\right]} \mathbb{C}\left(\beta_{1}\right)$.
- The above two isomorphisms induce a \mathbb{C}-linear automorphism Φ_{V}^{*} on V, and $\left(\boldsymbol{V}, \Phi_{\boldsymbol{V}}^{*}\right)$ is a difference module over $\left(\mathbb{C}\left(\beta_{1}\right), \Phi_{1}^{*}\right)$.
- The singularity at Z and the filtered bundle $\mathscr{P}_{* \mathscr{E}} \mathscr{E}^{0}$ determine a parabolic structure on this difference module V.

Remark To formulate a compatibility condition of Φ_{V}^{*} and the filtration $\mathscr{P}_{*} \mathscr{E}^{0}$, we can use the classification of formal difference modules due to Turrittin.

Equivalence in the non-product case The degree and the stability condition for $\left(\boldsymbol{V}, F, \mathscr{P}_{*} \mathscr{E},\left\{t_{Q, i}\right\},\left\{\mathscr{L}_{Q, i}\right\}\right)$ are defined as before.

Theorem

$$
\binom{\text { Singular monopoles }}{\text { on } \mathscr{M}_{\Gamma} \text { of GCK-type }} \longleftrightarrow\left(\begin{array}{c}
\text { Difference modules over }\left(\mathbb{C}\left(\beta_{1}\right), \Phi_{1}^{*}\right) \\
\text { with parabolic structure } \\
\text { (compatible, polystable, degree } 0 \text {) }
\end{array}\right)
$$

Asymptotic behaviour of periodic monopoles of GCK-type

We set $U(R):=\{|w|>R\}$.
Let (E, h, ∇, ϕ) be a monopole on $S^{1} \times U(R)$ satisfying the GCK-condition.
For any positive integer ℓ, let $\varphi_{\ell}: S^{1} \times U(R)_{\ell} \longrightarrow S^{1} \times U(R)$ be the covering induced by $w^{1 / \ell} \longmapsto\left(w^{1 / \ell}\right)^{\ell}$.

Theorem For an appropriate positive integer ℓ,

$$
\varphi_{\ell}^{-1}(E, h, \nabla, \phi) \sim \bigoplus_{i}\left(E_{n_{i}, \ell}, h_{n_{i}, \ell}, \nabla_{n_{i}, \ell}, \phi_{n_{i}, \ell}\right) \otimes \operatorname{Hit}_{2}^{3}\left(V_{i}, \bar{\partial}_{V_{i}}, \theta_{V_{i}}, h_{V_{i}}\right) .
$$

Remark $\left(E_{n_{i}}, h_{n_{i}}, \nabla_{n_{i}}, \phi_{n_{i}}\right)$ and $\operatorname{Hit}_{2}^{3}\left(V_{i}, \overline{\bar{D}}_{V_{i}}, \theta_{V_{i}}, h_{V_{i}}\right)$ are almost determined by $\mathscr{P}_{*} \mathscr{E}_{\infty}$ with the induced difference operator Φ_{1}^{*}.

Typical examples (1)
By $w=r e^{\sqrt{-1} \theta}$, we obtain the isometry (set $S_{2 \pi}^{1}:=\mathbb{R} / 2 \pi \mathbb{Z}$):

$$
S^{1} \times(\mathbb{C} \backslash\{0\}) \simeq\left(S_{2 \pi}^{1} \times S^{1} \times \mathbb{R}_{>0}, r^{2} d \theta d \theta+d t d t+d r d r\right), \quad(t, w) \longmapsto(\theta, t, r)
$$

A line bundle L_{n} on $S_{2 \pi}^{1} \times S^{1}$ with $c_{1}(L)=n$ has a Hermitian metric $h_{L_{n}}$ and a unitary connection $\nabla_{L_{n}}$ such that $F\left(\nabla_{L_{n}}\right)=-n \sqrt{-1} d \theta d t$.

Let $p: S_{2 \pi}^{1} \times S^{1} \times \mathbb{R}_{>0} \longrightarrow S_{2 \pi}^{1} \times S^{1}$ be the projection. We set

$$
\left(E_{n}, h_{n}, \nabla_{n}\right):=p^{*}\left(L_{n}, h_{L_{n}}, \nabla_{L_{n}}\right) .
$$

Let ϕ_{n} be the Higgs field defined by $\phi_{n}=-n \sqrt{-1} \log r$.

- $\left(E_{n}, h_{n}, \nabla_{n}, \phi_{n}\right)$ is a monopole on $S_{2 \pi}^{1} \times S^{1} \times \mathbb{R}_{>0}$ satisfying the GCK-condition at infinity.
- We can compute ($\mathscr{P}_{*} \mathscr{E}_{\infty}, \Phi_{1}^{*}$) explicitly.
(For example, if $\lambda=0$, the induced automorphism F is the multiplication of $\beta w^{n}(|\beta|=1)$, where β depends on the choice of $\nabla_{L_{n}}$.)

Similarly, by setting $S_{2 \pi \ell}=\mathbb{R} /(2 \pi \ell \mathbb{Z})$, let $L_{n, \ell}$ be a line bundle on $S_{2 \pi \ell}^{1} \times S^{1}$ with a metric $h_{L_{n, \ell}}$ and a unitary connection $\nabla_{L_{n, \ell}}$ such that $F\left(\nabla_{L_{n, \ell}}\right)=-\frac{n}{\ell} \sqrt{-1} d \theta d t$.

Let $p_{\ell}: S_{2 \pi \ell}^{1} \times S^{1} \times \mathbb{R}_{>0} \longrightarrow S_{2 \pi \ell}^{1} \times S^{1}$ be the projection. We set

$$
\left(E_{n, \ell}, h_{n, \ell}, \nabla_{n, \ell}\right)=p_{\ell}^{*}\left(L_{n, \ell}, h_{n, \ell}, \nabla_{n, \ell}\right)
$$

Let $\phi_{n, \ell}$ be the Higgs field defined by $\phi_{n, \ell}=-\frac{n}{\ell} \sqrt{-1} \log r$.

- $\left(E_{n, \ell}, h_{n, \ell}, \nabla_{n, \ell}, \phi_{n, \ell}\right)$ is a monopole on $S_{2 \pi \ell}^{1} \times S^{1} \times \mathbb{R}_{>0}$ satisfying the GCK condition at infinity.
- We can calculate the associated algebraic objects.

Typical examples (2)

Let $\left(V, \bar{\partial}_{V}, \theta, h_{V}\right)$ be a harmonic bundle on $U(R)$, i.e., $\left(V, \bar{\partial}_{V}\right)$ is a holomorphic vector bundle, $\theta=f d w \in \operatorname{End}(V) \otimes \Omega^{1}$, and h_{V} is a Hermitian metric of V, satisfying the Hitchin equation

$$
F\left(\nabla_{h_{v}}\right)+\left[\theta, \theta_{h_{v}}^{\dagger}\right]=0 .
$$

Let $p_{w}: S^{1} \times U(R) \longrightarrow U(R)$ be the projection. We obtain the vector bundle with a Hermitian metric $(E, h)=p_{w}^{-1}\left(V, h_{V}\right)$ with the connection and the Higgs field

$$
\nabla=p_{w}^{*}\left(\nabla_{h}\right)-\sqrt{-1} p_{w}^{*}\left(f+f_{h}^{\dagger}\right) d t, \quad \phi=p_{w}^{*}\left(f-f_{h}^{\dagger}\right) .
$$

- $\operatorname{Hit}_{2}^{3}\left(V, \bar{\partial}_{V}, h_{V}, \theta\right):=(E, h, \nabla, \phi)$ is a monopole on $S^{1} \times U(R)$.
- $\operatorname{Hit}_{2}^{3}\left(V, \bar{\partial}_{V}, h_{V}, \theta\right)$ satisfies the desired asymptotic condition if and only if the eigenvalues of f are bounded.
- We can compute the associated holomorphic objects explicitly. (For example, if $\lambda=0$, the induced automorphism F is $\exp (2 f)$.)

More generally, let $U(R)_{\ell} \longrightarrow U(R)$ be the ℓ-th covering map induced by $w^{1 / \ell} \longmapsto\left(w^{1 / \ell}\right)^{\ell}$.

- A harmonic bundle $\left(E, \bar{\partial}_{E}, \theta, h\right)$ on $U(R)_{\ell}$ induces a monopole $\operatorname{Hit}_{2}^{3}\left(E, \bar{\partial}_{E}, \theta, h\right)$ on $S^{1} \times U(R)_{\ell}$.
- Let f be determined by $\theta=f d w=f d\left(\left(w^{1 / \ell}\right)^{\ell}\right)$. $\operatorname{Hit}_{2}^{3}\left(E, \bar{\partial}_{E}, \theta, h\right)$ satisfies the GCK-condition at infinity if and only if the eigenvalues of f are bounded.

Approximation
Let (E, h, ∇, ϕ) be a monopole on $S^{1} \times U(R)$ satisfying the GCK-condition. Let $\varphi_{\ell}: S^{1} \times U(R)_{\ell} \longrightarrow S^{1} \times U(R)$ be the covering induced by $w^{1 / \ell} \longmapsto\left(w^{1 / \ell}\right)^{\ell}$.

Theorem For an appropriate positive integer ℓ,

$$
\varphi_{\ell}^{-1}(E, h, \nabla, \phi) \sim \bigoplus_{i}\left(E_{n_{i}, \ell}, h_{n_{i}, \ell}, \nabla_{n_{i}, \ell}, \phi_{n_{i}, \ell}\right) \otimes \operatorname{Hit}_{2}^{3}\left(V_{i}, \bar{\partial}_{V_{i}}, \theta_{V_{i}}, h_{V_{i}}\right)
$$

Corollary For $F(\nabla)=F(\nabla)_{w \bar{w}} d w d \bar{w}+F(\nabla)_{w, t} d w d t+F(\nabla)_{\bar{w}, t} d \bar{w} d t$, we obtain the stronger curvature decay

$$
\begin{gathered}
\left|F(\nabla)_{w \bar{w}}\right|_{h}=O\left(|w|^{-2}(\log |w|)^{-2}\right) \\
\left|F(\nabla)_{w t}\right|_{h}=O\left(|w|^{-1}\right) \\
\left|F(\nabla)_{\bar{w} t}\right|_{h}=O\left(|w|^{-1}\right)
\end{gathered}
$$

The doubly periodic case and the triply periodic case

Doubly periodic case $\Gamma \subset\{0\} \times \mathbb{C} \subset \mathbb{R} \times \mathbb{C}$ such that rank $\Gamma=2$. Take any complex number λ. Take a generator $\mu_{1}, \mu_{2} \in \Gamma$ such that (i) $\lambda \neq \pm \sqrt{-1} \mu_{1}\left|\mu_{1}\right|^{-1}$, (ii) $\operatorname{Im}\left(\mu_{2} / \mu_{1}\right)>0$. We set

$$
\mathfrak{q}^{\lambda}:=\exp \left(2 \pi \sqrt{-1} \frac{\mu_{2}+\lambda^{2} \bar{\mu}_{2}}{\mu_{1}+\lambda^{2} \bar{\mu}_{1}}\right) .
$$

Theorem There exists an equivalence between monopoles on \mathscr{M}_{Γ} with finite Dirac type singularity satisfying an asymptotic condition at infinity and multiplicative difference modules with parabolic structure (compatible, polystable, degree 0).
(The action $\mathbb{C}^{*} \longrightarrow \mathbb{C}^{*}$ is induced by $y \longmapsto \mathfrak{q}^{\lambda} y$)

Triply periodic case Suppose rank $\Gamma=3$. We take a generator $e_{i}=\left(a_{i}, \alpha_{i}\right)$ of $\Gamma \subset \mathbb{R} \times \mathbb{C}$ such that (i) the frame e_{1}, e_{2}, e_{3} is compatible with the orientation, (ii) α_{1}, α_{2} generates a lattice \mathbb{C}, (iii) $\operatorname{Im}\left(\alpha_{2} / \alpha_{1}\right)>0$. We set $C=\mathbb{C} / \mathbb{Z}\left\langle\alpha_{1}, \alpha_{2}\right\rangle$.

Theorem (essentially Charbonneau-Hurtubise, Kontsevich-Soibelman) There exists an equivalence between monopoles of $(\mathbb{R} \times \mathbb{C} / \Gamma)$ with finite Dirac type singularity and difference modules on C with parabolic structure (polystable, degree 0).
(The action $C \longrightarrow C$ is induced by $z \longmapsto z+\alpha_{3}$.)

