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1 Introduction
Meeting in Oaxaca concentrated on a discussion of some of those theoretical problems from functional anal-
ysis and approximation theory, which are important in numerical computation. The fundamental problem of
approximation theory is to resolve a possibly complicated function, called the target function, by simpler, eas-
ier to compute functions called approximants. Increasing the resolution of the target function can generally
only be achieved by increasing the complexity of the approximants. The understanding of this trade-off be-
tween resolution and complexity is the main goal of approximation theory. Thus the goals of approximation
theory and numerical computation are similar, even though approximation theory is less concerned with com-
putational issues. Approximation and computation are intertwined and it is impossible to understand fully the
possibilities in numerical computation without a good understanding of the elements of approximation the-
ory. In particular, good approximation methods (algorithms) from approximation theory find applications in
image processing, statistical estimation, regularity for PDEs and other areas of computational mathematics.
Also, theoretical analysis of contemporary algorithms is based on deep methods from functional analysis.
This makes the combination of functional analysis, approximation theory, and numerical computation, which
we call applied functional analysis, a very natural area of the interdisciplinary research.

It was understood in the beginning of the 20th century that smoothness properties of a univariate function
determine the rate of approximation of this function by polynomials (trigonometric in the periodic case and
algebraic in the non-periodic case). A fundamental question is: What is a natural multivariate analog of
univariate smoothness classes? Different function classes were considered in the multivariate case: isotropic
and unisiotropic Sobolev and Besov classes, classes of functions with bounded mixed derivative and others.
The next fundamental question is: How to approximate functions from these classes? Kolmogorov introduced
the concept of the n-width of a function class. This concept is very useful in answering the above question.
The Kolmogorov n-width is a solution to an optimization problem where we optimize over n-dimensional
linear subspaces. This concept allows us to understand which n-dimensional linear subspace is the best for
approximating a given class of functions. The rates of decay of the Kolmogorov n-width are known for the
univariate smoothness classes. In some cases even exact values of it are known. The problem of the rates of
decay of the Kolmogorov n-width for the classes of multivariate functions with bounded mixed derivative is
still an open problem. We note that the function classes with bounded mixed derivative are not only interesting
and challenging object for approximation theory but they are important in numerical computations. This topic
was discussed in detail at the workshop.
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Numerical integration is one more challenging multivariate problem where approximation theory meth-
ods are very useful. For a given function class F we want to find m points x1, . . . , xm in D such that∑m
j=1

1
mf(xj) approximates well the integral

∫
D
fdµ, where µ is the normalized Lebesgue measure on D.

Classical geometric discrepancy theory is concerned with different versions of the following questions: What
is the most uniform way to distribute finitely many points in various geometric settings (in particular, in high
dimensions)? In other words, how well can one approximate continuous objects by discrete ones? And how
large are the errors that inevitably arise in such approximations? Quite naturally this topic is directly related
to approximation theory, more specifically – numerical integration: well-distributed point sets provide good
cubature formulas and different notions of discrepancy yield integration error estimates for various function
classes. This immediately brings up the connection between discrepancy and functional analysis and the
function space theory. Classical discrepancy theory provides constructions of point sets that are good for nu-
merical integration of characteristic functions of parallelepipeds of the form P =

∏d
j=1[aj , bj ]. The typical

error bound is of the form m−1(logm)d−1. Note that a regular grid for m = nd provides an error of the
order m−1/d. The above mentioned results of discrepancy theory are closely related to numerical integration
of functions with bounded mixed derivative (the case of the first mixed derivative). Sparse grids play an im-
portant role in numerical integration of functions with bounded mixed derivative. In the case of rth bounded
mixed derivative they provide an error of the order m−r(logm)(d−1)(r+1). Also, they provide the recovery
error in the sampling problem of the same order. Note again that the regular grid from above provides an error
of the order m−r/d. The error bound m−r(logm)(d−1)(r+1) is reasonably good for moderate dimensions d,
say, d ≤ 40. It turns out that there are practical computational problems with moderate dimensions where
sparse grids work well. Sparse grids techniques have applications in quantum mechanics, numerical solutions
of stochastic PDEs, data mining, finance. This topic, including numerical integration on the sphere was also
discussed in detail at the workshop.

The multivariate approximation theory in the classical setting has close connections with other areas of
mathematics and has many applications in numerical computations. However, as we mentioned above, clas-
sical methods do not work for really high dimensions. High-dimensional approximation is a hot rapidly
developing area of mathematics and numerical analysis where researchers try to understand which new ap-
proaches may work. A promising contemporary approach is based on the concept of sparsity and nonlinear
m-term approximation. The last decade has seen great successes in studying nonlinear approximation which
was motivated by numerous applications. The fundamental question of nonlinear approximation is how to
devise good constructive methods (algorithms) of nonlinear approximation. This problem has two levels of
nonlinearity. The first level of nonlinearity is m-term approximation (sparse approximation) with regard to
bases. In this problem one can use the unique function expansion with regard to a given basis to build an
approximant. Nonlinearity enters by looking for m-term approximants with terms (i.e. basis elements in
approximant) allowed to depend on a given function. Since the elements of the basis used in the m-term
approximation are allowed to depend on the function being approximated, this type of approximation is very
efficient. On the second level of nonlinearity, we replace a basis by a more general system which is not neces-
sarily minimal (for example, redundant system, dictionary). This setting is much more complicated than the
first one (bases case), however, there is a solid justification of importance of redundant systems in both theo-
retical questions and in practical applications. Recent results have established that greedy type algorithms are
suitable methods of nonlinear approximation in both m-term approximation with regard to bases and m-term
approximation with regard to redundant systems. It turns out that there is one fundamental principal that
allows us to build good algorithms both for arbitrary redundant systems and for very simple well structured
bases like the Haar basis. This principal is the use of a greedy step in searching for a new element to be
added to a given m-term approximant. By a greedy step, we mean one which maximizes a certain functional
determined by information from the previous steps of the algorithm. We obtain different types of greedy algo-
rithms by varying the above mentioned functional and also by using different ways of constructing (choosing
coefficients of the linear combination) the m-term approximant from the already found m elements of the
dictionary. We payed a special attention to this new promising area of research and invited several experts on
greedy approximation to speak at the workshop.

In the next section we will discuss presentation highlights of several invited talks which were given during
our meeting.
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2 Presentation Highlights (including Recent Developments and Open
Problems)

2.1 Greedy approximation
A number of talks were devoted to greedy approximation in Banach spaces and its applications to different
problems:

Denka Kutzarova: An X-Greedy Algorithm with Weakness Parameters,
Thomas Schlumprecht: Greedy Bases and Renormings of Banach spaces which have them,
Volodya Temlyakov: Greedy algorithms in numerical integration.
In order to address the contemporary needs of data managing, a very general model of approximation

with regard to a redundant system (dictionary) has been considered in many recent papers and some of these
results were presented at the workshop. As such a model, we choose a Banach space X with elements as
target functions and an arbitrary system D of elements of this space such that the closure of spanD coincides
with X as a representation system. We would like to have an algorithm of constructing m-term approximants
that adds at each step only one new element from D and keeps elements of D obtained at the previous steps.
This requirement is an analogue of on-line computation that is very desirable in practical algorithms. Clearly,
we are looking for good algorithms which converge for each target function. It is not obvious that such an
algorithm exists in a setting at the above level of generality (X , D are arbitrary).

The approximate sparse representation problem was studied in the following way.
1. General convergence results were discussed in Kutzarova’s and Temlyakov’s talks. They proved con-

vergence results for a given greedy-type algorithm for all f ∈ X with respect to an arbitrary dictionary
D.

2. Rate of convergence results were discussed in all three above mentioned talks. (2a) First, the authors
prove that a given greedy-type algorithm guarantees some rate of convergence for f from a specific class
(typically, it is the closure of the convex hull of a symmetrized dictionary) with no extra assumptions on the
dictionary. (2b) Second, they prove some better rate of convergence results under additional assumptions on
the dictionary. For instance, strong results can be obtained for greedy bases (Schlumprecht).

These results give us the following picture. For a given greedy-type algorithm we guarantee its conver-
gence in any situation (f and D are arbitrary). If f has some properties then we guarantee that the algorithm
converges with a certain rate. Even stronger guaranties can be given if D has certain properties.

Application of general greedy algorithms for construction of good deterministic cubature formulas was
discussed in Temlyakov’s talk. He presented results on a relation between construction of an optimal cuba-
ture formula with m knots for a given function class and best nonlinear m-term approximation of a special
function determined by the function class. The nonlinear m-term approximation is taken with regard to a
redundant dictionary also determined by the function class. He demonstrated how greedy algorithms can be
used for constructing such m-term approximations and the corresponding Quasi-Monte Carlo methods for
numerical integration.

2.2 Dynamical Sampling, cyclical sets, cyclical frames and the spectral theory by
Akram Aldroubi

Let f be a signal at time t = 0 of a dynamical process controlled by an operator A that produces the signals
Af,A2f, . . . at times t = 1, 2, . . . . Let M be a measurements operator applied to the series Af,A2f, . . . at
times t = 1, 2, . . . . The problem is to recover f from the measurements Y = {Mf,MAf,MA2f, . . . ,MALf}.
This is the so called Dynamical Sampling Problem. A prototypical example is when f ∈ `2(Z), X a proper
subset of Z and Y = {f(X), Af(X), A2f(X), . . . , ALf(X)}. The problem is to find conditions on A, X ,
L, that are sufficient for the recovery of f [1, 2]. This problem has connection to many areas of mathemat-
ics including frames, and Banach algebras, and the recently solved Kadison-Singer/Feichtinger conjecture.
Some of the recent results in collaboration obtained with Carlos Cabrelli, Ilya Krishtal, Jacqueline Davis,
Ursula Molter, Armenak Petrosyan, Ahmed Cakmak, and Sui Tang.

Akram Aldroubi presents the following result.
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Theorem 2.1 Let A be a normal operator in B(H) with spectrum σ(A) s.t. int(σ(A)) = ∅ and C − σ(A)

connected. Let UAU−1 = N
(∞)
µ∞ ⊕Nµ1 ⊕N

(2)
µ2 ⊕ · · · , be the spectral decomposition of A, where U is an an

isometric isomorphism from H to (L2(µ∞))(∞) ⊕ L2(µ1) ⊕ (L2(µ2))(2) ⊕ · · · and measures µi on C that
are mutually singular Borel measures. Let Ω ⊂ H be a countable set. Then the following are equivalent

1. {A∗jg : g ∈ Ω, j = 0, 1, . . . , } is complete

2. for µj-a.e. x, {(PjUg)(x)}g∈Ω is complete in Cj ∼= l2{1, 2, . . . , j}, 1 ≤ j ≤ ∞, where Pj is the
projections on (L2(µj))

(j).

2.3 Polynomial Approximation on Compact sets in the Plane by Vladimir Andrievskii
We presented some results and open problems concerning the following topics.

The Vasiliev-Totik’s extension of the classical Bernstein theorem on polynomial approximation of piece-
wise analytic functions on a closed interval. The error of the best uniform approximation of such functions
on a compact subset of the real line is studied.

A conjecture on the rate of polynomial approximation on the compact set of the plane to a complex
extension of the absolute value function. The conjecture was stated by Grothmann and Saff in 1988. Related
to this is another conjecture, Gaier’s conjecture, on the polynomial approximation of piecewise analytic
functions on a compact set consisting of two touching discs.

The estimates of the uniform norm of the Chebyshev polynomial associated with a compact set K ⊂ C
consisting of a finite number of continua in the complex. These estimates are exact (up to a constant factor)
in the case where the components of K are either quasiconformal arcs or closed Jordan domains bounded by
a quasiconformal curve. The case where K is a uniformly perfect or a homogeneous subset of the real line is
also of interest.
Recent developments: Details can be found in [3, 4, 5].

2.4 Multivariable approximations using radial basis functions by Martin Buhman
The talk focussed on multivariable approximations using radial basis functions, employing especially the
Hardy multiquadric function φ(r) =

√
r2 + c2, composed with the Eucidean norm, and its shifts by ”cen-

tres“. Other very suitable radial functions are Dagum and Bernstein functions, Gauss kernels, Poisson kernels,
thin-plate splines etc. Among the methods using these radial basis functions, not only interpolation but also
quasi-interpolation turns out again to be highly suitable, where not the pointwise agreement with the approx-
imand (at the provided centeres) but more specifically the smoothing and the localness of the approximants
(and their polynomial reproduction properties, so that approximation order results and convergence are ob-
tainable) are central. In this talk, new approximation order results, no long requiring logarithmic terms in
most instances, were presented, and a very general Ansatz for the quasi-interpolating approximants is used,
not even requiring radial symmetry and Euclidean norms everywhere. Also, the theorems apply in almost all
dimensions and to very general classes of approximands.
Recent developments: The most recent developments admit general operators in place of pointwise eval-
uations of approximands and allow from from very general Sobolev spaces. Different smoothness of ap-
proximant and approximand is allowed too, that is different Lp and Lq norms appear in the sought esti-
mates. Moreover, many pointwise results are possible now, where before only uniform approximation results
and approximations orders were offered; this became possible by employing the Hardy Littlewood maximal
function.

2.5 Best onesided approximation and quadrature formulas by Jorge Bustamante
For θ ∈ (−1, 1), let Hθ(x), x ∈ [−1, 1], be the Heaviside function with a jump at θ. Bustamante finds
the explicit expression for all the polynomial of the best onesided approximation for Hθ(x) in the L1[−1, 1]
norm. The solution require some facts related with quasi-orthogonal polynomials and some new quadrature
formulas with a prefixed abscissa. The result are applied to construct some operators for algebraic onesided
approximation. For the proof see [6, 8, 9].
Open Problems:
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• For θ ∈ (−1, 1) and r ∈ N , let (x− θ)r+, x ∈ [−1, 1], be the truncated function with parameter θ. Find
the polynomials of the best onesided approximation for (x− θ)r+ in the L1[−1, 1] norm.

2.6 One-parameter groups of operators and discrete Hilbert transforms by Laura
De Carli

Let I be the union of disjoint intervals I0, ... IN−1, with Ij = [Mj ,Mj + 1], with j = 0, ..., N − 1 and
Mj + 1 ≤ Mj+1 for every j ≥ 0. We construct exponential bases of L2(I) in the form of ∪N−1

j=0 Bj , where
Bj = {e2πi(n+dj)x}n∈Z with dj > 0.

De Carli uses the properties of a family of operators {Tt}t∈R, initially defined in the space of complex-
valued sequences with compact support as follows:

(Tt(~a))m =
sin(πt)

π

∑
n∈Z

an
m− n+ t

if t 6∈ Z , and Tt(~a) = (−1)tam+t if t ∈ Z.

Some of the results presented at the conference are in collaboration with my student Shaikh Gohin Samad.
The existence of exponential bases on the union of segments of R is proved in [17].
Presentation highlights:

Theorem 2.2 The family {Tt}t≥0 defined above is a strongly continuous group of isometry in `2; the discrete
Hilbert transform H defined as

(H(~a))m =
1

π

∑
n∈Z
n 6=m

an
m− n

. (1)

is its infinitesimal generator.

Theorem 2.3 Assume that

max
0≤j 6=j≤N−1
0≤p6=q≤N−1


∣∣∣∣∣
N−1∑
p=0

e2πi(di−dj)Mp

∣∣∣∣∣ ,
∣∣∣∣∣∣
N−1∑
j=0

e2πidj(Mq−Mp)

∣∣∣∣∣∣
 <

N

N − 1
. (2)

Then, B defined above is a Riesz basis of L2(I).

Open Problems:
• Construct an explicit exponential basis for the union of families of segment of finite total length (For

example: the union of segments in the form of (a, a+ 2−m), with m ∈ N)

2.7 Reverse Hölder’s inequality for spherical harmonics by Han Feng
The sharp asymptotic order of the following reverse Hölder inequality for spherical harmonics Yn of degree
n on the unit sphere Sd−1 of Rd as n→∞:

‖Yn‖Lq(Sd−1) ≤ Cnα(p,q)‖Yn‖Lp(Sd−1), 0 < p < q ≤ ∞

is obtained. In many cases, these sharp estimates turn out to be significantly better than the corresponding
estimates in the Nilkolskii inequality for spherical polynomials. This is a joint work with F. Dai and S.
Tikhonov. Briefly, the obtained results can be represented in the following tables with λ = d−2

2
Open Problems:

• To complete the result table for d > 3

• To obtain the analogy results in a weighted setting
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Table 1: the case: d > 3
p q α(p, q)

(0, 1] (p,∞] λ( 1
p −

1
q )

[1, 2] (p, (1 + 1
λ )p′] λ( 1

p −
1
q )

[1, 2] [(1 + 1
λ )p′,∞] 2λ( 1

2 −
1
q )− 1

q

[2, 2 + 1
λ ) (p, 2 + 2

λ ) unknown
[2, 2 + 1

λ ) [2 + 2
λ ,∞] 2λ( 1

2 −
1
q )− 1

q

(2 + 1
λ ,∞) (p,∞] (2λ+ 1)( 1

p −
1
q )

Table 2: the case: d = 3
p q α(p, q)

(0, 1] (p,∞] λ( 1
p −

1
q )

[1, 2 + 1
λ ) (p, (1 + 1

λ )p′) λ( 1
p −

1
q )

[1, 2 + 1
λ ) [(1 + 1

λ )p′,∞] 2λ( 1
2 −

1
q )− 1

q

(2 + 1
λ ,∞) (p,∞] (2λ+ 1)( 1

p −
1
q )

2.8 Optimal Estimates on Robustness Property of Gaussian Random Matrices un-
der Corruptions by Bin Han

This is joint work with Zhiqiang Xu. Johnson–Lindenstrauss Lemma is often used in dimensionality re-
duction and concerns low-distortion embedding of points from high-dimensional space into low-dimensional
space. The existence of an ideal projection matrices in the Johnson–Lindenstrauss Lemma is often proved
using Gaussian random matrices. Gaussian random matrices under corruptions also play a key role in the
establishment of the robust restricted isometry property in compressed sensing.

Let A = (aj,k)1≤j≤m,1≤k≤n ∈ Rm×n be a Gaussian random matrix such that each entry aj,k ∼ N (0, 1)
is an i.i.d. Gaussian random variable with zero mean and unit standard deviation. For T ⊆ {1, . . . ,m},
AT ∈ R|T |×n is the |T |×n sub-matrix ofA by keeping the rows ofA with row indices from T . Let x0 ∈ Rn
with ‖x0‖ = 1. For ε > 0 and 0 ≤ β < 1, define

Ωε,β :=
{ ∣∣∣ 1
|T |‖ATx0‖2 − 1

∣∣∣ ≤ ε for all T ⊆ {1, . . . ,m} satisfying |T c| ≤ βm
}
,

where T c := {1, . . . ,m}\T and β is the erasure ratio. Similarly, we define Ω̊ε,β if the factor 1
|T | above is

replaced by 1
m . For ε > 0 and α > 0, we define

βmax
ε,α := sup{0 ≤ β < 1 : P(Ωε,β) ≥ 1− 3e−α(ε2/4−ε3/6)m ∀m ∈ N}

and
β̊max
ε,α := sup{0 ≤ β < 1 : P(Ω̊ε,β) ≥ 1− 3e−α(ε2/4−ε3/6)m ∀m ∈ N}

One of the main results in [14] is as follows:

Theorem 2.4 For every 0 < α < 1,(
1−
√
α

32

)
ε

ln 1
ε

< βmax
ε,α <

(
2 + 2εg
c2gεg

)
ε

ln 1
ε

for all 0 < ε < min( 1−
√
α

4 , εg, 4ε
2
g), and(

1−
√
α

32

)
ε

ln 2
ε

≤ β̊max
ε,α ≤

(
1

4c2g

)
ε

ln 1
ε

for all 0 < ε < min( 1−
√
α

4 , 2e−1c2g,
1

2c2g
), where cg and εg are absolute positive constants.

As a consequence of the above result, Han established the robustness property of Johnson–Lindenstrauss
Lemma and the restricted isometry property against erasure.
Recent Developments:
• Currently, the authors are generalizing the results in [14] to subgaussian random matrices and other

random matrices.
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2.9 Polynomial approximation with doubling weights by Kirill A. Kopotun
A nonnegative function w ∈ L1[−1, 1] is called a doubling weight if there is a constant L such that w(2I) ≤
Lw(I), for all intervals I ⊂ [−1, 1], where 2I denotes the interval having the same center as I and twice
as large as I , andw(I) :=

∫
I
w(u)du. Kopotun establishes direct and inverse results for weighted approxima-

tion by algebraic polynomials in the Lp, 0 < p ≤ ∞, (quasi)norm weighted bywn := ρn(x)−1
∫ x+ρn(x)

x−ρn(x)
w(u)du,

where ρn(x) := n−1
√

1− x2 + n−2 and w is a doubling weight.
Among other things, he proves that, for a doubling weight w, 0 < p ≤ ∞, r ∈ N0, and 0 < α <

r + 1− 1/λp, one has

En(f)p,wn = O(n−α) ⇐⇒ ωr+1
ϕ (f, n−1)p,wn = O(n−α), (∗)

where λp := p if 0 < p < ∞, λp := 1 if p = ∞, ‖f‖p,w :=
(∫ 1

−1
|f(u)|pw(u)du

)1/p

, ‖f‖∞,w :=

ess supu∈[−1,1] (|f(u)|w(u)), ωrϕ(f, t)p,w := sup0<h≤t

∥∥∥∆r
hϕ(·)(f, ·)

∥∥∥
p,w

,En(f)p,w := infPn∈Πn ‖f − Pn‖p,w,

and Πn is the set of all algebraic polynomials of degree ≤ n− 1.
Kopotun also introduces classes of doubling weights Wδ,γ with parameters δ, γ ≥ 0 that are used to

describe the behavior of wn(x)/wm(x) for m ≤ n. It turns out that every classWδ,γ with

(δ, γ) ∈ Υ :=
{

(δ, γ) ∈ R2
∣∣ δ ≥ 1, γ ≥ 0, δ + γ ≥ 2

}
contains all doubling weights w, and for each pair (δ, γ) 6∈ Υ, there is a doubling weight not in Wδ,γ .
He establishes inverse theorems and equivalence results similar to (∗) for doubling weights from classes
Wδ,γ . Using the fact that 1 ∈ W0,0, we get the well known inverse results and equivalences of type (∗) for
unweighted polynomial approximation as an immediate corollary.

Equivalence type results involving related K -functionals and realization type results (obtained as corol-
laries of our estimates) are also discussed.

Finally, the author mentions that (∗) closes a gap left in the paper by G. Mastroianni and V. Totik [22],
where (∗) was established for p = ∞ and ωr+2

ϕ instead of ωr+1
ϕ (it was shown there that, in general, (∗) is

not valid for p =∞ if ωr+1
ϕ is replaced by ωrϕ).

2.10 On multivariate “needle” polynomials and their application to norming sets
and cubature formulas by András Kroó

Needle polynomials 0 ≤ pn ≤ 1 of degree n on the interval [−1, 1] attain value pn(x0) = 1 at some
x0 ∈ [−1, 1] and are ”exponentially small” as we move away from this point

pn(x) ≤ e−nφ(h), x ∈ [−1, 1] \ [−h+ x0, h+ x0], 0 < h ≤ 1

with φ(h) ↓ 0 depending on h and the location of x0. They resemble the behavior of the Dirac delta function
and are widely used in different areas of analysis.

In the multivariate case the behavior of the needle polynomials at the boundary of convex bodies is closely
related to the geometry of the boundary of the domain. For a compact K ⊂ Rd and 0 < α ≤ 1 we have
α-needle polynomials at x0 ∈ K if for any 0 < h < 1 and n ∈ N there exist polynomials p ∈ P dn such that
0 ≤ p(x) ≤ 1, x ∈ K, p(x0) = 1 and

p(x) ≤ e−cnh
α

, x ∈ K \B(x0, h)

with some c > 0 depending only on K and x0.
Recent developments: See [20].

Theorem 1. LetK ⊂ Rd, d ≥ 2 be a convex body and x0 ∈ ∂K. ThenK possesses 1
2 -needle polynomials

at x0 if and only if x0 is a vertex.
Theorem 2. If K is Cβ with 1 < β ≤ 2 at x ∈ ∂K then there are no α-needle polynomials with α < β

2
at this point. On the other hand α-needle polynomials exist for some C2α domains, e.g. at vertices of l2α
balls in Rd.
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Theorem 3. LetK ⊂ Rd, d ≥ 2 be a 0 symmetric convex body. ThenK possesses homogeneous 1-needle
polynomials with ϕ(h) ∼ h at every x0 ∈ ∂K.

Moreover, K possesses homogeneous logarithmic needle polynomials with ϕ(h) ∼ h log 1
h at x0 ∈ ∂K

if and only if x0 is a vertex.

2.11 Approximation inH(b) spaces by Javad Mashreghi
Collaboration with: O. ElFallah, E. Fricain, K. Kellay, T. Ransford

Hardy spaces Hp, the Dirichlet space D, and Bergman spaces Ap are the most celebrated Banach spaces
of analytic functions on the open unit disc D. In these spaces, and several other cousin spaces, analytic
polynomials are dense. A usual demonstration is as follows: we approximate f by its dilation fr, where
fr(z) = f(rz). The latter function is defined on a larger disc which contains the closed unit disc D. Hence,
naively speaking, it should have ultra nice properties on D. For example, we can approximate fr by the partial
sums of its Taylor series. Hence, these partial sums, which are analytic polynomials, are close to the original
function f too.

In his presentation, Mashreghi introduced the de Branges-Rovnyak spaceH(b), in which polynomials are
dense, but the above approach dramatically fails.
Recent developments: He succeeded to find a symbol b and construct an explicit function f ∈ H(b) such
that

lim
r→1
‖fr‖H(b) =∞. (3)

Despite the above strange behavior, a constructive proof for the density of polynomials was presented.
Open Problems:

1. For which symbols b, the above strange behavior persist? More explicitly, for which b there is a function
f ∈ H(b) whose dilates satisfy (3)?

2. Given a symbol b which falls in the above category, which functions inH(b) have exploding dilates?

2.12 Kolmogorov and linear n-Widths of Balls in Sobolev spaces on Manifolds by
Isaac Pesenson

Pesenson determines upper asymptotic estimates of Kolmogorov n-width dn and linear n-width δn of unit
balls in Sobolev norms in Lp-spaces on smooth compact Riemannian manifolds. For compact homogeneous
manifolds, he establishes estimates which are asymptotically exact, for the natural ranges of indices. The
proofs heavily rely on our previous results [11], [25], such as: estimates for the near-diagonal localization
of the kernels of elliptic operators, Plancherel-Polya inequalities on manifolds, cubature formulas with pos-
itive coefficients and uniform estimates on Clebsch-Gordon coefficients on general compact homogeneous
manifolds.

One of the main results is the following.

Theorem 2.5 Assume that M is a homogeneous compact manifold and Brp(M) is the unit ball in a corre-
sponding Sobolev space W r

p (M).

1. Suppose that 1 ≤ p ≤ 2 ≤ q ≤ ∞. Then one has the following asymptotics

dn(Brp(M), Lq(M)) � n−
r
s+ 1

p−
1
2 if r > s/p,

2. Suppose that 2 ≤ p ≤ q ≤ ∞. Then one has the asymptotics

dn(Brp(M), Lq(M)) � n− rs if r > s/p.

Open Problems:

• To obtain exact asymptotics on general compact Riemannian manifolds.

• To obtain either upper, lower, or exact asymptotics on compact manifolds equipped with non-Riemannian
metrics.
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2.13 Fully discrete needlet approximation by Ian H. Sloan
In his talk Sloan reported on recently submitted work on a fully discrete needlet approximation scheme. He
presented convergence results for the approximation of functions in certain Sobolev spaces, in which the rate
of convergence, though losing something with respect to the continuous approximation, nevertheless seemed
to be as good as we could hope for. The Chair of the session (Organizer Temlyakov) pointed out at the end
of the lecture that the results were not optimal in the sense of optimal recovery.
Recent developments:

After the lecture another participant (Heping Wang) indicated how the result might be improved. This
interaction led Sloan and Wang to decide to write a new paper giving the improved results. This is now in
train.

2.14 Anisotropic approximation with shift-invariant subspaces by Moisés Soto-Bajo
Soto-Bajo considers approximation with shift-invariant subspaces in L2(Rd) scaled by the dilation operator
DAf(·) = |det(A)|1/2 f(A ·) induced by a given dilationA on Rd. He presents characterizations of different
properties which measure the approximation power of the shift-invariant subspaces.

These results generalize several others recently appeared in the literature, dealing with general shift-
invariant subspaces V (non necessarily finitely generated), with respect to general anisotropic dilations A,
and in the framework of A-reducing spaces (H = DAH). All the provided conditions focus on the local
behaviour at the origin of the spectral function of V , making use of the notion of anisotropic approximate
continuity point.

In [26] several conditions equivalent to the completeness property (
⋃
j∈ZD

j
AV is dense in H) of an A-

refinable (V ⊆ DAV ) subspace V are given. In [10] a characterization of the anisotropic approximation and
density orders of a shift-invariant subspace V is given. We say that V provides A-approximation order α > 0
if there exists C > 0 such that

‖f − PDjAV f‖2 ≤ C |det(A)|−jα/d ‖f‖A,α ∀ f ∈Wα,2
A , j ∈ Z ,

and we also say that V provides A-density order α ≥ 0 if

|det(A)|jα/d ‖f − PDjAV f‖2 −−−→j→∞
0 ∀ f ∈Wα,2

A .

PV denotes the orthogonal projection on V , Wα,2
A is the anisotropic Sobolev space given by the norm

‖f‖A,α = ‖(1 + ρ)α f̂‖2, f̂ is the Fourier transform of f , and ρ is a pseudo-norm for A∗, conjugate of
A.
Open Problems:

• To construct explicit interesting examples of such a shift-invariant subspaces, specially scaling func-
tions and low-pass filters.

• To characterize equivalence of dilations and pseudo-norms.

2.15 Weighted Bernstein inequality by S. Tikhonov
Tikhonov presented the recent results joint with A. Bondarenko [7] on Bernstein inequalities in the form
‖T ′n‖Lp(ω) ≤ Cn‖Tn‖Lp(ω), where 0 < p ≤ ∞ and ω non-doubling weights. Sufficient and necessary
conditions on ω for Bernstein’s inequlaity to hold are discussed.

2.16 Exponential convergence-tractability of general linear problems by Guiqiao
Xu

Xu studies d-variate general linear problems defined over Hilbert spaces in the average case setting. He con-
siders algorithms that use finitely many evaluations of arbitrary linear functionals. The traditional tractability
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of above problems have been well studied, see [23]. The author studies the corresponding EC-tractability in
terms of the eigenvalues of the corresponding covariance operators.
Recent developments: In the worst case setting, A. Papageorgiou, I. Petras [24] obtained the necessary
and sufficient conditions for Exponential Convergence-(Strong) Polynomial Tractability of general linear
problems defined over Hilbert spaces. Afterwards, G.Q. Xu [28] studied the corresponding problems in the
average case setting.
Open Problems:
• For the general linear problems defined over Hilbert spaces in the average case setting, how to char-

acterize Exponential Convergence-Quasi Polynomial Tractability directly in terms of the eigenvalues of the
corresponding covariance operators.

2.17 Polynomial Approximation in the Sobolev Space by Yuan Xu
Spectral approximation by polynomials on the unit ball is studied in the frame of the Sobolev spacesW s

p (Bd),
1 < p < ∞. The main results give sharp estimates on the order of approximation by polynomials in the
Sobolev spaces and explicit construction of approximating polynomials. One major effort lies in understand-
ing the structure of orthogonal polynomials with respect to an inner product of the Sobolev space W s

2 (Bd).
Recent developments: See [18]. For s = 1, 2, . . ., we define a bilinear form on the space W s

2 (Bd) by

〈f, g〉−s := 〈∇sf,∇sg〉Bd +

d%2 e−1∑
k=0

λk〈∆kf,∆kg〉Sd−1 , (4)

where λk, k = 0, 1 . . . , d%2e−1, are positive constants. Let Vdn($−s) be the space of orthogonal polynomials
with respect to the inner product 〈·, ·〉−s. Let proj−sn : W s

2 (Bd) 7→ Vdn($−s) be the orthogonal projection
operator. Define define

S−sn f(x) :=

n∑
k=0

proj−sk f(x) and S−sn,ηf(x) :=

∞∑
k=0

η

(
k

n

)
proj−sk f(x), (5)

where η ∈ C∞[0,∞) is an admissible cut-off function supported on [0, 2].

Theorem 2.6 Let r, s ∈ N and r ≥ s. If f ∈W r
p (Bd) and 1 < p <∞, then, for n ≥ s,

‖f − S−sn,ηf‖Wk
p (Bd) ≤ cn−r+k‖f‖W r

p (Bd), k = 0, 1, . . . , s, (6)

where S−sn,ηf can be replaced by S−sn f if p = 2.

Open Problems:
• Define the error of best approximation

En(f)W s
p

:= inf
p∈Πdn

‖f − p‖W s
p
.

How can we characterize this quantity? The inverse estimate is usually established by Bernstein inequality.
Is this still the case?

Open Problems

1. Extend the theory (as much as possible) to suitable compact subsets of Rn.

2. Establish that the quadrature weights discussed above are positive for quasiuniform data.
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2.18 Entropy numbers of weighted Sobolev classes on the unit sphere with respect
to Dunkl weight by Heping Wang

The author obtains the asymptotic orders of entropy numbers of weighted Sobolev spaces on the sphere with
respect to Dunkl weight, which is invariant under a finite reflection group. He uses the discretion method
to reduce the problem to the one of the entropy numbers of a finite-dimensional weight spaces, and obtain
the upper estimates of the latter one. In order to obtain the upper estimates, the author proved the two key
lemmas. In order to obtain the lower estimates, it is used the properties of the Dunkl transformation.
Recent developments:
• In the unweighted case, the exact orders of the entropy numbers of Sobolev classes BW r

p on the sphere
in Lq were obtained by Kushpel and Tozoni (2012) for 1 < p, q <∞ and H. Wang, K. Wang, J. Wang (2014)
for the remaining case.
• In the weighted case G = Zd2 , the Kolmogorov, linear, and Gelfand widths of the weighted Sobolev

classed on the sphere in weighted Lq space were obtained in Huang and Wang (2011).
Open Problems:
• Find out the asymptotic orders of entropy numbers and various widths of weighted Besov spaces on the

sphere with respect to the general product weights.

2.19 Local Bases on Spheres with Applications by J. D. Ward
The presentation focused on kernel interpolation and approximation in a fairly general setting. Given a set
of N scattered sites, the standard basis when using positive definite or conditionally positive definite kernels
utilizes N globally supported kernel; computing with this type of basis becomes unstable and prohibitively
expensive for large N . Easily computible, well-localized bases with “small-footprint” basis elements, i.e.,
elements using only a small number of kernels, have been unavailable.

In the presentation, the theoretical development of small footprint bases that are well-localized spatially,
for a variety of kernels was discussed. Another point of discussion was how to easily and efficiently com-
pute these small footprint, robust (i.e., well-localized, Lp stable) bases for spaces associated with restricted
surface-spline kernels on the sphere Sn and more general manifolds. While the bases discussed, local La-
grange functions, are not new, the number of points needed per Lagrange function, O(logNd) on Sd, to
insure a stable, highly localized basis on Sd is predicated on the theoretical investigation. An offshoot of
these results is a strategy for selecting centers for preconditioning that scales correctly with the total number
of centers N .

Another offshoot of this work is a class of easy to compute quadrature formulas (dependent on the given
kernel) for the sphere which are exact for the spaces spanned by the local bases. These quadrature formulas
have implications for meshless methods.

The presentation was based on a series of papers with various authors including T. Hangelbroek, F.J. Nar-
cowich, E. Fuselier, G. B. Wright and X. Sun.
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