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Extended LP formulations

Consider
PIP:{:BERn : Ax < b, x; € Z foriEI}
and
QIP:{(x,s)ERnXRk . Ce+Gs<d, x; € Z foriEI}
such that

P — b, (2)




Split sets and split cuts

e Consider
P ={zecR": Az <b, z;€ Z forje J}

e and the split set:
S={zeR" : v+1>nzx >~}

where m € Z", v € Z,and w; # 0 only if j € J.

o (learly

P*" D conv(P™\ S) D P,

x1



Is there a benefit in applying split cuts to extended LP formulations?
3

e Given:

- P CR"and Q" C R™" such that P*" = proj, (Q"")

— Split sets S; C R" and S = S; x R¥ for i € I = {1,...,m}

e Compare:

m conv(P"\'S;) vs.  projgn <ﬂ conv(Q""\ Sj))

el el

e We can show that:

— If |I| =1 = no gain.

— If |I| > 1 = splits on extended formulation can be strictly better.



Proof by example

e It is easy to argue that P*" \ S; = projzn (QLP \ S;7)

e furthermore,

ﬂ conv(PLP \ Si) D projrn <ﬂ conv(QLP \ Sj))

el el

e The split closure of P** below is (1/2,1/2) whereas that of Q" is empty.

PP : conv((0,1/2), (1,1/2), (1/2,0), (1/2, 1))
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[joint with Jim Luedtke]



Power of extended formulations

Theorem : Every 0 — 1 mixed integer set in R"™"" has a reformulation in R*"%,
such that the split closure of the extended formulation is integral.

o Let PV =P n{0,1}" x R" where

P = conv(z',...,z™) + cone(r', ..., 7"

o Consider X*" = conv(&', ..., &™) + cone(7', ..., 7") , where
- = (", 0)
— 2" = (2, 2") where

‘ o.w.

’ { 1 ifx} fractional
A —

0
for 1 =1,...,n.

o Elementary splits S; = {x € R"™" : 1 > x; > 0} give the integral hull

(n—1)



The cropped cube

e Let N =1A{1,...,n} and consider
PLP:{:BERn: Stai+ Y (1-z)>1/2, VICN
el teN\I

0<az <1, VieN }

L2

I3

e All 2" + 2n inequalities are facet defining

e All vertices are of the form x; = 1/2 forone ©« € N and xz; € {0, 1} for the rest.



Extended LP formulation for the cropped cube

e Consider

xXLP = {(w,z) eR"x R" 2 < 2, Vi€ N
242z, <2, Vie N

e Extreme points of X' are of the form &' = (z', 2') where x' is an extreme point
of P" and

1

. { 1 if 2! fractional
P A—
0 ow.

o P = proj, (XLP)

o SC(X"") = () whereas SC'(P*") # () forall t < n .



Generalized cropped cube

e Extreme points of P“" have exactly k fractional components with x; = 1 /2.

L2
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e [Exponentially many extreme points/facets as before.

e The (compact) extended formulation is:

XM = {(m,z) eR"xR" :

Zzi:k }



General mixed integer case

The Cook, Kannan and Schrijver’s example: PP — plP n 22 x R where
P*" = conv((0, 0,0), (2, 0,0), (0,2,0), (12,1/2, €))

[ P'Y has x5 =0 but SC'(P*") has x5 > 0 forall t=1,2,...]

I3
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Is there a good extended LP formulation for P 7



Properties of good extended formulations: minimality
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Let S(P™") denote the split closure of P*" w.r.t. a collection of split sets S.

If QLY C QLY in R"™" are extended formulations of P™" C R", then

S(QI") € S(@QF) = proirn (S(QIT)) C proirn (S(Q5))

=> Smaller extended formulations are better.

Each extreme point/ray of PYY should have at least 1 pre-image in Q™'.
Ideally each extreme point/ray of P should have exactly 1 pre-image.

— If less than one, not a valid extended formulation

— If more than one, not minimal.

Minimal extended formulations are not unique even for fixed k.



Properties of good extended formulations: increasing dimension
11

Let S(P™") denote the split closure of P*" w.r.t. a collection of split sets S .
Let QlLP C R"* be an extended formulation of P C R"™ .
If dim(QT") = dim(P""), then projgn (S(QT")) = S(P*F)
More generally, if
k> dim(Q;") — dim(P"")
then there is an extended formulation QL" C R"™"" such that
projren (S(QF")) = projrn (S(Q51))

where t = dim(Q¥") — dim(P") .

= extended formulations are useless unless they increase dimension.




Limitations of extended formulations
12

The Cook, Kannan and Schrijver’s example: PP — plP 22 x R where

P*" = conv((0,0,0), (2,0,0), (0,2,0), (2,2, €))

I3
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1. PY" has 4 extreme points = Q™" should ideally have 4 extreme points.

2. dim(Q*") < 3 = dim(P*") = no gain!



A minimal extended formulation for mixed integer case
13

o let
k . t . k
ptt — {x € R" : x = Zaizﬁz—i—z I/ij] s.t. Zai =1, a € Rli, v C Ri}
i=1 j=1 i=1

where I' are the extreme points and 77 are the extreme rays.

e Consider

k t k
x P — {q € RITEEE q = Z ai(jz—l—z I/j’uA)J s.t. Z o, =1, a € Ri, v E Ri}
i=1

where §' = (&', ¢e;), W’ = (#,epy;) and e; denotes the unit vector in R**" .
e Then
projen (SC(X™)) € projn (SC(Q™))

for any extended LP formulation Q' of PI' |



The strength of the extended formulation
14

e Consider split sets S' = {z € R" : 7l +1 > (#)x > mo} for £ € L .

e The split closure of P with respect to L is:

SE(PLP) :{ cR" r =z 17 teL,
k t k t '
T= a@+y o, T=Y a@t+y i /e L,
i=1 j=1 i=1 j=1
k k
_/ =/
Zaz’:M€7 Zai:]-_:uﬁa KGL,
1=1 1=1
4 — V4 V4 = V4
(m)" @ < pemy, (7' % > (1 — pe)(mg+1), LE€L,
a7’ >0, &5 >0, 0§u§1}-

 projrn (S*(X"")) also imposes o = a'+a‘and v ="+ 0" for £ € L.



Computational experiments with the two row relaxation
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Consider a two-row relaxation of a generic IP using the LP tableau:

p'r = {(az,s) c z’ xRi : x:f—f—zf“jsj}

where f and all # arein R? .

dim(P*") = number of extreme points and rays = no gain.

Compare 16 simple splits applied to P**

Average gap closed by split cuts:

LP __ LP 2+k LP
PP = PLP A R2ME and XL

| J| S(PT) S(P{7) = s(PM)  S(xXyh) = s(prt) P = S(Xyh)
20  88.82 (42/100) 16.21 (23/58) 5.99 (10/35) 15.44 (25)
40 91.20 (47/100) 11.87 (17/53) 5.17 (6/36) 12.87 (30)
60  88.48 (36/100) 11.90 (28/64) 5.31 (9/36) 16.94 (27)
80  91.32 (44/100) 15.44 (27/56) 2.51 (11/29) 13.59 (18)
100 89.53 (43/100) 12.33 (25/57) 6.09 (6/32) 19.78 (26)




Lovasz-Schrijver extended formulation
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o Let PV =P"" n{0,1}" and
P ={z e R" : Az > b}
where 1 > x > 0 is included in Ax > b .

o The Lovasz-Schrijver extended formulation Q(P™") :

1. Generate the nonlinear system

zj(Ax —b)
(1—=z;)(Ac—b) > O j=1,...,n.

AV,
o

2. Linearize by substituting vy,; for x;xz; (and vy; = y;i .)
3. [But do not strengthen by substituting x; for v, yet.]
e Note that P*" = proj, (Q(P""))

o Further, P*" D S"(P"") D N(P"") = proj, (Q(P"") + strengthening step 3)



Split cuts for the Lovasz-Schrijver extended formulation
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o The strengthening step (substituting x; for y;; )isa 0/1 split cut for Q(P*").
o There are more split cuts for Q(P™") (even from 0/1 splits).

o Let S (Q(P™)) be the split closure of Q(P™") w.rt. 0/1 splits.

We can show that

proj,, (SOl(Q(PLP))) C  proj, (Q(SOl(PLP)> + strengthening step 3)

J

Ve

Lovasz-Schrijver (w/ strengthening) applied to 0/1 split closure of pLP

Which also implies proj, (S*'(Q(P""))) C S (S"(P"")) and therefore:

Applying this procedure n /2 times gives an integral polyhedron.

(35 (S01)n(PLP) — PIP)



Computations with the Lovasz-Schrijver extended formulation
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e Random instances of the stable set problem with density 0.25%

(higher density instances do not have gap between N > and SA* )
e For the the stable set problem, N(P™") = S (P") = odd cycle inequalities

e Consequently, for the stable set problem:

PIP g SA2(PLP) g N(PLP) g NQ(PLP) g N(PLP) g PLP.
o 2 N e |

2nd level S\hgra/i—A dams new Lovasz-Schrijver

V| N N?2—-N N-N? SA - N % Gap left

20 100 0 0 0 0
25 99.53 0.46 0 0 0
30 97.50 2.49 0 0 0
35 90.29 9.52 0.0527 0 0.1236
40 89.45 10.37 0.0843 0.0003 0.0796
45 84.70 14.79 0.1214 0.0002 0.3727

50  80.55 18.33 0.0862 0.0001 1.0299




19

thank you...



