Elliptic zastava

Michael Finkelberg (joint with Mykola Matviichuk and Alexander Polishchuk)

Higher School of Economics & Skolkovo Institute of Science and Technology, Moscow

2021.02.02

Zastava

- ▶ X a smooth complex projective curve. G a simply connected semisimple group. $T \subset B \subset G$ a Cartan torus and Borel subgroup; N_- the opposite unipotent subgroup. $\alpha = \sum_{i \in I} a_i \alpha_i \in \mathbb{X}_*(T)_{pos}$ a coroot.
- ▶ The (open) zastava $\overset{\circ}{Z}^{\alpha}_{X}$: the moduli space of G-bundles on X with a flag (a B-structure) of degree α and a generically transversal N_{-} -structure. A smooth variety of dimension $2|\alpha|=2\sum_{i\in I}a_{i}$.
- ▶ The factorization projection $\pi_{\alpha} \colon \overset{\circ}{Z}_{X}^{\alpha} \to X^{\alpha}$ to the colored configuration space on X: remembers where the N_{-} and B-structures are not transversal. Has a local nature: $\pi_{\alpha}^{-1}(D^{\alpha})$ is independent of X for any analytic disc $D \subset X$.

Additive case

- ▶ $X=\mathbb{P}^1$, and we additionally require that the N_- and B-structures are transversal at $\infty\in\mathbb{P}^1$. We obtain a smooth affine variety $\mathring{Z}^{\alpha}_{\mathbb{G}_a}\to\mathbb{A}^{\alpha}$. It is an algebraic-geometric incarnation of the moduli space of euclidean G_c -monopoles with maximal symmetry breaking at infinity, of topological charge α . So it carries a hyperkähler structure and hence a holomorphic symplectic form.
- From the modular point of view, the classifying stack BG has a 2-shifted symplectic structure, and $BB \to BG$ has a coisotropic structure. $\mathring{Z}_{\mathbb{G}_a}$ is the space of based maps from (\mathbb{P}^1,∞) to G/B, that is a fiber of $\operatorname{Maps}(\mathbb{P}^1,\infty;BB) \stackrel{p}{\to} \operatorname{Maps}(\mathbb{P}^1,\infty;BG)$. The latter space has a 1-shifted symplectic structure, and p is coisotropic as well as $\operatorname{pt} \to \operatorname{Maps}(\mathbb{P}^1,\infty;BG)$. Hence the desired Poisson (symplectic) structure on $\mathring{Z}_{\mathbb{G}_a}$ [T.Pantev, T.Spaide].

Explicit formula

▶ Factorization property: the addition of divisors $X^{\beta} \times X^{\gamma} \to X^{\alpha}$ for $\alpha = \beta + \gamma$. A canonical isomorphism

$$\mathring{Z}_X^{\alpha} \times_{X^{\alpha}} (X^{\beta} \times X^{\gamma})_{\mathrm{disj}} \cong (\mathring{Z}^{\beta} \times \mathring{Z}^{\gamma})|_{(X^{\beta} \times X^{\gamma})_{\mathrm{disj}}}$$

- For a simple coroot α_i a canonical isomorphism $\mathring{Z}_{\mathbb{G}_a}^{\alpha_i} \cong \mathbb{G}_a \times \mathbb{G}_m$. Hence for arbitrary α away from diagonals in \mathbb{A}^{α} we have coordinates $(w_{i,r} \in \mathbb{G}_a)_{r=1}^{a_i}$ and $(y_{i,r} \in \mathbb{G}_m)_{r=1}^{a_i}$ on $\mathring{Z}_{\mathbb{G}_a}^{\alpha_i}$ up to simultaneous permutations in $S_{\alpha} = \prod_{i \in I} S_{a_i}$.
- From now on G is assumed simply laced. Choose an orientation of the Dynkin graph. Coordinate change: $u_{i,r} := y_{i,r} \prod_{i \to j} \prod_{s=1}^{a_j} (w_{j,s} w_{i,r})^{-1}$. The new coordinates are "Darboux" in the sense that the only nonzero brackets are $\{w_{i,r}, u_{i,r}\} = u_{i,r}$.

Integrable system

- ▶ The factorization projection $\overset{\circ}{Z}{}^{\alpha}_{\mathbb{G}_a} \to \mathbb{A}^{\alpha}$ is an integrable system. In case $G = \mathrm{SL}(2)$, the degree α is a positive integer d. Then we get the Atiyah-Hitchin system.
- It also coincides with the open Toda system for $\mathrm{GL}(d)$. In particular, $\mathbb{A}^{(d)}$ is the Kostant slice for $\mathfrak{gl}(d)$, and $\overset{\circ}{Z}^d_{\mathbb{G}_a}$ is the universal centralizer (pairs: x in the slice, and commuting $g \in \mathrm{GL}(d)$).
- ▶ Equivalently, take a surface $S = \mathbb{G}_a \times \mathbb{G}_m \cong \overset{\,\,{}_{\sim}}{Z}^1_{\mathbb{G}_a}$. Then $\mathring{Z}^d_{\mathbb{G}_a} \simeq \operatorname{Hilb}^d_{\operatorname{tr}}(S)$: the transversal Hilbert scheme of d points on S. It is an open subscheme of $\operatorname{Hilb}^d(S)$ classifying the subschemes whose projection to \mathbb{G}_a is a closed embedding.
- ▶ A symplectic form on $S \colon \{w,y\} = y$ induces a symplectic form on $\operatorname{Hilb}_{\operatorname{tr}}^d(S)$. It coincides with the above symplectic form on $\mathring{Z}_{\mathbb{G}_a}^d$.

Coulomb branch of a quiver gauge theory

- Recall the oriented Dynkin graph of G. Take the gauge group $\mathbf{G} := \prod_{i \in I} \mathrm{GL}(a_i)$ acting on $\mathbf{N} := \bigoplus_{i \to j} \mathrm{Hom}(\mathbb{C}^{a_i}, \mathbb{C}^{a_j})$. It gives rise to a certain space of triples $\mathcal{R}_{\mathbf{G},\mathbf{N}}$ over the affine Grassmannian $\mathrm{Gr}_{\mathbf{G}}$, and the Coulomb branch $\mathcal{M}_C(\mathbf{G},\mathbf{N}) := \mathrm{Spec}\,H^{\mathbf{G}[\![t]\!]}(\mathcal{R}_{\mathbf{G},\mathbf{N}})$ (symplectically dual to Nakajima quiver variety $(\mathbf{N} \oplus \mathbf{N}^*)/\!\!/\mathbf{G}$).
- We have $\mathcal{M}_C(\mathbf{G}, \mathbf{N}) \simeq \check{Z}^{\alpha}_{\mathbb{G}_a}$, and the integrable system $\mathring{Z}^{\alpha}_{\mathbb{G}_a} \to \mathbb{A}^{\alpha}$ corresponds to the embedding $\mathbb{C}[\mathbb{A}^{\alpha}] \cong H^{\mathbf{G}[\![t]\!]}(\mathrm{pt}) \subset H^{\mathbf{G}[\![t]\!]}(\mathcal{R}_{\mathbf{G},\mathbf{N}}).$

Multiplicative case

- $lacksquare X=\mathbb{P}^1$, and we additionally require that the N_- and B-structures are transversal at $\infty\in\mathbb{P}^1$ and $0\in\mathbb{P}^1$. We obtain a smooth affine variety $\mathring{Z}^{\alpha}_{\mathbb{G}_m} o\mathbb{G}^{\alpha}_m$.
- Its symplectic structure can be again defined in modular terms, but it is not the restriction of the symplectic structure of $\mathring{Z}^{\alpha}_{\mathbb{G}_a}$ under the open embedding $\mathring{Z}^{\alpha}_{\mathbb{G}_m} \subset \mathring{Z}^{\alpha}_{\mathbb{G}_a}$. For a simple coroot, $\mathring{Z}^{\alpha_i}_{\mathbb{G}_m} \cong \mathbb{G}_m \times \mathbb{G}_m$, and $\{w,y\} = wy$ (G is ADE).
- The (quasi)-Hamiltonian reduction $\overset{\circ}{Z}{}^{\alpha}_{\mathbb{G}_m}/\!\!/ T$ is an algebraic-geometric incarnation of the moduli space of *periodic* euclidean G_c -monopoles of topological charge α in one of its complex structures. It is the multiplicative analogue of *centered* euclidean monopoles, the Coulomb branch with gauge group $\prod_{i\in I}\mathrm{SL}(a_i)$.

Integrable system and cluster structure

The factorization projection $\overset{\circ}{Z}{}^{\alpha}_{\mathbb{G}_m} \to \mathbb{G}^{\alpha}_m$ is an integrable system. In case $G = \mathrm{SL}(2)$, degree d, it coincides with the relativistic open Toda system for $\mathrm{GL}(d)$. In particular, $\overset{\circ}{Z}{}^d_{\mathbb{G}_m}$ is the universal group-group centralizer. Also, $\overset{\circ}{Z}{}^d_{\mathbb{G}_m} \simeq \mathrm{Hilb}^d_{\mathrm{tr}}(S')$, where $S' = \mathbb{G}_m \times \mathbb{G}_m$. Finally, $\overset{\circ}{Z}{}^{\alpha}_{\mathbb{G}_m}$ is isomorphic to a K-theoretic Coulomb branch and carries a natural cluster structure.

Elliptic case

- ▶ X = E an elliptic curve, $G = \mathrm{SL}(2), \ S'' = E \times \mathbb{G}_m$ with an invariant symplectic structure. Then $\mathrm{Hilb}_{\mathrm{tr}}^d(S'') \subset T^*E^{(d)}$, an open subvariety of the cotangent bundle.
- Surprise: \mathring{Z}_{E}^{d} is an open subvariety of the *tangent* bundle $TE^{(d)}$, *not* isomorphic to $\operatorname{Hilb}_{\operatorname{tr}}^{d}(S'')$; *does not* carry any symplectic structure.
- lacksquare Still there is a relation between $\overset{\circ}{Z}^d_E$ and the symplectic $\operatorname{Hilb}_{\operatorname{tr}}^d(S'')$. To describe it we need a compactification of \check{Z}_F^α . Generically transversal N_{-} and B-structures on a G-bundle on E define its generic trivialization (away from a colored divisor $D = \pi_{\alpha}(\phi), \ \phi \in \check{Z}_{E}^{\alpha}$. Thus we obtain an embedding of \check{Z}_E^{α} into a version of Beilinson-Drinfeld Grassmannian of E(partially symmetrized to live over $E^{\alpha}=E^{|\alpha|}/S_{\alpha}$). The desired compactification \overline{Z}_E^{α} is the closure of \check{Z}_E^{α} in the Beilinson-Drinfeld Grassmannian. In case of SL(2), degree d, it is a fiberwise compactification of the tangent bundle $TE^{(d)}$.

Compactified zastava

 \overline{Z}_E^{α} is the moduli space of G-bundles on E equipped with generically transversal generalized N_- - and B-structures. We also allow a twist of N_- -structure. For $G=\mathrm{SL}(2)$, degree d, we consider the data

$$\mathcal{L} \subset \mathcal{V} \xrightarrow{\xi} \mathcal{K}$$
,

where $\mathcal V$ is a rank 2 vector bundle, $\det \mathcal V \cong \mathcal O_E$; $\mathcal L$ an invertible subsheaf (not necessarily a line subbundle); ξ a morphism to a line bundle $\mathcal K$ (not necessarily surjective). $\xi|_{\mathcal L}$ is not zero, and $\operatorname{length}(\mathcal K/\xi(\mathcal L))=d$. We fix $\mathcal K$ and obtain the (twisted) compactified zastava $\overline{Z}_{\mathcal K}^d$.

For general G we consider the similar data for the associated (to all irreducible representations of G) vector bundles and impose Plücker relations. We get $\overline{Z}_{\mathcal{K}}^{\alpha}$, where \mathcal{K} is a T-bundle.

Mirković approach

- ▶ The relatively very ample determinant line bundle on the Beilinson-Drinfeld Grassmannian restricted to $\overline{Z}_{\mathcal{K}}^{\alpha}$ gives a very explicit projective embedding. Reason: restriction to the T-fixed points in $\overline{Z}_{\mathcal{K}}^{\alpha}$ gives an isomorphism on sections of the determinant line bundle [X.Zhu]
- ▶ The T-fixed points components are $E^{\beta} \times E^{\gamma}, \ \beta + \gamma = \alpha$. The contribution of a component is

$$\mathbf{q}_* \left(\mathbf{p}^* \Big(\mathcal{K}^{\beta} \Big(\sum_{i \in I} \Delta_{ii}^{\beta} - \sum_{i \to j} \Delta_{ij}^{\beta} \Big) \Big) \Big(\sum_{i \in I} \Delta_{ii}^{\beta, \gamma} \Big) \right),$$

where $E^{\beta} \xleftarrow{\mathbf{P}} E^{\beta} \times E^{\gamma} \xrightarrow{\mathbf{q}} E^{\alpha}$ (addition of colored divisors); $\Delta_{ij}^{\beta,\gamma} \subset E^{\beta} \times E^{\gamma}$ is the incidence divisor; $\Delta_{ii}^{\beta} \subset E^{\beta}$ is the incidence divisor; $\mathcal{K}^{\beta} = \boxtimes_{i} \mathcal{K}_{i}^{(b_{i})}$ (symmetric powers), and \mathcal{K}_{i} is the line bundle associated to the character $-\alpha_{i}^{\gamma} : T \to \mathbb{C}^{\times}$.

Mirković approach

- Summing up the above vector bundles on E^{α} over all partitions $\beta+\gamma=\alpha$ we obtain a factorizable vector bundle $\mathbb{V}^{\alpha}_{\mathcal{K}}$ of rank $2^{|\alpha|}$. When $\alpha=\alpha_i$, we get $\mathbb{V}^{\alpha_i}_{\mathcal{K}}=\mathcal{K}_i\oplus\mathcal{O}_E$, and $\overline{Z}^{\alpha_i}_{\mathcal{K}}=\mathbb{P}\mathbb{V}^{\alpha_i}_{\mathcal{K}}$.
- Away from diagonals in E^{α} , we get the fiberwise Segre embedding (from factorization): a fiber of compactified zastava $\simeq (\mathbb{P}^1)^{|\alpha|} \hookrightarrow$ a fiber of $\mathbb{PV}^{\alpha}_{\mathcal{K}}$. The whole of $\overline{Z}^{\alpha}_{\mathcal{K}}$ is the closure in $\mathbb{PV}^{\alpha}_{\mathcal{K}}$ of the off-diagonal Segre embedding image.
- $\overset{\circ}{Z}^{\alpha}_{\mathcal{K}}\subset \overline{Z}^{\alpha}_{\mathcal{K}}$ is the complement to 2 hyperplane sections. One hyperplane $\mathbb{V}^{\alpha}_{\mathcal{K},\mathrm{low}}\subset \mathbb{V}^{\alpha}_{\mathcal{K}}$ is the direct sum of all contributions from partitions $\beta+\gamma=\alpha,\ \beta\neq 0$. The other hyperplane $\mathbb{V}^{\alpha,\mathrm{up}}_{\mathcal{K}}\subset \mathbb{V}^{\alpha}_{\mathcal{K}}$ is the direct sum of all contributions from partitions $\beta+\gamma=\alpha,\ \gamma\neq 0$.

Coulomb version

▶ Instead of $\mathbb{V}^{\alpha}_{\mathcal{K}}$ consider

$$\mathbb{U}_{\mathcal{K}}^{\alpha} = \bigoplus_{\beta + \gamma = \alpha} \mathbf{q}_* \left(\mathbf{p}^* \mathcal{K}^{\beta} \otimes \mathcal{O}_{E^{\beta} \times E^{\gamma}} \left(\sum_{i \to j} \Delta_{ij}^{\beta, \gamma} \right) \right),$$

dual to \oplus of equivariant elliptic homology of all the positive minuscule parts of $\mathcal{R}_{\mathbf{G},\mathbf{N}}$, space of triples over $\prod_{i\in I} \mathrm{Gr}_{\mathrm{GL}(a_i)}$.

- It is a factorizable vector bundle of rank $2^{|\alpha|}$, and away from diagonals in E^{α} we get the fiberwise Segre embedding of $(\mathbb{P}^1)^{|\alpha|}$ into a fiber of $\mathbb{P}\mathbb{U}^{\alpha}_{\mathcal{K}}$. The closure is the *Coulomb* elliptic zastava ${}^C\overline{Z}^{\alpha}_{\mathcal{K}}$. Removing the two hyperplane sections we get the *open* Coulomb zastava ${}^C\mathring{Z}^{\alpha}_{\mathcal{K}}\simeq \operatorname{Spec} H^{\mathbf{G}[\![t]\!]}_{e\ell\ell}(\mathcal{R}_{\mathbf{G},\mathbf{N}})$.
- In type A_1 , ${}^C\mathring{Z}^d_{\mathcal{K}}$ is isomorphic to the transversal Hilbert scheme of d points in the total space of line bundle \mathcal{K} with zero section removed.
 - ${}^C\overline{Z}^d_{\mathcal{O}_E}$ is the fusion of minuscule \mathbb{P}^1 -orbits in $\mathrm{Gr}_{\mathrm{PGL}(2),E^{(d)}}.$

Hamiltonian reduction

- ▶ The total space of any line bundle \mathcal{K}_i without zero section carries a symplectic form invariant with respect to dilations. Away from the diagonals in E^{α} , ${}^{C}\mathring{Z}^{\alpha}_{\mathcal{K}}$ is étale covered by a product of \mathcal{K}_i , and the direct sum of the above forms extends through the diagonals as a symplectic form on ${}^{C}\mathring{Z}^{\alpha}_{\mathcal{K}}$.
- ► The action of *T* is hamiltonian, and we perform the hamiltonian reduction. Consider the composition

$$\mathrm{AJ}_Z \colon {}^C \overset{\circ}{Z}^{\alpha}_{\mathcal{K}} \xrightarrow{\pi_{\alpha}} E^{\alpha} \to \prod_{i \in I} \mathrm{Pic}^{a_i} E$$

of the factorization projection with the Abel-Jacobi morphism. The reduction ${}^{C}_{\mathcal{D}}\mathring{Z}^{\alpha}_{\mathcal{K}} = {}^{C}\mathring{Z}^{\alpha}_{\mathcal{K}}/\!\!/T := \mathrm{AJ}^{-1}_{Z}(\mathcal{D})/T$ is conjecturally isomorphic to the moduli space of doubly periodic G_c -monopoles (monowalls) of topological charge α . It is the elliptic analogue of centered euclidean monopoles, the Coulomb branch with gauge group $\prod_{i \in I} \mathrm{SL}(a_i)$.

Mock Hamiltonian reduction

- ▶ Though the elliptic zastava $\mathring{Z}_{\mathcal{K}}^{\alpha}$ is not symplectic, we can mimic the hamiltonian reduction procedure and define the reduced zastava ${}_{\mathcal{D}}\mathring{Z}_{\mathcal{K}}^{\alpha}:=\mathrm{AJ}_{Z}^{-1}(\mathcal{D})/T.$ In case T-bundle \mathcal{K} has degree 0 and is $\mathit{regular}$, the reduced zastava is the moduli space of G-bundles of fixed type $\mathrm{Ind}_{T}^{G}\mathcal{K}$ with B-structure of fixed type (fixed isomorphism class of the bundle induced from B to the abstract Cartan T).
- ▶ Both Bun_G and Bun_T carry 1-shifted symplectic structures. The Lagrangian structures on $\operatorname{Bun}_B \to \operatorname{Bun}_G \times \operatorname{Bun}_T$ and on the stacky point $[\mathcal{V}] \times [\mathcal{L}] \to \operatorname{Bun}_G \times \operatorname{Bun}_T$ give rise to a symplectic structure on their cartesian product ${}_{\mathcal{D}} \overset{\circ}{Z}^{\alpha}_K$:

Happy end

- ▶ Miracle: the reduced zastava are isomorphic: ${}_{\mathcal{D}}\mathring{Z}_{\mathcal{K}}^{\alpha} \simeq {}_{\mathcal{D}}^{\mathcal{C}}\mathring{Z}_{\mathcal{K}'}^{\alpha}$ for $\mathcal{K}_i' = \mathcal{K}_i \otimes \mathcal{D}_i \otimes \bigotimes_{i \to j} \mathcal{D}_j^{-1}$.
- Theorem: This isomorphism is a symplectomorphism.
- Explicit formula for the Poisson brackets of the natural étale coordinates $(w_{i,r},y_{i,r})_{i\in I}^{1\leq r\leq a_i}$ on ${}_{\mathcal{D}}\overset{\circ}{Z}^{\alpha}_{\mathcal{K}}$ (w-s are constrained to have a fixed sum in E, and y-s are homogeneous coordinates, i.e. only their ratios are well defined on the reduced zastava):

$$\begin{split} \left\{ \frac{y_{i,r}}{y_{i,r'}}, w_{i,p} \right\} &= (\delta_{rp} - \delta_{r'p}) \frac{y_{i,r}}{y_{i,r'}}, \ \left\{ \frac{y_{i,r'}}{y_{i,p'}}, \frac{y_{j,r}}{y_{j,p}} \right\} = \frac{y_{i,r'}}{y_{i,p'}} \cdot \frac{y_{j,r}}{y_{j,p}} \cdot \\ \left(\zeta(w_{i,r'} - w_{j,r}) - \zeta(w_{i,r'} - w_{j,p}) - \zeta(w_{i,p'} - w_{j,r}) + \zeta(w_{i,p'} - w_{j,p}) \right). \end{split}$$

in case $i \neq j$ are joined by an edge in the Dynkin diagram of G, and zero otherwise (we assume G simply laced). Here

$$\zeta(w) = \frac{1}{w} + \sum_{\gamma \in \Gamma \backslash \{0\}} \left(\frac{1}{w - \gamma} + \frac{1}{\gamma} + \frac{w}{\gamma^2} \right) \text{ is the Weierstraß}$$

zeta function (the sum is taken over the period lattice of E).