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Chromatic Matroids

Chromatic polynomial

The chromatic polynomial (for planar graphs) was first defined by
Birkhoff in 1912 in an attempt to find an algebraic proof of the
then open four-colour problem. The chromatic polynomial χ(G ;λ)
of a graph G counts, for every positive integer λ, the number of
proper colouring of the vertices of G with λ colours. One can
easily check that, if e is an edge of G , then

P(G , q) = P(G \ e, q)− P(G/e, q).
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Chromatic Matroids

Chromatic polynomial

The following theorem is due to G. D. Birkhoff (and independently
by H. Whitney1932)

Theorem

If G = (V ,E ) is a graph, then

χ(G ;λ) = λκ(E)
∑
A⊆E

(−1)|A|λr(E)−r(A). (1)
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Chromatic Matroids

Chromatic polynomial

Since the chromatic polynomial can be evaluated at real and
complex values, Birkhoff hoped to use analytic methods to prove
the 4-colour conjecture. In fact, the four-colour Theorem is
equivalent to stating that χ(G ; 4) > 0 for all planar graphs G .
Such an analytic proof was never found, but Birkhoff and Lewis in
1946 did show that if G is planar then χ(G ;λ) > 0 for all real
λ ≥ 5. They conjectured that 5 could be changed to 4, and almost
70 years later their conjecture is still open.

Conjecture (Birkhoff-Lewis, 1946)

If G is a planar graph, then χ(G ;λ) > 0 for all real λ ≥ 4.

Criel Merino On zeros of the characteristic polynomial of representable matroids of bounded tree-width.



Chromatic Matroids

Chromatic polynomial

What about largest real roots? A family of graphs G has an upper
root-free interval if there is a real number a such that no graph in
G has a real root larger than a. The class of all graphs does not
have an upper root-free interval (since you can get arbitrarily large
chromatic roots from cliques).
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Chromatic Matroids

Chromatic polynomial

This is different for a proper minor-closed class of graphs.

Theorem (Mader ’67)

For every k ∈ N there exists an integer f (k) such that any graph
with minimum degree at least f (k) has a Kk -minor.

It follows that, for every proper minor-closed family of graphs G,
there exists a smallest integer d = d(G) such that every graph in G
has a vertex of degree at most d . Woodall and Thomassen proved
the next result independently.

Theorem (Thomassen ’97, Woodall ’97)

If G is a proper minor-closed family of graphs, then (d(G),∞) is
an upper root-free interval for G.
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The idea of tree-width in graphs: 

To  say  how  “tree-like”  the  structure  of  a  graph  is. 

The width of a tree decomposition is the highest number of graph 
vertices contained in a node of the tree, minus one. 

tree 
decomposition 



The idea was extended to matroids by Hlineny and Whittle 



The idea was extended to matroids by Hlineny and Whittle 

Tree decomposition:  
• The nodes of 𝑇 are  “buckets”. 
• Each element of 𝑀 goes in one bucket (partitioning 𝐸(𝑀)). Buckets can 

be empty or contain many elements. 

tree decomposition 



• Given a tree decomposition, each node gets a weight 
called its node-width. 
 

• The width of a tree decomposition is the highest value of 
its node-widths. 
 

• The tree-width of a matroid is the minimum width of all 
its tree decompositions. 

Tree-Width for Matroids 



• Given a tree decomposition, each node gets a weight 
called its node-width. 
 

• The width of a tree decomposition is the highest value of 
its node-widths. 
 

• The tree-width of a matroid is the minimum width of all 
its tree decompositions. 
 

• How do we measure node-width? 

Tree-Width for Matroids 



The width of a node 𝑥  of 𝑇 is 

𝑊 𝑥 = 𝑟 𝑀 −∑ 𝑟 𝑀 − 𝑟 𝐸 𝑀 − 𝐵௜  

                    = ∑𝑟 𝐸 𝑀 − 𝐵௜ − 𝑑 − 1 𝑟 𝑀 . 



The width of a node 𝑥  of 𝑇 is 

𝑊 𝑥 = 𝑟 𝑀 −∑ 𝑟 𝑀 − 𝑟 𝐸 𝑀 − 𝐵௜  

                    = ∑𝑟 𝐸 𝑀 − 𝐵௜ − 𝑑 − 1 𝑟 𝑀 . 

What does this value 
mean geometrically? 



Brief Digression: A note on 𝑘-separations in representable matroids. 

Let 𝑀 be a matroid representable over 𝐺𝐹(𝑞). Then we can embed 𝑀 in 
the projective space 𝑃𝐺(𝑟 𝑀 − 1,𝑞). Let (𝐴, 𝐵) be a 𝑘-separation of 𝑀. 

Then we can add points of  𝑃𝐺(𝑟 𝑀 − 1,𝑞) to 𝑀 into the guts of (𝐴, 𝐵) 
to obtain matroid 𝑀′ and 𝑘-separation (𝐴ᇱ, 𝐵ᇱ ) such that the guts of 
(𝐴ᇱ, 𝐵ᇱ) is the projective space 𝑃𝐺(𝑘 − 2, 𝑞). 

𝑐𝑙 𝐴 ∩ 𝑐𝑙 𝐵  
“guts”  of  (𝐴, 𝐵)  

𝐴 𝐵 

plonk in points to get projective space here 





The width of a node 𝑥  of 𝑇 is 

𝑊 𝑥 = 𝑟 𝑀 −∑ 𝑟 𝑀 − 𝑟 𝐸 𝑀 − 𝐵௜  

                    = ∑𝑟 𝐸 𝑀 − 𝐵௜ − 𝑑 − 1 𝑟 𝑀 . 

What does this value 
mean geometrically? 



If 𝑀 is representable, then the width of node 𝑥 is 

𝑊 𝑥 = 𝑟ெᇲ 𝐴 ∪ 𝐶ଵ ∪ 𝐶ଶ ∪⋯∪𝐶ௗ . 



If 𝑀 is representable, then the width of node 𝑥 is 

𝑊 𝑥 = 𝑟ெᇲ 𝐴 ∪ 𝐶ଵ ∪ 𝐶ଶ ∪⋯∪𝐶ௗ . 

Note: If 𝑥 is a leaf 
node of 𝑇, and 𝐴 is 
the set of matroid 
elements in the 𝑥-
bucket, then 
𝑊 𝑥 = 𝑟ெ 𝐴 . 



Example: Tree decompositions for 𝑈ଷ,ଵ଴ and 𝑈଻,ଵ଴ 

𝑥ଵ  

𝑥ଵ଴  

𝑥ଽ  

𝑥଼ 𝑥଻ 𝑥ଶ 𝑥଺ 𝑥ଷ 𝑥ସ 𝑥ହ 

1 2 3 3 3 3 2 1 

2 

1 

node widths 

𝑈ଷ,ଵ଴ 

𝑥ଵ  

𝑥ଵ଴  

𝑥ଽ  

𝑥଼ 𝑥଻ 𝑥ଶ 𝑥଺ 𝑥ଷ 𝑥ସ 𝑥ହ 

1 2 3 6 4 3 2 1 

2 

1 

node widths 

𝑈଻,ଵ଴ 



Example: Tree decompositions for a daisy 

𝐵ଵ 𝐵ଶ 

  ø 𝐵ଷ 

𝐵ସ 

𝐵ହ 

3 
3 

3 

3 
3 

5 

node widths 



Example: Tree decompositions for a daisy 
𝐵ଵ 𝐵ଶ 

  ø 𝐵ଷ 

𝐵ସ 

𝐵ହ 

3 
3 

3 

3 
3 

5 

𝐵ଵ 𝐵ଶ 

  ø 

𝐵ଷ 
𝐵ସ 

𝐵ହ 

  ø   ø 

3 

3 

3 

3 

3 

3 

3 

3 

node widths 

 

 



The Chromatic Polynomial for Matroids 

For a matroid M, 

𝜒 𝑀, 𝜆 = ෍ (−1)|௑|𝜆௥ ெ ି௥(௑).
௑⊆ா ெ

 

 

The familiar deletion-contraction rules apply: 

• If 𝑥 is not a loop or coloop then 𝜒 𝑀, 𝜆 = 𝜒 𝑀\𝑥, 𝜆 − 𝜒 𝑀/𝑥, 𝜆 , 

• If 𝑥 is a loop then 𝜒 𝑀, 𝜆 = 0, 
• If 𝑥 is a coloop then 𝜒 𝑀, 𝜆 = 𝜆 − 1 𝜒 𝑀\𝑥, 𝜆 . 



Chromatic Matroids

The Characteristic polynomial

For example,the characteristic polynomial of Um,n, 0 < m ≤ n, is
χUm,n(λ) =

∑m−1
k=0 (−1)k

(n
k

)
(λm−k − 1).

For PG (r − 1, q), whose lattice of flats is isomorphic to the lattice
of subspaces of the r -dimensional vector space over GF (q), has
characteristic polynomial
χPG(r−1,q)(λ) = (λ− 1)(λ− q)(λ− q2) · · · (λ− qr−1).

Criel Merino On zeros of the characteristic polynomial of representable matroids of bounded tree-width.



Chromatic Matroids

generalized parallel connection

Given two matroids M1 = (E1, r1) y M2 = (E2, r2) we define the
generalized parallel connection, PN(M1,M2), as the matroid over
E1 ∪ E2 whose flats are the sets X de E1 ∪ E2 such that X ∩ E1 is a
flat in M1 and X ∩ E2 is a flat in M2 and where
N ∼= M1|T ∼= M2|T and T = E1 ∩ E2. Then,

χPN(M1,M2)(λ) =
χM1(λ)χM2(λ)

χN(λ)
. (3)
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Theorem (Chun, H, Merino, Noble): Let 𝑀 be a matroid 
representable over 𝐺𝐹(𝑞). If 𝑀 has tree-width at most 𝑘, 
then there exists 𝑐௞ ∈ ℝ such that 𝜒 𝑀, 𝜆 > 0 for all 
𝜆 > 𝑐௞. 



Proof Outline: 

For induction, lexicographically order all 𝐺𝐹 𝑞 -representable matroids 
by (rank, |𝐸 𝑀 |, something). 

We make sure 𝑐௞  is large enough that 𝑃𝐺 0, 𝑞 ,𝑃𝐺 1, 𝑞 ,… , 𝑃𝐺 𝑘 − 1,𝑞  
satisfy the theorem. 

Induction: Let 𝑀 be 𝐺𝐹 𝑞 -representable with tree-width ≤ 𝑘. Assume 
all 𝐺𝐹 𝑞 -representable matroids of tree-width ≤ 𝑘  that occur before 𝑀 
in the LEX ordering satisfy the theorem. 
Let 𝑇 be an optimal tree decomposition of 𝑀 and let (𝐴, 𝐵) be a             
𝑘′-separation  of 𝑀 displayed by 𝑇 (note 𝑘′ ≤ 𝑘): 



Let {𝑒ଵ, 𝑒ଶ, … , 𝑒௧} be the elements of 𝑃𝐺 𝑟(𝑀) −1, 𝑞  in the guts of 
𝐴, 𝐵 . 

Let 𝑀௘೔ denote the matroid 𝑀  extended by 𝑒௜. 

Lemma: 𝑀௘భ,௘మ,…,௘೟  has the same tree-width as 𝑀  (construct the same 
tree decomposition with 𝑒ଵ, 𝑒ଶ,… , 𝑒௧ in bucket 𝑣௔or 𝑣௕). 

Lemma: For any matroid 𝑀  and any element 𝑒 ∈ 𝐸(𝑀), 𝑇𝑊(𝑀/e) ≤ 𝑇𝑊(𝑀). 



Induction: 

We need to know that 𝜒(𝑀௘భ,௘మ,…,௘೟ , 𝜆) is positive for all 𝜆 ≥ 𝑐௞. 



Lemma: If the guts is a modular flat then 

𝜒 𝑀௘భ௘మ…௘೟ , 𝜆 = 𝜒 (𝑀|𝐴)௘భ௘మ…௘೟ , 𝜆 𝜒((𝑀|𝐵)௘భ௘మ…௘೟ , 𝜆)
𝜒({𝑒ଵ, 𝑒ଶ, … , 𝑒௧}, 𝜆)

 



Rank lower than 𝑀 so the induction works … 
…  except  in  the  case  where  𝑀 has no 𝑘′-separations 
for any 𝑘ᇱ < 𝑟 𝑀 . In which case, extend M to 
𝑃𝐺 𝑟(𝑀) − 1, 𝑞   as on the previous slide.  
 

𝜒 𝑀௘భ௘మ…௘೟ , 𝜆 = 𝜒 (𝑀|𝐴)௘భ௘మ…௘೟ , 𝜆 𝜒((𝑀|𝐵)௘భ௘మ…௘೟ , 𝜆)
𝜒({𝑒ଵ, 𝑒ଶ, … , 𝑒௧}, 𝜆)
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