Monopoles and difference modules

Takuro Mochizuki

RIMS, Kyoto University

2021 February

Introduction

It is interesting to obtain a natural correspondence between objects in differential geometry and objects in algebraic geometry.

Theorem (rough statement)	Ň
Differential Geometry	Algebraic Geometry
Periodic monopoles \longleftrightarrow	Additive difference modules (Difference modules on \mathbb{C})
Doubly periodic monopoles \longleftrightarrow	$ \begin{array}{l} \text{Multiplicative difference modules} \\ \left(\begin{array}{c} q \text{-Difference modules,} \\ \text{Difference modules on } \mathbb{C}^* \end{array} \right) \end{array} $
Triply periodic monopoles \longleftrightarrow	Elliptic difference modules (Difference modules on elliptic curves)

Monopoles

- M: an oriented 3-dimensional Riemannian manifold
- $({\boldsymbol E}, {\boldsymbol h})$: a vector bundle with a Hermitian metric on ${\boldsymbol M}$
 - ∇ : a unitary connection of (E,h)
 - ϕ : an anti-Hermitian endomorphism of *E* (called Higgs field)

Definition (E,h,∇,ϕ) is called *monopole* on *M* if

 $F(
abla) = *
abla \phi$ (Bogomolny equation).

Here, * denote the Hodge star operator.

Let Γ be a discrete subgroup of \mathbb{R}^3 . Set $\mathscr{M}_{\Gamma} := \mathbb{R}^3 / \Gamma$ with $\sum dx_i dx_i$. In this talk, we are interested in monopoles on $\mathscr{M}_{\Gamma} \setminus Z$ (*Z*: finite subset).

- Periodic monopole $\iff \Gamma \simeq \mathbb{Z}$
- Doubly periodic monopole $\iff \Gamma \simeq \mathbb{Z}^2$
- Triply periodic monopole $\iff \Gamma \simeq \mathbb{Z}^3$.

Difference modules

Let *R* be a commutative algebra over \mathbb{C} . Let Φ^* be an automorphism of *R*, i.e., $\Phi^* : R \longrightarrow R$, \mathbb{C} -linear isomorphism, $\Phi^*(f_1 f_2) = \Phi^*(f_1)\Phi^*(f_2) \ (\forall f_i \in R)$.

Definition A difference module over (R, Φ^*) is an *R*-module V equipped with a \mathbb{C} -linear isomorphism $\Phi^*_V : V \longrightarrow V$ such that

$$\Phi_{\boldsymbol{V}}^*(fs) = \Phi^*(f)\Phi_{\boldsymbol{V}}^*(s) \quad (\forall f \in \boldsymbol{R}, \, \forall s \in \boldsymbol{V}).$$

- additive difference modules $\iff R = \mathbb{C}(y)$, $\Phi^*(f)(y) = f(y + \alpha)$ ($\alpha \in \mathbb{C}$)
 - Φ^* is induced by the automorphism $\Phi : \mathbb{C} \longrightarrow \mathbb{C}$, $\Phi(y) = y + \alpha$.
- multiplicative difference modules $\iff R = \mathbb{C}(y)$, $\Phi^*(f)(y) = f(qy)$ $(q \in \mathbb{C}^*)$ Φ^* is induced by the automorphism $\Phi : \mathbb{C}^* \longrightarrow \mathbb{C}^*$, $\Phi(y) = qy$.
- elliptic difference modules ⇐⇒ R is the field of meromorphic functions on an elliptic curve C, and Φ* is induced by Φ: C → C, Φ(y) = y + α (α ∈ C).

Theorem (rough statement)

Differential Geometry Algebraic Geometry

Periodic monopoles \leftrightarrow Additive difference modules

Doubly periodic monopoles \longleftrightarrow Multiplicative difference modules

Triply periodic monopoles $\leftrightarrow \rightarrow$ Elliptic difference modules

We need to impose the asymptotic condition to monopoles, and we should enhance difference modules with parabolic structure and stability condition.

- Non-abelian Hodge theory for harmonic bundles on Riemann surfaces. (Higgs bundles \leftrightarrow harmonic bundles \leftrightarrow flat bundles)
- Classification of monopoles by algebraic data.

Previous works on classification of monopoles

Let Σ be a compact Riemann surface.

We recall more details of the theorem of Charbonneau-Hurtubise.

- $S^1 := \mathbb{R}/\mathbb{Z}$ with the standard metric dt dt.
- Σ: a compact Riemann surface with a Kähler metric.
- Z: a finite subset of $S^1 \times \Sigma$. (Assume $Z \cap (\{0\} \times \Sigma) = \emptyset$ for simplicity.)

We consider a monopole (E,h,∇,ϕ) on $(S^1 \times \Sigma) \setminus Z$.

Condition Each $P \in Z$ is Dirac type singularity of (E,h,∇,ϕ) , i.e., for a neighbourhood U_P of P in $S^1 \times \Sigma$,

$(E,h, abla,\phi)_{ U_P\setminus\{P\}}\sim\Big($	a direct sum of	١
	Dirac monopoles	J

The induced differential operators

We obtain $abla_{|\Sigma}^{0,1}: E \longrightarrow E \otimes \Omega_{\Sigma}^{0,1}$ induced by

$$abla : E \longrightarrow E \otimes ig(\Omega^1_{S^1} \otimes \mathbb{C} \oplus \Omega^{0,1}_{\Sigma} \oplus \Omega^{1,0}_{\Sigma} ig).$$

We also set $\partial_t := \nabla_t - \sqrt{-1}\phi$.

Key lemma $[\partial_t, \nabla^{0,1}_{|\Sigma}] = 0$ (: Bogomolny equation)

The induced holomorphic vector bundles

- We obtain the vector bundle $E^0 := E_{|\{0\} \times \Sigma}$ on Σ with the holomorphic structure $\nabla^{0,1}_{|\Sigma}$.
- More generally, for any $0 \le t \le 1$, we obtain the vector bundle $E^t := E_{|(\{t\} \times \Sigma) \setminus Z}$ with the holomorphic structure $\nabla^{0,1}_{|\Sigma}$ on $(\{t\} \times \Sigma) \setminus Z$.

•
$$E^1 = E^0$$
. (Recall $S^1 = \mathbb{R}/\mathbb{Z}$.)

Notation

- Let \mathscr{E}^t denote the sheaf of holomorphic sections of $(E^t, \nabla^{0,1}_{|\Sigma})$.
- For a finite subset S ⊂ Σ, let E^t(*S) denote the sheaf of meromorphic sections of E^t, which may have poles along S.

Scattering map (1)

Take $0 \le t_1 < t_2 \le 1$.

If $Z \cap (\{t_1 \le t \le t_2\} \times \Sigma) = \emptyset$, we obtain the isomorphism $F^{t_2,t_1} : E^{t_1} \simeq E^{t_2}$ as the parallel transport with respect to ∂_t .

Proposition F^{t_2,t_1} is holomorphic (: $[\partial_t, \nabla^{0,1}_{|\Sigma}] = 0$), i.e., $F^{t_2,t_1} : \mathscr{E}^{t_1} \simeq \mathscr{E}^{t_2}$.

Scattering map (2)

Suppose $Z \cap (\{t_1 \le t \le t_2\} \times \Sigma) = Z \cap (\{t_0\} \times \Sigma) =: D_{t_0} \neq \emptyset \ (t_1 < t_0 < t_2)$. We obtain the holomorphic isomorphism $F^{t_2,t_1} : E^{t_1}_{|\Sigma \setminus D_{t_0}} \simeq E^{t_2}_{|\Sigma \setminus D_{t_0}}$.

Proposition

 F^{t_2,t_1} is meromorphic at D_{t_0} , i.e., $F^{t_2,t_1}: \mathscr{E}^{t_1}(*D_{t_0}) \simeq \mathscr{E}^{t_2}(*D_{t_0})$. (: Dirac type singularity)

For any $Q \in D_{t_0}$, we obtain a *Hecke modification*, i.e., there are two lattices of the stalk $\mathscr{E}^{t_1}(*D)_Q \simeq \mathscr{E}^{t_2}(*D)_Q$

$$\mathscr{E}_Q^{t_1} \subset \mathscr{E}^{t_1}(*D)_Q \simeq \mathscr{E}^{t_2}(*D)_Q \supset \mathscr{E}_Q^{t_2}.$$

Algebraic data associated to monopoles on $S^1 \times \Sigma$

From (E,h,∇,ϕ) , we obtain $(\mathscr{E},F,\{t_{Q,i}\},\{\mathscr{L}_{Q,i}\})$.

- a holomorphic vector bundle $\mathscr{E} := \mathscr{E}^0$ on Σ
- an automorphism F of $\mathscr{E}(*D)$ by setting D as the image of Z by $S^1 \times \Sigma \longrightarrow \Sigma$:

$$\mathscr{E}(*D) = \mathscr{E}^{0}(*D) \stackrel{F^{1,0}}{\simeq} \mathscr{E}^{1}(*D) = \mathscr{E}^{0}(*D) = \mathscr{E}(*D).$$

• a sequence $0 \le t_{Q,1} < \cdots < t_{Q,m(Q)} < 1$ for $Q \in D$ by

$$Z \cap (S^1 \times \{Q\}) = \{(t_{Q,i}, Q)\}.$$

• lattices $\mathscr{L}_{Q,i}$ (i = 0, ..., m(Q)) of $\mathscr{E}(*D)_Q$: We set $\mathscr{L}_{Q,0} = \mathscr{L}_{Q,m(Q)} := \mathscr{E}_Q$, and $\mathscr{L}_{Q,i} := \mathscr{E}_Q^t \subset \mathscr{E}^t(*D)_Q \simeq \mathscr{E}^0(*D)_Q = \mathscr{E}(*D)_Q \quad (t_{Q,i} < t < t_{Q,i+1})$

Degree of subobjects of algebraic data

Suppose that $(\mathscr{E}, F, \{t_{Q,i}\}, \{\mathscr{L}_{Q,i}\})$ is given (not necessarily induced by a monopole). Let $\mathscr{E}' \subset \mathscr{E}$ be a non-zero holomorphic subbundle such that $F(\mathscr{E}'(*D)) = \mathscr{E}'(*D)$. We obtain lattices $\mathscr{L}'_{Q,i}$ (i = 0, ..., m(Q)) of $\mathscr{E}'(*D)_Q$ by setting

$$\mathscr{L}'_{Q,i} := \mathscr{L}_{Q,i} \cap \mathscr{E}'(*D)_Q \quad \text{in } \mathscr{E}(*D)_Q.$$

Definition (degree)

$$\deg(\mathscr{E}'; F, \{t_{\mathcal{Q},i}\}, \{\mathscr{L}_{\mathcal{Q},i}\}) := \deg(\mathscr{E}') + \sum_{\mathcal{Q} \in D} \sum_{i=1}^{m(\mathcal{Q})} (1 - t_{\mathcal{Q},i}) \deg\left(\mathscr{L}'_{\mathcal{Q},i}, \mathscr{L}'_{\mathcal{Q},i-1}\right)$$

Here, we put

$$\deg(\mathscr{L}'_{\mathcal{Q},i},\mathscr{L}'_{\mathcal{Q},i-1}) := \dim_{\mathbb{C}} \Big(\mathscr{L}'_{\mathcal{Q},i} / (\mathscr{L}'_{\mathcal{Q},i} \cap \mathscr{L}'_{\mathcal{Q},i-1}) \Big) - \dim_{\mathbb{C}} \Big(\mathscr{L}'_{\mathcal{Q},i-1} / (\mathscr{L}'_{\mathcal{Q},i} \cap \mathscr{L}'_{\mathcal{Q},i-1}) \Big).$$

Remark \exists a naturally induced family of holomorphic vector bundles $(\mathscr{E}')^t$, and

$$\deg(\mathscr{E}', F, \{t_{\mathcal{Q},i}\}, \{\mathscr{L}_{\mathcal{Q},i}\}) = \int_0^1 \deg(\mathscr{E}')^t dt.$$

Stability condition

Definition Suppose that $deg(\mathscr{E}; F, \{t_{Q,i}\}, \{\mathscr{L}_{Q,i}\}) = 0$ (for simplicity).

• $(\mathscr{E}, F, \{t_{Q,i}\}, \{\mathscr{L}_{Q,i}\})$ is *stable* if

$$\deg(\mathscr{E}'; F, \{t_{Q,i}\}, \{\mathscr{L}_{Q,i}\}) < 0$$

 $\text{for any non-zero subbundle } \mathscr{E}' \subsetneq \mathscr{E} \text{ such that } F(\mathscr{E}'(*D)) = \mathscr{E}'(*D).$

(ℰ, F, {t_{Q,i}}, {ℒ_{Q,i}}) is *polystable* if it is a direct sum of stable objects of degree 0, i.e.,

$$(\mathscr{E}, F, \{t_{\mathcal{Q},i}\}, \{\mathscr{L}_{\mathcal{Q},i}\}) = \bigoplus_{j} (\mathscr{E}_j, F_j, \{t_{\mathcal{Q},i}\}, \{\mathscr{L}_{j,\mathcal{Q},i}\})$$

such that $(\mathscr{E}_j, F_j, \{t_{Q,i}\}, \{\mathscr{L}_{j,Q,i}\})$ are stable of degree 0.

Theorem (Charbonneau-Hurtubise)

- If $(\mathscr{E}, F, \{t_{Q,i}\}, \{\mathscr{L}_{Q,i}\})$ is induced by a monopole with Dirac singularity on $(S^1 \times \Sigma) \setminus Z$, then $(\mathscr{E}, F, \{t_{Q,i}\}, \{\mathscr{L}_{Q,i}\})$ is polystable of degree 0.
- The above correspondence induces an equivalence

 $\left(\begin{array}{c} \text{monopoles on } (S^1 \times \Sigma) \setminus Z \\ (\text{Dirac type singularity}) \end{array}\right) \longleftrightarrow \left(\begin{array}{c} \text{holomorphic vector bundles } \mathscr{E} \text{ on } \Sigma \\ \text{with an automorphism } F \text{ at } D \\ \text{and lattices } \{\mathscr{L}_{Q,i}\} \\ (\text{polystable w.r.t. } \{t_{Q,i}\}_{Q \in D}) \end{array}\right)$

(*D* and $\{t_{O,i}\}$ are determined by *Z*.)

Remark Let $\mathfrak{K}(\Sigma)$ denote the field of meromorphic functions on Σ .

 $V = \{$ meromorphic sections of \mathscr{E} on $\Sigma \}$

is naturally a finite dimensional $\Re(\Sigma)$ -vector space with an automorphism F. We may regard (\mathbf{V}, F) as a difference module over $(\Re(\Sigma), \text{id})$. The tuple $(\mathscr{E}, \{t_{O,i}\}, \{\mathscr{L}_{O,i}\})$ is regarded as a parabolic structure of (\mathbf{V}, F) .

Periodic monopoles of GCK-type

Let Γ be a non-trivial discrete subgroup of \mathbb{R}^3 with $\Gamma \simeq \mathbb{Z}$. Let Z be a finite subset of $\mathscr{M}_{\Gamma} = (\mathbb{R}^3/\Gamma)$.

Definition A monopole (E,h,∇,ϕ) on $\mathscr{M}_{\Gamma}\setminus Z$ is called of *GCK-type* (generalized Cherkis-Kapustin type) if

• each $P \in Z$ is Dirac type singularity of (E, h, ∇, ϕ) ,

• $|\phi_P| = O(\log d(P, P_0))$ and $|F(\nabla)_P| \longrightarrow 0$ as P goes to infinity.

Remark We can prove that a monopole of GCK type satisfies much stronger condition at infinity.

Product case

Assume $\Gamma = \{(n,0) | n \in \mathbb{Z}\} \subset \mathbb{R} \times \mathbb{C} \simeq \mathbb{R}^3$ (isometry). We obtain an isometry $\mathcal{M}_{\Gamma} \simeq S^1 \times \mathbb{C}$.

First, we shall explain what kind of algebraic objects appear in this product case. For simplicity, we assume $Z \cap (\{0\} \times \mathbb{C}) = \emptyset$.

Remark There are different isometries $\mathbb{R}^3 \simeq \mathbb{R}_{t_0} \times \mathbb{C}_{\beta_0}$ such that $\Gamma \not\subset \mathbb{R} \times \{0\}$, from which we obtain different equivalences between monopoles and algebraic objects (explained later).

Preliminary

Everything goes similarly on \mathbb{C} .

- We obtain the operators $\partial_{E,t} = \nabla_t \sqrt{-1}\phi$ and $\partial_{E,\overline{w}} = \nabla_{\overline{w}}$ of *E*.
- For $0 \le t \le 1$, we obtain holomorphic vector bundles on $(\{t\} \times \mathbb{C}) \setminus Z \subset \mathbb{C}$:

$$\mathscr{E}^t = \left(E_{|(\{t\} \times \mathbb{C}) \setminus Z}, \nabla_{\overline{w}} \right)$$

In particular, we set $\mathscr{E} := \mathscr{E}^0 = \mathscr{E}^1$.

• Let *D* denote the image of *Z* by the projection $\mathcal{M}_{\Gamma} = S^1 \times \mathbb{C} \longrightarrow \mathbb{C}$. Then, $\partial_{E,t}$ induces

$$F: \mathscr{E}(*D) = \mathscr{E}^{0}(*D) \simeq \mathscr{E}^{1}(*D) = \mathscr{E}(*D)$$

• We also obtain tuples of numbers $0 \le t_{Q,1} < \cdots < t_{Q,m(Q)} < 1$ and lattices $\mathscr{L}_{Q,i}$ $(i = 0, \dots, m(Q))$ for $Q \in D$.

Remark However, $(\mathscr{E}, F, \{t_{Q,i}\}, \{\mathscr{L}_{Q,i}\})$ is *transcendental* object on \mathbb{C} . We would like to extend it to an algebraic object on \mathbb{P}^1 by using h.

Acceptability

Theorem $(\mathscr{E}^t, h^t := h_{|\{t\} \times \mathbb{C}})$ is acceptable, i.e.,

$$F(\nabla_{h^t})\Big|_{h^t} = O\Big(\frac{dwd\overline{w}}{|w|^2(\log|w|)^2}\Big)$$

Here, ∇_{h^t} denotes the Chern connection of (\mathscr{E}^t, h^t) , and $F(\nabla_{h^t})$ denotes the curvature.

Remark We may apply a general theory to extend acceptable bundles on \mathbb{C} to a filtered bundle on (\mathbb{P},∞) (*Cornalba-Griffiths, Simpson*).

Extension of acceptable bundles to filtered bundles

For any $a \in \mathbb{R}$, $\underline{\mathscr{E}^t \text{ on } \mathbb{C} \setminus D_t}$ extends to the sheaf $\underline{\mathscr{P}_a \mathscr{E}^t \text{ on } \mathbb{P}^1 \setminus D_t}$ as follows.

• For any neighbourhood $U \subset \mathbb{P}^1$ of ∞ ,

$$\mathscr{P}_a \mathscr{E}^t(U) = \Big\{ s \in \mathscr{E}^t(U \setminus \{\infty\}) \ \Big| \ |s|_h = O(|w|^{a+\varepsilon}) \ \forall \varepsilon > 0 \Big\}.$$

We obtain an increasing sequence of $\mathscr{O}_{\mathbb{P}^1 \setminus D_t}$ -modules $\mathscr{P}_* \mathscr{E}^t = (\mathscr{P}_a \mathscr{E}^t | a \in \mathbb{R})$. We also set $\mathscr{P} \mathscr{E}^t = \bigcup_{a \in \mathbb{R}} \mathscr{P}_a \mathscr{E}^t$.

 $\begin{array}{l} \hline \textbf{Theorem (Cornalba-Griffiths, Simpson)} \quad \mathscr{P}_a \mathscr{E}^t \text{ are locally free } \mathscr{O}_{\mathbb{P}^1 \setminus D_t}\text{-modules.}\\ \hline (\because (\mathscr{E}^t, h^t) \text{ is acceptable.})\\ \hline \textbf{Hence, } \mathscr{P} \mathscr{E}^t \text{ is a locally free } \mathscr{O}_{\mathbb{P}^1 \setminus D_t}(*\infty)\text{-module.} \end{array}$

Remark This kind of increasing sequence $\mathscr{P}_*\mathscr{E}^t$ is called a filtered bundle on $(\mathbb{P}^1 \setminus D_t, \infty)$.

Lemma The automorphism F of $\mathscr{E}^{0}(*D)$ induces an automorphism F of $\mathscr{P}\mathscr{E}^{0}(*D)$. (But, not necessarily, $F(\mathscr{P}_{a}\mathscr{E}^{0}(*D)) \subset \mathscr{P}_{a}\mathscr{E}^{0}(*D)$.)

The associated difference module with parabolic structure in the product case We obtain a finite dimensional $\mathbb{C}(w)$ -vector space **V**:

$$\boldsymbol{V} = H^0(\mathbb{P}^1, \mathscr{P}\mathcal{E}^0) \otimes_{\mathbb{C}[w]} \mathbb{C}(w).$$

It is equipped with the $\mathbb{C}(w)$ -linear automorphism F. We regard (V, F) as a difference module on $(\mathbb{C}(w), \mathrm{id}_{\mathbb{C}(w)})$. It is equipped with the parabolic structure

- \bullet a filtered bundle $\mathscr{P}_{*}\mathscr{E}=\mathscr{P}_{*}\mathscr{E}^{0}$ on (\mathbb{P}^{1},∞)
- a sequence $\{t_{Q,i}\}_{Q \in D}$
- lattices $\mathscr{L}_{Q,i}$ of $\mathscr{P}\mathscr{E}(*D)_Q$.

Remark We need to clarify the compatibility condition of F and $\mathcal{P}_*\mathcal{E}$ (similar to the case of wild harmonic bundles).

Eigenvalues of F at ∞

We may regard the stalk $\mathscr{P}\mathscr{E}_{\infty}$ of the sheaf $\mathscr{P}\mathscr{E}$ at ∞ as a finite dimensional vector space over $\mathbb{C}(\{w^{-1}\})$.

 $\mathbb{C}(\{w^{-1}\}) = \left\{ \text{convergent Laurent power series of } w^{-1} \right\} = \mathscr{O}_{\mathbb{P}^1}(*\infty)_{\infty}.$

The vector space $\mathscr{P}\mathscr{E}_{\infty}$ is equipped with the $\mathbb{C}(\{w^{-1}\})$ -linear automorphism *F*.

 $\operatorname{Sp}(F) := \{ eigenvalue of F \}$

Unramified case If $\text{Sp}(F) \subset \mathbb{C}(\{w^{-1}\})$, \exists the generalized eigen decomposition:

$$\mathscr{P}\mathscr{E}_{\infty} = \bigoplus_{\alpha \in \operatorname{Sp}(F)} \mathbb{E}_{\alpha}.$$

Each $\alpha \in \operatorname{Sp}(F)$ is expressed as

$$\alpha = w^{-\omega(\alpha)}\beta(\alpha)\Big(1 + \sum_{j=1}^{\infty} \gamma_j(\alpha)w^{-j}\Big) \quad (\omega(\alpha) \in \mathbb{Z}, \ \beta(\alpha) \in \mathbb{C}^*, \ \gamma_j(\alpha) \in \mathbb{C}.)$$

The equivalence relation \sim on Sp(F): $\alpha_1 \sim \alpha_2 \Leftrightarrow \omega(\alpha_1) = \omega(\alpha_2), \ \beta(\alpha_1) = \beta(\alpha_2).$

For $[\alpha] \in \operatorname{Sp}(F) / \sim$, we define $\omega([\alpha]) := \omega(\alpha)$ and $\beta([\alpha]) := \beta(\alpha)$. We also set $\mathbb{E}_{[\alpha]} = \bigoplus_{\alpha_1 \sim \alpha} \mathbb{E}_{\alpha_1}$. We obtain the decomposition

$$\mathscr{P}\mathscr{E}_{\infty} = igoplus_{\operatorname{Sp}(F)/\sim} \mathbb{E}_{[\pmb{lpha}]}.$$

Compatibility condition

•
$$\mathscr{P}_a \mathscr{E}_{\infty} = \bigoplus \left(\mathscr{P}_a \mathscr{E}_{\infty} \cap \mathbb{E}_{[\alpha]} \right)$$
 for any $a \in \mathbb{R}$.
• $\left(w^{\omega([\alpha])} \beta([\alpha])^{-1} F - \operatorname{id}_{\mathbb{E}_{[\alpha]}} \right) (\mathscr{P}_a \mathscr{E}_{\infty} \cap \mathbb{E}_{[\alpha]}) \subset w^{-1} \mathscr{P}_a \mathscr{E}_{\infty} \cap \mathbb{E}_{[\alpha]}$ for any $a \in \mathbb{R}$.

Ramified case

 $\exists \ell$ such that

$$\operatorname{Sp}(F) \subset \mathbb{C}(\{w^{-1/\ell}\})$$

 \exists the generalized eigen decomposition:

$$\mathscr{P}^{(\ell)}\mathscr{E}_{\infty} := \mathscr{P}\mathscr{E}_{\infty} \otimes_{\mathbb{C}(\{w^{-1}\})} \mathbb{C}(\{w^{-1/\ell}\}) = \bigoplus_{\alpha \in \operatorname{Sp}(F)} \mathbb{E}_{\alpha}.$$

Each $\alpha \in \operatorname{Sp}(F)$ is expressed as

$$\alpha = w^{-\omega(\alpha)} \cdot \beta(\alpha) \cdot \left(1 + \sum_{j=1}^{\infty} \gamma_{j/\ell}(\alpha) w^{-j/\ell}\right) \quad (\omega(\alpha) \in \mathbb{Q}, \, \beta(\alpha) \in \mathbb{C}^*, \, \gamma_{j/\ell}(\alpha) \in \mathbb{C}.)$$

We define the equivalence relation on Sp(F) by

$$\alpha_1 \sim \alpha_2 \Longleftrightarrow \omega(\alpha_1) = \omega(\alpha_2), \ \beta(\alpha_1) = \beta(\alpha_2), \ \gamma_{j/\ell}(\alpha_1) = \gamma_{j/\ell}(\alpha_2) \ (1 \le j < \ell)$$

For $[\alpha] \in \operatorname{Sp}(F)/\sim$, we define $\omega([\alpha]) := \omega(\alpha)$, $\beta([\alpha]) := \beta(\alpha)$ and $\gamma_{j/\ell}([\alpha]) := \gamma_{j/\ell}(\alpha) \ (1 \le j < \ell)$. We set $\mathbb{E}_{[\alpha]} = \bigoplus_{\alpha_1 \sim \alpha} \mathbb{E}_{\alpha}$. We obtain the decomposition

$$\mathscr{P}^{(\ell)}\mathscr{E}_{\infty} = igoplus_{\operatorname{Sp}(F)/\sim} \mathbb{E}_{[\pmb{lpha}]}.$$

There exists the natural filtration of $\mathscr{P}^{(\ell)} \mathscr{E}_{\infty}$:

$$\mathscr{P}_a^{(\ell)} \mathscr{E}_{\infty} := \sum_{\ell b + n \leq a} w^{-n/\ell} \mathscr{P}_b \mathscr{E}_{\infty} \otimes_{\mathbb{C}\{w^{-1}\}} \mathbb{C}\{w^{-1/\ell}\}$$

Here, $\mathbb{C}\{w^{-1}\}$ denotes the ring of the convergent power series of w^{-1} .

$$\begin{split} & \textbf{Compatibility condition} \\ & \textbf{P}_{a}^{(\ell)} \mathscr{E}_{\infty} = \bigoplus \left(\mathscr{P}_{a}^{(\ell)} \mathscr{E}_{\infty} \cap \mathbb{E}_{[\alpha]} \right) \text{ for any } a \in \mathbb{R}. \\ & \textbf{O} \left(w^{\omega([\alpha])} \beta([\alpha])^{-1} F - (1 + \sum_{j=1}^{\ell-1} \gamma_{j/\ell}([\alpha]) w^{-j/\ell}) \operatorname{id}_{\mathbb{E}_{[\alpha]}} \right) \mathscr{P}_{a}^{(\ell)} \mathscr{E}_{\infty} \cap \mathbb{E}_{[\alpha]} \subset w^{-1} \mathscr{P}_{a}^{(\ell)} \mathscr{E}_{\infty} \cap \mathbb{E}_{[\alpha]} \\ & \text{ for any } a \in \mathbb{R}. \end{split}$$

Remark This type of compatibility condition is standard in the study of wild harmonic bundles, and it should be useful for the classification.

Degree and stability condition

Let $0 \neq V' \subset V$ be a $\mathbb{C}(w)$ -subspace such that F(V') = V'.

 $\mathscr{O}_{\mathbb{P}^1}(\ast\infty)\text{-submodule} \ \mathscr{P}\mathscr{E}' \subset \mathscr{P}\mathscr{E} \text{ such that } H^0(\mathbb{P}^1,\mathscr{P}\mathscr{E}') = \mathbf{V}' \cap H^0(\mathbb{P}^1,\mathscr{P}\mathscr{E}).$

$$\begin{array}{ll} \text{lattices} & \mathscr{L}'_{Q,i} = \mathscr{P}\mathscr{E}'(*D)_Q \cap \mathscr{L}_{Q,i} & (Q \in D, \ 0 \leq i \leq m(Q)). \\ \\ \text{filtration} & \mathscr{P}_a \mathscr{E}' = \mathscr{P}_a \mathscr{E} \cap \mathscr{P} \mathscr{E}'. \end{array}$$

decomposition $\mathscr{P}^{(\ell)}\mathscr{E}'_{\infty} = \bigoplus_{[\alpha] \in \operatorname{Sp}(F)} \Big(\mathbb{E}_{[\alpha]} \cap \mathscr{P}^{(\ell)} \mathscr{E}'_{\infty} \Big).$

Definition

$$\deg\left(\mathbf{V}'; \mathscr{P}_{*}\mathscr{E}, F, \{t_{Q,i}\}, \{\mathscr{L}_{Q,i}\}\right) := \deg\left(\mathscr{P}_{0}\mathscr{E}'\right) - \sum_{-1 < a \leq 0} a \dim_{\mathbb{C}}\left(\mathscr{P}_{a}\mathscr{E}'/\mathscr{P}_{< a}\mathscr{E}'\right)$$
$$+ \sum_{Q \in D} \sum_{i=1}^{m(Q)} (1 - t_{i}) \deg\left(\mathscr{L}_{Q,i}', \mathscr{L}_{Q,i-1}'\right) + \sum_{|\alpha| \in \operatorname{Sp}(F)/\sim} \frac{\omega([\alpha])}{2} \operatorname{rank}\left(\mathscr{P}^{(e)}\mathscr{E}' \cap \mathbb{E}_{[\alpha]}\right)$$
(1)

We define *stability* and *polystability* conditions for $(V, F; \mathscr{P}_* \mathscr{C}, \{t_{Q,i}\}, \{\mathscr{L}_{Q,i}\})$ by using the degree in the standard way.

Equivalence in the product case

Theorem

- If $(V,F; \mathscr{P}_{*}\mathscr{E}, \{t_{O,i}\}, \{\mathscr{L}_{O,i}\})$ is induced by a monopole of GCK-type on $\mathcal{M}_{\Gamma} \setminus Z$, then the compatibility condition is satisfied, and $(\mathbf{V}, F; \mathscr{P}_*\mathscr{E}, \{t_{O,i}\}, \{\mathscr{L}_{O,i}\})$ is polystable of degree 0.
- This correspondence induces an equivalence

 $\left(\begin{array}{c} \text{Singular monopoles} \\ \text{on } \mathscr{M}_{\Gamma} \text{ of GCK-type} \end{array}\right) \longleftrightarrow \left(\begin{array}{c} \text{Difference modules over } (\mathbb{C}(w), \mathrm{id}) \\ \text{ with parabolic structure} \\ (\text{compatible, polystable, degree } 0) \end{array}\right)$

Remark It can be generalized from $S^1 \times \mathbb{C}$ to $S^1 \times (\Sigma \setminus S)$ such that $\Sigma \setminus S$ around Q $(Q \in S)$ are isometric to $\{w \in \mathbb{C} \mid |w| > R\}$.

Example 1

Take a finite set $S \subset \mathbb{C}$ and $\ell: S \longrightarrow \mathbb{Z}_{>0}$. Assume $\exists a_0 \in S$ such that $\ell(a_0)$ odd. Consider $P(y) = \prod_{a \in S} (y-a)^{\ell(a)} \in \mathbb{C}(y)$.

We set $V := \mathbb{C}(y)e_1 \oplus \mathbb{C}(y)e_2$ with a $\mathbb{C}(y)$ -linear automorphism Φ_V^* :

$$\Phi_{\boldsymbol{V}}^*(e_1,e_2) = (e_1,e_2) \left(\begin{array}{cc} 0 & P(\mathbf{y}) \\ 1 & 0 \end{array} \right)$$

Let $\mathscr{P}\mathscr{E}$ be the locally free $\mathscr{O}_{\mathbb{P}^1}(*\infty)$ -module induced by $\mathbb{C}[y]e_1 \oplus \mathbb{C}[y]e_2$. Take any $(t_a)_{a \in S} \in \{0 \le x < 1\}^S$. Set $Z := \{(t_a, a) \mid a \in S\} \subset S^1 \times \mathbb{C}$.

$\begin{array}{l} \textit{Proposition}\\ \deg_y(P) \; \textit{even:} \; \; \textit{Monopoles of GCK-type on } (S^1 \times \mathbb{C}) \setminus Z \; \textit{inducing } (\pmb{V}, \Phi^*_{\pmb{V}}, \mathscr{PE}) \\ \; \; \text{are naturally parameterized by } \mathbb{R}.\\ \deg_y(P) \; \textit{odd:} \; \; \textit{There uniquely exists a monopole of GCK-type on } (S^1 \times \mathbb{C}) \setminus Z \\ \; \; \text{which induces } (\pmb{V}, \Phi^*_{\pmb{V}}, \mathscr{PE}). \end{array}$

If V' is a $\mathbb{C}(y)$ -subspace of V such that $\Phi_V^*(V') = V'$, then V' is V or 0. Hence, the stability condition is trivially satisfied in this case.

It is enough to classify $\mathcal{P}_* \mathcal{E}$ over $\mathcal{P} \mathcal{E}$ satisfying the compatibility condition with Φ_V^* and the degree 0 condition (an easy algebraic problem).

• If deg(P) is even, $(\mathscr{P}\mathscr{E}_{\infty}, \Phi_{V}^{*})$ is unramified. The compatibility condition implies

$$\mathscr{P}_{*}\mathscr{E}_{\infty} = (\mathscr{P}_{*}\mathscr{E}_{\infty} \cap \mathbb{E}_{[\alpha_{1}]}) \oplus (\mathscr{P}_{*}\mathscr{E}_{\infty} \cap \mathbb{E}_{[\alpha_{2}]}).$$

The filtrations $(\mathscr{P}_*\mathscr{E}_{\infty} \cap \mathbb{E}_{[\alpha_i]})$ are determined by numbers d_i (i = 1, 2). The degree 0 condition implies $d_1 + d_2 + \sum_{a \in S} (1 - t_a)\ell(a)$. (We choose appropriate frames of $\mathbb{E}_{[\alpha_i]}$.)

If deg(P) is odd, (𝒫𝔅_∞, Φ^{*}_V) is ramified at infinity. The compatibility condition implies

$$\mathscr{P}^{(2)}_{*}\mathscr{E}_{\infty} = (\mathscr{P}^{(2)}_{*}\mathscr{E}_{\infty} \cap \mathbb{E}_{[\alpha]}) \oplus (\mathscr{P}^{(2)}_{*}\mathscr{E}_{\infty} \cap \mathbb{E}_{[-\alpha]}).$$

By the Galois action, the filtrations $\mathscr{P}^{(2)}_*\mathscr{E}_{\infty} \cap \mathbb{E}_{[\alpha]}$ and $\mathscr{P}^{(2)}_*\mathscr{E}_{\infty} \cap \mathbb{E}_{[-\alpha]}$ are determined by a number *d*. By the degree 0 condition, *d* is uniquely determined.

Example 2

Take a polynomial $Q(y) \in \mathbb{C}[y]$. Consider $V = \mathbb{C}(y)e_1 \oplus \mathbb{C}(y)e_2$ with the automorphism

$$\Phi^*(e_1, e_2) = (e_1, e_2) \begin{pmatrix} 0 & 1 \\ -1 & Q \end{pmatrix}.$$

Let $\mathscr{P}\mathscr{E}$ be the $\mathscr{O}_{\mathbb{P}^1}(*\infty)$ -module induced by $\mathbb{C}[y]e_1 \oplus \mathbb{C}[e_2]$.

Proposition

Monopoles of GCK-type on $S^1 \times \mathbb{C}$ inducing $(V, \Phi^*, \mathscr{PE})$ are naturally parameterized by \mathbb{R} .

We explained the case $\Gamma \subset \mathbb{R} \times \{0\} \subset \mathbb{R} \times \mathbb{C}$ under $\mathbb{R}^3 \simeq \mathbb{R} \times \mathbb{C}$. There are many isometry $\mathbb{R}^3 \simeq \mathbb{R} \times \mathbb{C}$ (parameterized by \mathbb{P}^1).

It is natural to expect to obtain additive difference modules in the case $\Gamma \not\subset \mathbb{R} \times \{0\}.$

A coordinate system

Let λ be any complex number.

We introduce a coordinate system (t_0, β_0) on $\mathbb{R}_t \times \mathbb{C}_w$:

$$(t_0,\beta_0)=\frac{1}{1+|\lambda|^2}\left((1-|\lambda|^2)t+2\operatorname{Im}(\lambda\overline{w}),\ w+2\sqrt{-1}\lambda t+\lambda^2\overline{w}\right)\in\mathbb{R}\times\mathbb{C}.$$

- $dt_0 dt_0 + d\beta_0 d\overline{\beta}_0 = dt dt + dw d\overline{w}$.
- Γ is described as

$$\Gamma = \left\{ \frac{n}{1+|\lambda|^2} \left(1-|\lambda|^2, 2\sqrt{-1}\lambda \right) \, \middle| \, n \in \mathbb{Z} \right\}$$

- We set $\partial_{E,t_0} := \nabla_{t_0} \sqrt{-1}\phi$ and $\partial_{E,\overline{\beta}_0} := \nabla_{\overline{\beta}_0}$. Then, $[\partial_{E,t_0}, \partial_{E,\overline{\beta}_0}] = 0$.
- We obtain the holomorphic vector bundles $(E_{|(\{t_0\} \times \mathbb{C}_{\beta_0}) \setminus Z}, \nabla_{\overline{\beta}_0})$. There exist meromorphic isomorphisms

$$(E_{|\{t_0\}\times(\mathbb{C}_{\beta_0}\setminus D(t_0,t_0'))},\nabla_{\overline{\beta}_0})\simeq(E_{|\{t_0'\}\times(\mathbb{C}_{\beta_0}\setminus D(t_0,t_0'))},\nabla_{\overline{\beta}_0}) \quad (\exists D(t_0,t_0')\subset\mathbb{C},\mathsf{finite})$$

If $|\lambda| \neq 1$, we set

$$T(\boldsymbol{\lambda}) := \frac{1-|\boldsymbol{\lambda}|^2}{1+|\boldsymbol{\lambda}|^2}.$$

 ∂_{E,t_0} induces a meromorphic isomorphism

$$E_{|\{0\}\times\mathbb{C}_{\beta_0}}(*D)\simeq E_{|\{T(\lambda)\}\times\mathbb{C}_{\beta_0}}(*D). \quad (\exists D\subset\mathbb{C}, \text{ finite})$$

For the automorphism $\Phi_0:\mathbb{C}\longrightarrow\mathbb{C}$ defined by

$$\Phi_0(eta_0)=eta_0+rac{2\sqrt{-1}\lambda}{1+|\lambda|^2},$$

we have the natural identification $\Phi_0^* E_{|\{T(\lambda)\} \times \mathbb{C}} = E_{|\{0\} \times \mathbb{C}}$.

Remark It is natural to expect to obtain difference modules by using these isomorphisms (it could be done in some cases), but....

• we do not obtain a difference module in the case $|\lambda| = 1$, i.e., $T(\lambda) = 0$.

Another coordinate system

We introduce another coordinate system (t_1, β_1) :

$$(t_1,\beta_1) = \left(t_0 + \operatorname{Im}(\overline{\lambda}\beta_0), \ (1+|\lambda|^2)\beta_0\right) = \left(t + \operatorname{Im}(\lambda\overline{w}), \ w + 2\sqrt{-1}\lambda t + \lambda^2\overline{w}\right)$$

 Γ is described as $\Gamma = \left\{ n \cdot (1, 2\sqrt{-1}\lambda) \mid n \in \mathbb{Z} \right\}.$

 $\label{eq:remark} \begin{array}{ll} \textit{Remark} & \mathbb{R}_{t_1} \times \{0\} \text{ and } \{0\} \times \mathbb{C}_{\beta_1} \text{ are not orthogonal if } \lambda \neq 0. \end{array}$

Note that

$$\partial_{t_1}=\partial_{t_0}, \quad \partial_{\overline{eta}_1}=rac{\lambda}{1+|\lambda|^2}rac{1}{2\sqrt{-1}}\partial_{t_0}+rac{1}{1+|\lambda|^2}\partial_{\overline{eta}_0}.$$

Lemma We define the differential operators acting on *E*: $\partial_{E,t_1} := \partial_{E,t_0}, \quad \partial_{E,\overline{\beta}_1} := \frac{\lambda}{1+|\lambda|^2} \frac{1}{2\sqrt{-1}} \partial_{E,t_0} + \frac{1}{1+|\lambda|^2} \partial_{E,\overline{\beta}_0}.$ Then, ∂_{E,t_1} and $\partial_{E,\overline{\beta}_1}$ are commutative.

Remark It is more systematic to consider *mini-holomorphic bundles* on *mini-complex* manifolds. (t_0, β_0) and (t_1, β_1) determines the same mini-complex structure.

Theorem The holomorphic bundle $\mathscr{E}^{t_1} = (E_{|\{t_1\} \times \mathbb{C}_{\beta_1}}, \partial_{E,\overline{\beta}_1})$ with the metric $h_{|\{t_1\} \times \mathbb{C}_{\beta_1}}$ is acceptable. In particular, it extends to a filtered bundle $\mathscr{P}_*\mathscr{E}^{t_1}$ on $(\mathbb{P}^1, \{\infty\})$.

We obtain the meromorphic isomorphism induced by ∂_{E,t_1} .

$$\mathscr{P}\mathscr{E}^{0}(\ast D)\simeq \mathscr{P}\mathscr{E}^{1}(\ast D) \quad (\exists D\subset \mathbb{C} \text{ finite})$$

For the automorphism $\Phi_1: \mathbb{C} \longrightarrow \mathbb{C}$ defined by $\Phi_1(\beta_1) = \beta_1 + 2\sqrt{-1}\lambda$, we have

$$\Phi_1^*(\mathscr{P}_*\mathscr{E}^1) = \mathscr{P}_*\mathscr{E}^0.$$

•
$$\mathbf{V} := H^0(\mathbb{P}^1, \mathscr{P}\mathcal{E}^0) \otimes_{\mathbb{C}[\beta_1]} \mathbb{C}(\beta_1).$$

- The above two isomorphisms induce a \mathbb{C} -linear automorphism Φ_{V}^{*} on V, and (V, Φ_{V}^{*}) is a difference module over $(\mathbb{C}(\beta_{1}), \Phi_{1}^{*})$.
- The singularity at Z and the filtered bundle 𝒫_{*}𝔅⁰ determine a parabolic structure on this difference module V.

Remark To formulate a compatibility condition of $\Phi_{\mathbf{V}}^*$ and the filtration $\mathscr{P}_*\mathscr{E}^0$, we can use the classification of formal difference modules due to Turrittin.

Equivalence in the non-product case

The degree and the stability condition for $(\mathbf{V}, F, \mathscr{P}_* \mathscr{E}, \{t_{Q,i}\}, \{\mathscr{L}_{Q,i}\})$ are defined as before.

We set $U(R) := \{ |w| > R \}.$

Let (E,h,∇,ϕ) be a monopole on $S^1 \times U(R)$ satisfying the GCK-condition. For any positive integer ℓ , let $\varphi_{\ell}: S^1 \times U(R)_{\ell} \longrightarrow S^1 \times U(R)$ be the covering induced by $w^{1/\ell} \longmapsto (w^{1/\ell})^{\ell}$.

Theorem For an appropriate positive integer ℓ ,

$$\varphi_{\ell}^{-1}(E,h,\nabla,\phi) \sim \bigoplus_{i} (E_{n_{i},\ell},h_{n_{i},\ell},\nabla_{n_{i},\ell},\phi_{n_{i},\ell}) \otimes \operatorname{Hit}_{2}^{3}(V_{i},\overline{\partial}_{V_{i}},\theta_{V_{i}},h_{V_{i}}).$$

Remark $(E_{n_i}, h_{n_i}, \nabla_{n_i}, \phi_{n_i})$ and $\operatorname{Hit}_2^3(V_i, \overline{\partial}_{V_i}, \theta_{V_i}, h_{V_i})$ are almost determined by $\mathscr{P}_*\mathscr{E}_{\infty}$ with the induced difference operator Φ_1^* .

Typical examples (1)

By $w = re^{\sqrt{-1}\theta}$, we obtain the isometry (set $S_{2\pi}^1 := \mathbb{R}/2\pi\mathbb{Z}$):

$$S^1 \times (\mathbb{C} \setminus \{0\}) \simeq (S^1_{2\pi} \times S^1 \times \mathbb{R}_{>0}, r^2 d\theta \, d\theta + dt \, dt + dr \, dr), \quad (t, w) \longmapsto (\theta, t, r)$$

A line bundle L_n on $S_{2\pi}^1 \times S^1$ with $c_1(L) = n$ has a Hermitian metric h_{L_n} and a unitary connection ∇_{L_n} such that $F(\nabla_{L_n}) = -n\sqrt{-1}d\theta dt$.

Let $p: S^1_{2\pi} \times S^1 \times \mathbb{R}_{>0} \longrightarrow S^1_{2\pi} \times S^1$ be the projection. We set

$$(E_n,h_n,\nabla_n):=p^*(L_n,h_{L_n},\nabla_{L_n}).$$

Let ϕ_n be the Higgs field defined by $\phi_n = -n\sqrt{-1}\log r$.

- $(E_n, h_n, \nabla_n, \phi_n)$ is a monopole on $S_{2\pi}^1 \times S^1 \times \mathbb{R}_{>0}$ satisfying the GCK-condition at infinity.
- We can compute $(\mathscr{P}_*\mathscr{E}_{\infty}, \Phi_1^*)$ explicitly.

(For example, if $\lambda = 0$, the induced automorphism *F* is the multiplication of βw^n ($|\beta| = 1$), where β depends on the choice of ∇_{L_n} .)

Similarly, by setting $S_{2\pi\ell} = \mathbb{R}/(2\pi\ell\mathbb{Z})$, let $L_{n,\ell}$ be a line bundle on $S_{2\pi\ell}^1 \times S^1$ with a metric $h_{L_{n,\ell}}$ and a unitary connection $\nabla_{L_{n,\ell}}$ such that $F(\nabla_{L_{n,\ell}}) = -\frac{n}{\ell}\sqrt{-1}d\theta dt$.

Let $p_\ell: S^1_{2\pi\ell} \times S^1 \times \mathbb{R}_{>0} \longrightarrow S^1_{2\pi\ell} \times S^1$ be the projection. We set

$$(E_{n,\ell},h_{n,\ell},\nabla_{n,\ell})=p_\ell^*(L_{n,\ell},h_{n,\ell},\nabla_{n,\ell}).$$

Let $\phi_{n,\ell}$ be the Higgs field defined by $\phi_{n,\ell} = -\frac{n}{\ell}\sqrt{-1}\log r$.

- $(E_{n,\ell}, h_{n,\ell}, \nabla_{n,\ell}, \phi_{n,\ell})$ is a monopole on $S^1_{2\pi\ell} \times S^1 \times \mathbb{R}_{>0}$ satisfying the GCK condition at infinity.
- We can calculate the associated algebraic objects.

Typical examples (2)

Let $(V, \overline{\partial}_V, \theta, h_V)$ be a harmonic bundle on U(R), i.e., $(V, \overline{\partial}_V)$ is a holomorphic vector bundle, $\theta = f \, dw \in \text{End}(V) \otimes \Omega^1$, and h_V is a Hermitian metric of V, satisfying the Hitchin equation

$$F(\nabla_{h_V}) + [\boldsymbol{\theta}, \boldsymbol{\theta}_{h_V}^{\dagger}] = 0.$$

Let $p_w: S^1 \times U(R) \longrightarrow U(R)$ be the projection. We obtain the vector bundle with a Hermitian metric $(E,h) = p_w^{-1}(V,h_V)$ with the connection and the Higgs field

$$\nabla = p_w^*(\nabla_h) - \sqrt{-1} p_w^*(f + f_h^{\dagger}) dt, \quad \phi = p_w^*(f - f_h^{\dagger}).$$

- $\operatorname{Hit}_2^3(V, \overline{\partial}_V, h_V, \theta) := (E, h, \nabla, \phi)$ is a monopole on $S^1 \times U(R)$.
- Hit³₂(V, ∂_V, h_V, θ) satisfies the desired asymptotic condition if and only if the eigenvalues of *f* are bounded.
- We can compute the associated holomorphic objects explicitly.
 (For example, if λ = 0, the induced automorphism F is exp(2f).)

More generally, let $U(R)_{\ell} \longrightarrow U(R)$ be the ℓ -th covering map induced by $w^{1/\ell} \longmapsto (w^{1/\ell})^{\ell}$.

- A harmonic bundle $(E, \overline{\partial}_E, \theta, h)$ on $U(R)_{\ell}$ induces a monopole $\operatorname{Hit}_2^3(E, \overline{\partial}_E, \theta, h)$ on $S^1 \times U(R)_{\ell}$.
- Let f be determined by $\theta = f dw = f d((w^{1/\ell})^{\ell})$. Hit²₂ $(E, \overline{\partial}_E, \theta, h)$ satisfies the GCK-condition at infinity if and only if the eigenvalues of f are bounded.

Approximation

Let (E,h,∇,ϕ) be a monopole on $S^1 \times U(R)$ satisfying the GCK-condition. Let $\varphi_{\ell}: S^1 \times U(R)_{\ell} \longrightarrow S^1 \times U(R)$ be the covering induced by $w^{1/\ell} \longmapsto (w^{1/\ell})^{\ell}$.

Theorem For an appropriate positive integer ℓ ,

$$\varphi_{\ell}^{-1}(E,h,\nabla,\phi) \sim \bigoplus_{i} (E_{n_{i},\ell},h_{n_{i},\ell},\nabla_{n_{i},\ell},\phi_{n_{i},\ell}) \otimes \operatorname{Hit}_{2}^{3}(V_{i},\overline{\partial}_{V_{i}},\theta_{V_{i}},h_{V_{i}}).$$

Corollary For $F(\nabla) = F(\nabla)_{w\overline{w}} dw d\overline{w} + F(\nabla)_{w,t} dw dt + F(\nabla)_{\overline{w},t} d\overline{w} dt$, we obtain the stronger curvature decay

$$F(\nabla)_{w\overline{w}}|_{h} = O\left(|w|^{-2}(\log|w|)^{-2}\right),$$
$$|F(\nabla)_{wt}|_{h} = O\left(|w|^{-1}\right),$$
$$|F(\nabla)_{\overline{wt}}|_{h} = O\left(|w|^{-1}\right).$$

The doubly periodic case and the triply periodic case

Doubly periodic case $\Gamma \subset \{0\} \times \mathbb{C} \subset \mathbb{R} \times \mathbb{C}$ such that rank $\Gamma = 2$. Take any complex number λ . Take a generator $\mu_1, \mu_2 \in \Gamma$ such that (i) $\lambda \neq \pm \sqrt{-1}\mu_1 |\mu_1|^{-1}$, (ii) $\operatorname{Im}(\mu_2/\mu_1) > 0$. We set

$$\mathbf{q}^{\lambda} := \exp\left(2\pi\sqrt{-1}\frac{\mu_2 + \lambda^2 \overline{\mu}_2}{\mu_1 + \lambda^2 \overline{\mu}_1}\right)$$

Theorem There exists an equivalence between monopoles on \mathcal{M}_{Γ} with finite Dirac type singularity satisfying an asymptotic condition at infinity and multiplicative difference modules with parabolic structure (compatible, polystable, degree 0). (The action $\mathbb{C}^* \to \mathbb{C}^*$ is induced by $y \mapsto q^{\lambda} y$)

Triply periodic case Suppose rank $\Gamma = 3$. We take a generator $e_i = (a_i, \alpha_i)$ of $\Gamma \subset \mathbb{R} \times \mathbb{C}$ such that (i) the frame e_1, e_2, e_3 is compatible with the orientation, (ii) α_1, α_2 generates a lattice \mathbb{C} , (iii) $\operatorname{Im}(\alpha_2/\alpha_1) > 0$. We set $C = \mathbb{C}/\mathbb{Z}\langle \alpha_1, \alpha_2 \rangle$.

Theorem (essentially Charbonneau-Hurtubise, Kontsevich-Soibelman) There exists an equivalence between monopoles of $(\mathbb{R} \times \mathbb{C}/\Gamma)$ with finite Dirac type singularity and difference modules on *C* with parabolic structure (polystable, degree 0). (The action $C \longrightarrow C$ is induced by $z \longmapsto z + \alpha_3$.)