Elliptic zastava

Michael Finkelberg (joint with Mykola Matviichuk and Alexander Polishchuk)

Higher School of Economics \& Skolkovo Institute of Science and Technology, Moscow
2021.02.02

Zastava

- X a smooth complex projective curve. G a simply connected semisimple group. $T \subset B \subset G$ a Cartan torus and Borel subgroup; N_{-}the opposite unipotent subgroup. $\alpha=\sum_{i \in I} a_{i} \alpha_{i} \in \mathbb{X}_{*}(T)_{\text {pos }}$ a coroot.
- The (open) zastava $\stackrel{\circ}{Z}_{X}^{\alpha}$: the moduli space of G-bundles on X with a flag (a B-structure) of degree α and a generically transversal N_{-}-structure. A smooth variety of dimension $2|\alpha|=2 \sum_{i \in I} a_{i}$.
- The factorization projection $\pi_{\alpha}: \stackrel{\circ}{Z}_{X}^{\alpha} \rightarrow X^{\alpha}$ to the colored configuration space on X : remembers where the N_{-}- and B-structures are not transversal. Has a local nature: $\pi_{\alpha}^{-1}\left(D^{\alpha}\right)$ is independent of X for any analytic disc $D \subset X$.

Additive case

- $X=\mathbb{P}^{1}$, and we additionally require that the N_{-}- and B-structures are transversal at $\infty \in \mathbb{P}^{1}$. We obtain a smooth affine variety ${\stackrel{\circ}{\mathbb{G}_{a}}}_{\alpha}^{\alpha} \rightarrow \mathbb{A}^{\alpha}$. It is an algebraic-geometric incarnation of the moduli space of euclidean G_{c}-monopoles with maximal symmetry breaking at infinity, of topological charge α. So it carries a hyperkähler structure and hence a holomorphic symplectic form.
- From the modular point of view, the classifying stack $B G$ has a 2-shifted symplectic structure, and $B B \rightarrow B G$ has a coisotropic structure. ${\stackrel{\circ}{\mathbb{G}_{a}}}$ is the space of based maps from $\left(\mathbb{P}^{1}, \infty\right)$ to G / B, that is a fiber of $\operatorname{Maps}\left(\mathbb{P}^{1}, \infty ; B B\right) \xrightarrow{p} \operatorname{Maps}\left(\mathbb{P}^{1}, \infty ; B G\right)$. The latter space has a 1 -shifted symplectic structure, and p is coisotropic as well as pt $\rightarrow \operatorname{Maps}\left(\mathbb{P}^{1}, \infty ; B G\right)$. Hence the desired Poisson (symplectic) structure on $\stackrel{\circ}{Z}_{\mathbb{G}_{a}}$ [T.Pantev, T.Spaide].

Explicit formula

- Factorization property: the addition of divisors $X^{\beta} \times X^{\gamma} \rightarrow X^{\alpha}$ for $\alpha=\beta+\gamma$. A canonical isomorphism

$$
\stackrel{\circ}{Z}_{X}^{\alpha} \times\left._{X^{\alpha}}\left(X^{\beta} \times X^{\gamma}\right)_{\mathrm{disj}} \cong\left(\stackrel{\circ}{Z}^{\beta} \times \stackrel{\circ}{Z}^{\gamma}\right)\right|_{\left(X^{\beta} \times X^{\gamma}\right)_{\text {disj }}}
$$

- For a simple coroot α_{i} a canonical isomorphism $\overbrace{\mathbb{G}_{a}}^{\alpha_{i}} \cong \mathbb{G}_{a} \times \mathbb{G}_{m}$. Hence for arbitrary α away from diagonals in $\mathbb{A}_{\circ}^{\alpha}$ we have coordinates $\left(w_{i, r} \in \mathbb{G}_{a}\right)_{r=1}^{a_{i}}$ and $\left(y_{i, r} \in \mathbb{G}_{m}\right)_{r=1}^{a_{i}}$ on $\stackrel{\circ}{Z}_{\mathbb{G}_{a}}^{\alpha_{i}}$ up to simultaneous permutations in $S_{\alpha}=\prod_{i \in I} S_{a_{i}}$.
- From now on G is assumed simply laced. Choose an orientation of the Dynkin graph. Coordinate change: $u_{i, r}:=y_{i, r} \prod_{i \rightarrow j} \prod_{s=1}^{a_{j}}\left(w_{j, s}-w_{i, r}\right)^{-1}$. The new coordinates are "Darboux" in the sense that the only nonzero brackets are $\left\{w_{i, r}, u_{i, r}\right\}=u_{i, r}$.

Integrable system

- The factorization projection $\stackrel{\circ}{Z}_{\mathbb{G}_{a}}^{\alpha} \rightarrow \mathbb{A}^{\alpha}$ is an integrable system. In case $G=\mathrm{SL}(2)$, the degree α is a positive integer d. Then we get the Atiyah-Hitchin system.
- It also coincides with the open Toda system for GL(d). In particular, $\mathbb{A}^{(d)}$ is the Kostant slice for $\mathfrak{g l}(d)$, and $\stackrel{\circ}{Z}_{\mathbb{G}_{a}}^{d}$ is the universal centralizer (pairs: x in the slice, and commuting $g \in \mathrm{GL}(d))$.
- Equivalently, take a surface $S=\mathbb{G}_{a} \times \mathbb{G}_{m} \cong \stackrel{\circ}{Z}_{\mathbb{G}_{a}}^{1}$. Then $\stackrel{\circ}{Z}_{\mathbb{G}_{a}}^{d} \simeq \operatorname{Hilb}_{\operatorname{tr}}^{d}(S)$: the transversal Hilbert scheme of d points on S. It is an open subscheme of $\operatorname{Hilb}^{d}(S)$ classifying the subschemes whose projection to \mathbb{G}_{a} is a closed embedding.
- A symplectic form on $S:\{w, y\}=y$ induces a symplectic form on $\operatorname{Hilb}_{\mathrm{tr}}^{d}(S)$. It coincides with the above symplectic form on $\stackrel{\circ}{Z}_{\mathbb{G}_{a}}^{d}$.

Coulomb branch of a quiver gauge theory

- Recall the oriented Dynkin graph of G. Take the gauge group $\mathbf{G}:=\prod_{i \in I} \mathrm{GL}\left(a_{i}\right)$ acting on $\mathbf{N}:=\oplus_{i \rightarrow j} \operatorname{Hom}\left(\mathbb{C}^{a_{i}}, \mathbb{C}^{a_{j}}\right)$. It gives rise to a certain space of triples $\mathcal{R}_{\mathbf{G}, \mathbf{N}}$ over the affine Grassmannian $\mathrm{Gr}_{\mathbf{G}}$, and the Coulomb branch $\mathcal{M}_{C}(\mathbf{G}, \mathbf{N}):=\operatorname{Spec} H^{\mathbf{G}[t]}\left(\mathcal{R}_{\mathbf{G}, \mathbf{N}}\right)$ (symplectically dual to Nakajima quiver variety $\left.\left(\mathbf{N} \oplus \mathbf{N}^{*}\right) / / \mathbf{G}\right)$.
- We have $\mathcal{M}_{C}(\mathbf{G}, \mathbf{N}) \simeq \stackrel{\circ}{Z}_{\mathbb{G}_{a}}^{\alpha}$, and the integrable system $\stackrel{\circ}{Z}_{\mathbb{G}_{a}}^{\alpha} \rightarrow \mathbb{A}^{\alpha}$ corresponds to the embedding $\mathbb{C}\left[\mathbb{A}^{\alpha}\right] \cong H^{\mathbf{G} \llbracket t \rrbracket}(\mathrm{pt}) \subset H^{\mathbf{G} \llbracket t \rrbracket}\left(\mathcal{R}_{\mathbf{G}, \mathbf{N}}\right)$.

Multiplicative case

- $X=\mathbb{P}^{1}$, and we additionally require that the N_{-}- and B-structures are transversal at $\infty \in \mathbb{P}^{1}$ and $0 \in \mathbb{P}^{1}$. We obtain a smooth affine variety $\stackrel{\circ}{Z}_{\mathbb{G}_{m}}^{\alpha} \rightarrow \mathbb{G}_{m}^{\alpha}$.
- Its symplectic structure can be again defined in modular terms, but it is not the restriction of the symplectic structure of $\stackrel{\circ}{Z}_{\mathbb{G}_{a}}^{\alpha}$ under the open embedding $\stackrel{\circ}{Z}_{\mathbb{G}_{m}}^{\alpha} \subset \stackrel{\circ}{Z}_{\mathbb{G}_{a}}^{\alpha}$. For a simple coroot, $\stackrel{\circ}{Z}_{\mathbb{G}_{m}}^{\alpha_{i}} \cong \mathbb{G}_{m} \times \mathbb{G}_{m}$, and $\{w, y\}=w y(G$ is $A D E)$.
- The (quasi)-Hamiltonian reduction $\stackrel{\circ}{Z}_{\mathbb{G}_{m}}^{\alpha} / / T$ is an algebraic-geometric incarnation of the moduli space of periodic euclidean G_{C}-monopoles of topological charge α in one of its complex structures. It is the multiplicative analogue of centered euclidean monopoles, the Coulomb branch with gauge group $\prod_{i \in I} \mathrm{SL}\left(a_{i}\right)$.

Integrable system and cluster structure

- The factorization projection $\stackrel{\circ}{Z}_{\mathbb{G}_{m}}^{\alpha} \rightarrow \mathbb{G}_{m}^{\alpha}$ is an integrable system. In case $G=\mathrm{SL}(2)$, degree d, it coincides with the relativistic open Toda system for $\mathrm{GL}(d)$. In particular, $\stackrel{\circ}{Z}_{\mathbb{G}_{m}}^{d}$ is the universal group-group centralizer. Also, $\stackrel{\circ}{Z}_{\mathbb{G}_{m}}^{d} \simeq \operatorname{Hilb}_{\mathrm{tr}}^{d}\left(S^{\prime}\right)$, where $S^{\prime}=\mathbb{G}_{m} \times \mathbb{G}_{m}$. Finally, $\stackrel{\circ}{Z}_{\mathbb{G}_{m}}^{\alpha}$ is isomorphic to a K-theoretic Coulomb branch and carries a natural cluster structure.

Elliptic case

- $X=E$ an elliptic curve, $G=\mathrm{SL}(2), S^{\prime \prime}=E \times \mathbb{G}_{m}$ with an invariant symplectic structure. Then $\operatorname{Hilb}_{\mathrm{tr}}^{d}\left(S^{\prime \prime}\right) \subset T^{*} E^{(d)}$, an open subvariety of the cotangent bundle.
- Surprise: Z_{E}^{d} is an open subvariety of the tangent bundle $T E^{(d)}$, not isomorphic to $\operatorname{Hilb}_{\mathrm{tr}}^{d}\left(S^{\prime \prime}\right)$; does not carry any symplectic structure.
- Still there is a relation between ${ }_{Z}^{Z} d$ and the symplectic $\operatorname{Hilb}_{\mathrm{tr}}^{d}\left(S^{\prime \prime \prime}\right)$. To describe it we need a compactification of \AA_{E}^{α}. Generically transversal N_{-}- and B-structures on a G-bundle on E define its generic trivialization (away from a colored divisor $\left.D=\pi_{\alpha}(\phi), \phi \in \stackrel{\circ}{Z}_{E}^{\alpha}\right)$. Thus we obtain an embedding of $\stackrel{\circ}{Z}_{E}^{\alpha}$ into a version of Beilinson-Drinfeld Grassmannian of E (partially symmetrized to live over $E^{\alpha}=E^{|\alpha|} / S_{\alpha}$). The desired compactification \bar{Z}_{E}^{α} is the closure of ${ }_{Z}^{L}{ }_{E}^{\alpha}$ in the Beilinson-Drinfeld Grassmannian. In case of SL(2), degree d, it is a fiberwise compactification of the tangent bundle $T E^{(d)}$.

Compactified zastava

- \bar{Z}_{E}^{α} is the moduli space of G-bundles on E equipped with generically transversal generalized N_{--}and B-structures. We also allow a twist of N_{-}-structure. For $G=\mathrm{SL}(2)$, degree d, we consider the data

$$
\mathcal{L} \subset \mathcal{V} \xrightarrow{\xi} \mathcal{K}
$$

where \mathcal{V} is a rank 2 vector bundle, $\operatorname{det} \mathcal{V} \cong \mathcal{O}_{E}$;
\mathcal{L} an invertible subsheaf (not necessarily a line subbundle); ξ a morphism to a line bundle \mathcal{K} (not necessarily surjective).
$\left.\xi\right|_{\mathcal{L}}$ is not zero, and length $(\mathcal{K} / \xi(\mathcal{L}))=d$.
We fix \mathcal{K} and obtain the (twisted) compactified zastava $\bar{Z}_{\mathcal{K}}^{d}$.

- For general G we consider the similar data for the associated (to all irreducible representations of G) vector bundles and impose Plücker relations. We get $\bar{Z}_{\mathcal{K}}^{\alpha}$, where \mathcal{K} is a T-bundle.

Mirković approach

- The relatively very ample determinant line bundle on the Beilinson-Drinfeld Grassmannian restricted to $\bar{Z}_{\mathcal{K}}^{\alpha}$ gives a very explicit projective embedding. Reason: restriction to the T-fixed points in $\bar{Z}_{\mathcal{K}}^{\alpha}$ gives an isomorphism on sections of the determinant line bundle [X.Zhu]
- The T-fixed points components are $E^{\beta} \times E^{\gamma}, \beta+\gamma=\alpha$. The contribution of a component is

$$
\mathbf{q}_{*}\left(\mathbf{p}^{*}\left(\mathcal{K}^{\beta}\left(\sum_{i \in I} \Delta_{i i}^{\beta}-\sum_{i \rightarrow j} \Delta_{i j}^{\beta}\right)\right)\left(\sum_{i \in I} \Delta_{i i}^{\beta, \gamma}\right)\right)
$$

where $E^{\beta} \stackrel{\mathbf{p}}{\longleftarrow} E^{\beta} \times E^{\gamma} \xrightarrow{\mathbf{q}} E^{\alpha}$ (addition of colored divisors); $\Delta_{i j}^{\beta, \gamma} \subset E^{\beta} \times E^{\gamma}$ is the incidence divisor; $\Delta_{i i}^{\beta} \subset E^{\beta}$ is the incidence divisor; $\mathcal{K}^{\beta}=\boxtimes_{i} \mathcal{K}_{i}^{\left(b_{i}\right)}$ (symmetric powers), and \mathcal{K}_{i} is the line bundle associated to the character $-\alpha_{i}^{v}: T \rightarrow \mathbb{C}^{\times}$.

Mirković approach

- Summing up the above vector bundles on E^{α} over all partitions $\beta+\gamma=\alpha$ we obtain a factorizable vector bundle $\mathbb{V}_{\mathcal{K}}^{\alpha}$ of rank $2^{|\alpha|}$. When $\alpha=\alpha_{i}$, we get $\mathbb{V}_{\mathcal{K}}^{\alpha_{i}}=\mathcal{K}_{i} \oplus \mathcal{O}_{E}$, and $\bar{Z}_{\mathcal{K}}^{\alpha_{i}}=\mathbb{P} \mathbb{V}_{\mathcal{K}}^{\alpha_{i}}$.
- Away from diagonals in E^{α}, we get the fiberwise Segre embedding (from factorization):
a fiber of compactified zastava $\simeq\left(\mathbb{P}^{1}\right)^{|\alpha|} \hookrightarrow$ a fiber of $\mathbb{P} \mathbb{V}_{\mathcal{K}}^{\alpha}$. The whole of $\bar{Z}_{\mathcal{K}}^{\alpha}$ is the closure in $\mathbb{P} \mathbb{V}_{\mathcal{K}}^{\alpha}$ of the off-diagonal Segre embedding image.
- $\stackrel{\circ}{Z}_{\mathcal{K}}^{\alpha} \subset \bar{Z}_{\mathcal{K}}^{\alpha}$ is the complement to 2 hyperplane sections. One hyperplane $\mathbb{V}_{\mathcal{K} \text {,low }}^{\alpha} \subset \mathbb{V}_{\mathcal{K}}^{\alpha}$ is the direct sum of all contributions from partitions $\beta+\gamma=\alpha, \beta \neq 0$. The other hyperplane $\mathbb{V}_{\mathcal{K}}^{\alpha, \text { up }} \subset \mathbb{V}_{\mathcal{K}}^{\alpha}$ is the direct sum of all contributions from partitions $\beta+\gamma=\alpha, \gamma \neq 0$.

Coulomb version

- Instead of $\mathbb{V}_{\mathcal{K}}^{\alpha}$ consider

$$
\mathbb{U}_{\mathcal{K}}^{\alpha}=\bigoplus_{\beta+\gamma=\alpha} \mathbf{q}_{*}\left(\mathbf{p}^{*} \mathcal{K}^{\beta} \otimes \mathcal{O}_{E^{\beta} \times E^{\gamma}}\left(\sum_{i \rightarrow j} \Delta_{i j}^{\beta, \gamma}\right)\right)
$$

dual to \oplus of equivariant elliptic homology of all the positive minuscule parts of $\mathcal{R}_{\mathbf{G}, \mathbf{N}}$, space of triples over $\prod_{i \in I} \operatorname{Gr}_{\mathrm{GL}\left(a_{i}\right)}$.

- It is a factorizable vector bundle of rank $2^{|\alpha|}$, and away from diagonals in E^{α} we get the fiberwise Segre embedding of $\left(\mathbb{P}^{1}\right)^{|\alpha|}$ into a fiber of $\mathbb{P} \mathbb{U}_{\mathcal{K}}^{\alpha}$. The closure is the Coulomb elliptic zastava ${ }^{C} \bar{Z}_{\mathcal{K}}^{\alpha}$. Removing the two hyperplane sections we get the open Coulomb zastava $C^{\circ} \stackrel{\circ}{\mathcal{K}}_{\alpha}^{\sim} \simeq \operatorname{Spec} H_{\text {ell }}^{\mathbf{G}[t]}\left(\mathcal{R}_{\mathbf{G}, \mathbf{N}}\right)$.
- In type $A_{1},{ }^{C} \ddot{Z}_{\mathcal{K}}^{d}$ is isomorphic to the transversal Hilbert scheme of d points in the total space of line bundle \mathcal{K} with zero section removed.
${ }^{C} \bar{Z}_{\mathcal{O}_{E}}^{d}$ is the fusion of minuscule \mathbb{P}^{1}-orbits in $\mathrm{Gr}_{\mathrm{PGL}(2), E^{(d)}}$.

Hamiltonian reduction

- The total space of any line bundle \mathcal{K}_{i} without zero section carries a symplectic form invariant with respect to dilations. Away from the diagonals in $E^{\alpha},{ }^{C} \ddot{Z}_{\mathcal{K}}^{\alpha}$ is étale covered by a product of \mathcal{K}_{i}, and the direct sum of the above forms extends through the diagonals as a symplectic form on ${ }^{C}{ }_{Z}^{\mathcal{K}} \alpha$.
- The action of T is hamiltonian, and we perform the hamiltonian reduction. Consider the composition

$$
\mathrm{AJ}_{Z}:{ }^{C} \stackrel{\circ}{Z}_{\mathcal{K}}^{\alpha} \xrightarrow{\pi_{\alpha}} E^{\alpha} \rightarrow \prod_{i \in I} \mathrm{Pic}^{a_{i}} E
$$

of the factorization projection with the Abel-Jacobi morphism. The reduction ${ }_{\mathcal{D}}^{C}{ }_{Z}^{\mathcal{K}} \alpha={ }^{C}{ }_{Z}^{\mathcal{K}} \alpha, / / T:=\mathrm{AJ}_{Z}^{-1}(\mathcal{D}) / T$ is conjecturally isomorphic to the moduli space of doubly periodic G_{c}-monopoles (monowalls) of topological charge α. It is the elliptic analogue of centered euclidean monopoles, the Coulomb branch with gauge group $\prod_{i \in I} \mathrm{SL}\left(a_{i}\right)$.

Mock Hamiltonian reduction

- Though the elliptic zastava $\stackrel{\circ}{Z}_{\mathcal{K}}^{\alpha}$ is not symplectic, we can mimic the hamiltonian reduction procedure and define the reduced zastava ${ }_{\mathcal{D}} Z_{\mathcal{K}}^{\alpha}:=\mathrm{AJ}_{Z}^{-1}(\mathcal{D}) / T$. In case T-bundle \mathcal{K} has degree 0 and is regular, the reduced zastava is the moduli space of G-bundles of fixed type $\operatorname{Ind}_{T}^{G} \mathcal{K}$ with B-structure of fixed type (fixed isomorphism class of the bundle induced from B to the abstract Cartan T).
- Both Bun_{G} and Bun ${ }_{\mathrm{T}}$ carry 1-shifted symplectic structures. The Lagrangian structures on $\mathrm{Bun}_{B} \rightarrow \operatorname{Bun}_{G} \times \mathrm{Bun}_{\mathrm{T}}$ and on the stacky point $[\mathcal{V}] \times[\mathcal{L}] \rightarrow \operatorname{Bun}_{G} \times$ Bun $_{\mathrm{T}}$ give rise to a symplectic structure on their cartesian product $\mathcal{D}_{\mathcal{D}} Z_{\mathcal{K}}^{\alpha}$:

Happy end

- Miracle: the reduced zastava are isomorphic: ${ }_{\mathcal{D}} \stackrel{\circ}{\mathcal{K}}_{\alpha}^{\simeq}{ }_{\mathcal{D}}^{C}{ }_{Z}^{\mathcal{K}^{\prime}}$ for $\mathcal{K}_{i}^{\prime}=\mathcal{K}_{i} \otimes \mathcal{D}_{i} \otimes \bigotimes_{i \rightarrow j} \mathcal{D}_{j}^{-1}$.
- Theorem: This isomorphism is a symplectomorphism.
- Explicit formula for the Poisson brackets of the natural étale coordinates $\left(w_{i, r}, y_{i, r}\right)_{i \in I}^{1 \leq r \leq a_{i}}$ on ${ }_{\mathcal{D}}^{\circ} \stackrel{\circ}{\mathcal{K}}_{\alpha}^{\alpha}(w$-s are constrained to have a fixed sum in E, and y-s are homogeneous coordinates, i.e. only their ratios are well defined on the reduced zastava):

$$
\begin{gathered}
\left\{\frac{y_{i, r}}{y_{i, r^{\prime}}}, w_{i, p}\right\}=\left(\delta_{r p}-\delta_{r^{\prime} p}\right) \frac{y_{i, r}}{y_{i, r^{\prime}}},\left\{\frac{y_{i, r^{\prime}}}{y_{i, p^{\prime}}}, \frac{y_{j, r}}{y_{j, p}}\right\}=\frac{y_{i, r^{\prime}}}{y_{i, p^{\prime}}} \cdot \frac{y_{j, r}}{y_{j, p}} \\
\left(\zeta\left(w_{i, r^{\prime}}-w_{j, r}\right)-\zeta\left(w_{i, r^{\prime}}-w_{j, p}\right)-\zeta\left(w_{i, p^{\prime}}-w_{j, r}\right)+\zeta\left(w_{i, p^{\prime}}-w_{j, p}\right)\right)
\end{gathered}
$$

in case $i \neq j$ are joined by an edge in the Dynkin diagram of G, and zero otherwise (we assume G simply laced). Here $\zeta(w)=\frac{1}{w}+\sum_{\gamma \in \Gamma \backslash\{0\}}\left(\frac{1}{w-\gamma}+\frac{1}{\gamma}+\frac{w}{\gamma^{2}}\right)$ is the Weierstraß
zeta function (the sum is taken over the period lattice of E).

