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Chromatic
Chromatic polynomial

The chromatic polynomial (for planar graphs) was first defined by
Birkhoff in 1912 in an attempt to find an algebraic proof of the
then open four-colour problem. The chromatic polynomial x(G; \)
of a graph G counts, for every positive integer A, the number of
proper colouring of the vertices of G with A colours. One can
easily check that, if e is an edge of G, then

P(G,q) = P(G\ e,q) — P(G/e, q).

Criel Merino On zeros of the characteristic polynomial of representable matroi



Chromatic
Chromatic polynomial

The following theorem is due to G. D. Birkhoff (and independently
by H. Whitney1932)

If G = (V,E) is a graph, then

x(G; A) = X*(E) Z 1)AINr(E)=r(A) (1)
ACE

Criel Merino On zeros of the characteristic polynomial of representable matroi



Chromatic
Chromatic polynomial

Since the chromatic polynomial can be evaluated at real and
complex values, Birkhoff hoped to use analytic methods to prove
the 4-colour conjecture. In fact, the four-colour Theorem is
equivalent to stating that x(G;4) > 0 for all planar graphs G.
Such an analytic proof was never found, but Birkhoff and Lewis in
1946 did show that if G is planar then x(G; A) > 0 for all real

A > 5. They conjectured that 5 could be changed to 4, and almost
70 years later their conjecture is still open.

Conjecture (Birkhoff-Lewis, 1946)

If G is a planar graph, then x(G;\) > 0 for all real A > 4.
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Chromatic
Chromatic polynomial

What about largest real roots? A family of graphs G has an upper
root-free interval if there is a real number a such that no graph in
G has a real root larger than a. The class of all graphs does not

have an upper root-free interval (since you can get arbitrarily large
chromatic roots from cliques).
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Chromatic
Chromatic polynomial

This is different for a proper minor-closed class of graphs.

Theorem (Mader '67)

For every k € N there exists an integer f(k) such that any graph
with minimum degree at least f(k) has a Ki-minor.

It follows that, for every proper minor-closed family of graphs G,
there exists a smallest integer d = d(G) such that every graph in G
has a vertex of degree at most d. Woodall and Thomassen proved
the next result independently.

Theorem (Thomassen '97, Woodall '97)

If G is a proper minor-closed family of graphs, then (d(G), o0) is
an upper root-free interval for G.
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The idea of tree-width in graphs:

To say how “tree-like” the structure of a graph is.

tree
decomposition

The width of a tree decomposition is the highest number of graph
vertices contained in a node of the tree, minus one.



The idea was extended to matroids by Hlineny and Whittle




The idea was extended to matroids by Hlineny and Whittle

tree decomposition

Tree decomposition:

* The nodes of T are “buckets”.

* Each element of M goes in one bucket (partitioning E(M)). Buckets can
be empty or contain many elements.




Tree-Width for Matroids

* Given a tree decomposition, each node gets a weight
called its node-width.

 The width of a tree decompositionis the highest value of
its node-widths.

e The tree-width of a matroid is the minimum width of all
its tree decompositions.



Tree-Width for Matroids

Given a tree decomposition, each node gets a weight
called its node-width.

The width of a tree decompositionis the highest value of
its node-widths.

The tree-width of a matroid is the minimum width of all
its tree decompositions.

How do we measure node-width?



The width of a node x of T is
W) =r(M) —Y[r(M) —r(E(M) — B;)]
=Yr(E(M) — B;) — (d — Dr(M).
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The width of a node x of T is
W) =r(M) —Y[r(M) —r(E(M) — B;)]
=Yr(E(M) — B;) — (d — Dr(M).

What does this value
mean geometrically?
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Brief Digression: A note on k-separations in representable matroids.

Let M be a matroid representable over GF (q). Then we can embed M in
the projective space PG(r(M) — 1,q). Let (A, B) be a k-separation of M.

A cl(4A) n cl(B) B
“guts” of (4, B)

plonkin points to get projective space here

Then we can add points of PG(r(M) — 1,q) to M into the guts of (4, B)
to obtain matroid M’ and k-separation (A’, B") such that the guts of
(A’, B") is the projective space PG(k — 2,q).






The width of a node x of T is
W) =r(M) —Y[r(M) —r(E(M) — B;)]
=Yr(E(M) — B;) — (d — Dr(M).

What does this value
mean geometrically?
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If M is representable, then the width of node x is

W(x)=ryp(AUCLUCy U--UCy).
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If M is representable, then the width of node x is

W(x) =1,/ (AUC,UC, U--UCy).

m%5 Note: If x is a leaf
D o node of T, and A is
the set of matroid
elements in the x-
bucket, then
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Example: Tree decompositions for Uz 15 and U 1

node widths



Example: Tree decompositions for a daisy




Example: Tree decompositions for a daisy




The Chromatic Polynomial for Matroids

For a matroid M,

x(M,2) = Z (—1)|XI,1T(M)—r(X)_
XCE(M)

The familiar deletion-contraction rules apply:

 If x isnot a loop or coloop then y(M, 1) = y(M\x,A) — x(M/x, 2),
* Ifxisaloopthen y(M,1) =0,

* Ifxisacoloop then y(M,1) = (A — 1)y(M\x, A).



Matroids
The Characteristic polynomial

For example,the characteristic polynomial of Up,,, 0 < m < n, is
_]_ _
XUna(A) = 2psg (F1F (D) (A™K = 1).

For PG(r — 1, q), whose lattice of flats is isomorphic to the lattice
of subspaces of the r-dimensional vector space over GF(q), has
characteristic polynomial

XpPe(r-1,9)(A) = A =1)A—=q)(A—¢*)--- (A= g 1).
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Matroids
generalized parallel connection

Given two matroids My = (E1, 1) y Mo = (Ez, r2) we define the
generalized parallel connection, Py(M, My), as the matroid over
E1 U E> whose flats are the sets X de E; U E> such that X N Ej is a
flat in My and X N E> is a flat in M and where

N = Ml‘T = M2|T and T = E; N E>. Then,

XPy(My, M) (A) = XM XM, ) ;/\IJE()\A;Z()\). (3)
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Theorem (Chun, H, Merino, Noble): Let M be a matroid
representable over GF(q). If M has tree-width at most k,
then there exists ¢, € R such that y(M,A) > 0 for all
A > ¢y,
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Proof Outline:

For induction, lexicographically order all GF(q)-representable matroids
by (rank, |E(M)|, something).

We make sure ¢, is large enough that PG (0,q),PG(1,q),...,PG(k —1,q)
satisfy the theorem.

Induction: Let M be GF (q)-representable with tree-width < k. Assume
all GF(q)-representable matroids of tree-width < k that occur before M
in the LEX ordering satisfy the theorem.

Let T be an optimal tree decomposition of M and let (4, 5) be a
k'-separation of M displayed by T (note k' < k):
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Let {e,, e,, ..., e; } be the elements of PG(r(M) — 1, q) in the guts of
(4, B).

Let M “i denote the matroid M extended by e;.

Lemma: M 2% has the same tree-width as M (construct the same
tree decomposition with ¢, e,, ..., ¢; in bucket v,or v;).

Lemma: For any matroid M and anyelemente € E(M), TW (M /e) < TW (M).



Induction:
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We need to know that y(M°®v€2-¢ 1) is positive for all 1 > cy.



Lemma: If the guts is a modular flat then

x((M]A)2-¢t, ) x(M|B)2°, 1)
x({ey, ez, ., e}, A)

X(Mel €y ...et’ A) —



X((M[A)8-, )y (M|B)*1¥2-, 2)
x(ew, €2, ek A)

1

Rank lower than M so the induction works ...

X(Melez ...et’ A) —

... except in the case where M has no k'-separations
forany k' < r(M). In which case, extend M to
PG(r(M) — 1,q) as on the previousslide.
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