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Cutting-planes: Introduction

Cutting Plane

1 Cutting-planes in a linear inequality that is valid for all integer feasible points, but
may not be valid for the linear programming relaxation.

2 Huge amount of research in Integer Programming on
problem-specific and general purpose cutting-planes.

3 General purpose cutting-planes have been extremely
useful in practice to solve IPs.

Cutting planes

In theory
•
• Give convex hull of solutions
• Many families of cuts, large literature, since 60’s
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Cutting plane selection is non-trivial

Most commercial/successful IP solvers have very sophisticated methods of
cutting-planes selection and use.

1 "Dept of cut"

2 "Parallelism"

3 "Numerical stability"

4 "Cutting-plane sparsity"

‘Cut pool management system’, ‘Cutting-plane filter system’
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Most solvers prefer to use sparse
cutting-planes.

Pros...

1 Linear Programming
solvers can take advantage
of sparsity of constraints.
Since in a Branch and
Bound tree we solve many
LPs, sparsity helps!

Cons...
1 Sparse constraints may not

approximate the integer hull (a
polytope) well!
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Most solvers prefer to use sparse
cutting-planes.

Pros...

1 Linear Programming
solvers can take advantage
of sparsity of constraints.
Since in a Branch and
Bound tree we solve many
LPs, sparsity helps!

Cons...
1 Sparse constraints may not

approximate the integer hull (a
polytope) well!

Main Goal: Theoretically analyze performance of sparse cutting-planes.
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Prior results: Quality of sparse closure

SSD, Marco Molinaro, Qianyi Wang, "Approximating Polyhedra with Sparse
Inequalities," Mathematical Programming, 2015.

Cutting planes
In practice
• Only want to use sparse cutting planes

• Most commercial solvers use sparsity to filter cuts
• Very limited theoretical investigation [Andersen, Weismantel 10]

• Do not give convex hull of solutions

ܽ . ݔ ൑ 	ܾ

at most ࢑ non‐zero entries

How good are sparse cutting planes?

Pk := Outer approximation to P using inequalities with k -sparse inequalities.
d(P,Pk ): = distance between P and Pk .
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Prior results: Quality of sparse closure
Pk := Outer approximation to P using inequalities with k -sparse inequalities.
d(P,Pk ): = distance between P and Pk .

Theorem
Let n ≥ 2. Let P ⊆ [0, 1]n be the convex hull of points {p1, . . . , pt}. Then

1 d(P,Pk ) ≤ 4 max
{

n1/4
√

k

√
8 maxi∈[t] ‖pi‖

√
log 4tn, 8

√
n

3k log 4tn
}

2 d(P,Pk ) ≤ 2
√

n
( n

k − 1
)
. �

Our results

݀ ܲ, ܲ௞݀ ܲ, ܲ௞

݇ (density)݇ (density)

݀ ܲ, ܲ௞

݇ (density)

Our results

• Upper bounds on ݀ሺܲ, ܲ௞ሻ for polytopes in  0,1 ௡	
• Matching lower bound: a random 0/1 polytope, with prob¼ 
• Hard packing IPs: sparse cuts are bad

ൎ
࢔
࢑

.࢔ሺ܏ܗܔ ܜܚ܍ܞ# ࡼ ሻ			

૛ ࢔
࢔
࢑ െ ૚

Consequences

1 Polynomial number of vertices as a function of dimension
with ∼ 1

2 sparsity, implies d(P,Pk ) is very small (≈
√

logn),
i.e. sparse cutting planes are good.
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Prior results: Sparse cuts are bad for dense
packing IPs

Random packing instances: Sparse cutting-planes are bad.

Used commonly as computational test‐instances [Freville and 
Plateau 96, Chu and Beasly 98, Kaparis and Letchford 08 and 10, …]

Theorem: With probability at least ½, ݀ ܲ, ܲ௞ ൒ ~ ݊ ௡
௞
െ 1 , 

for ݇ ൒ ݊/2.

Hard packing IPs

	

Obs 1: Almost matches upper bound: as bad as it gets

Obs 2: Still have distance ܱሺ ݊ሻ even with sparsity Ωሺ݊ሻ

ܣ ݔ	 	ܾ൑
[0, …, M] 
uniform 

distribution

ݏ݄݈	݂݋	݉ݑݏ
2

ݔ ∈ 0,1 ௡

Our results

݀ ܲ, ܲ௞݀ ܲ, ܲ௞݀ ܲ, ܲ௞

Our results

• Upper bounds on ݀ሺܲ, ܲ௞ሻ for polytopes in  0,1 ௡	
• Matching lower bound: a random 0/1 polytope, with prob¼ 
• Hard packing IPs: sparse cuts are bad

݇ (density)
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We want analysis for “real" IPs

• “Real" IPs are sparse: The average number (median) of non-zero
entries in the constraint matrix of MIPLIB 2010 instances is 1.63%
(0.17%).

How does sparsity of IPs effect the performance of sparse cutting-
planes?
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Why sparse cuts may be useful for
sparse IPs?

1 Consider the following IP set∑5
j=1 Ajxj ≤ b1∑10

j=6 Ajxj ≤ b2

x ∈ Z10.

1 Clearly the convex hull is given by inequalities in the support of the first five
examples and separately on the last 5 inequalities.

2 In practice many instances are “loosely decomposable".

2 Classic computation paper: “Solving Large-Scale Zero-One Linear
Programming Problems" by H. Crowder, E. L. Johnson, M. Padberg
(1982). Some quotes:

1 “All problems are characterized by sparse constraint matrix with
rational data."

2 “We note that the support of an inequality obtained by lifting (2.7)
or (2.9) is contained in the support of the inequality (2.5) ...
Therefore, the inequalities that we generate preserve the
sparsity of the constraint matrix."
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Another example of sparse IPs:
Two-stage stochastic IPs

max cT y +(d1)T z1 +(d2)T z2 +(d3)T z3 + . . . +(dk )T zk

s.t. Ay ≤ b
A1y +B1z1 ≤ b1

A2y +B2z2 ≤ b2

A3y +B3z3 ≤ b3

. . . . . .

. . . . . .

. . . . . .

Ak y +Bk zk ≤ bk

yi ∈ Z ∀ i ∈ I, z j
i ∈ Z ∀ i ∈ I j ∀j ∈ {1, . . . , k}

Scenario-specific cuts: αT y + β jz j ≤ γ
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Overview of results
Multiplicative bounds for three types of problems:

1 Packing-type IPs:

max
∑n

j=1 cjxj

s.t. Ax ≤ b (P)
x ∈ Zn1

+ × Rn2
+

where c, A, b are non-negative.
2 Covering-type

min
∑n

j=1 cjxj

s.t. Ax ≥ b (C)
x ∈ Zn1

+ × Rn2
+

where c, A, b are non-negative.
3 “Packing-type" problem with milder assumptions:

max
∑n

j=1 cjxj

s.t. Ax ≤ b (P − Arbitrary A)
x ∈ Zn1

+ × Rn2
+

where only c is non-negative.
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Overview of results contd.

1 We present a method to "quantity" the sparsity of A.

2 We present a specific way to describe a hierarchy of sparse
cutting-planes with different supports.

3 We present multiplicative bounds:
1 Packing-type problem (max objective):

•
zcut

≤ [function of (sparsity pattern of A, support of sparse cuts)] z I
.

• Result is independent of data!
• We construct examples to show that these bounds are tight.

2 Covering-type problem (min objective):
•

zcut ≥ function of [(sparsity pattern of A, support of sparse cuts)] z I
.

• We construct examples to show that these bounds are tight.
3 Packing-type arbitrary A problem (max objective):

•
zcut ≤ [function of (sparsity pattern of A, support of sparse cuts)] z I

.

• We construct examples to show that these bounds are tight.
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Describing sparsity of A

J1 J2 J3 J4 J5 J6

The matrix A with:

1 Column partition
J := {J1, ..., J6}.

2 Unshaded boxes correspond
to zeros in A.

3 Shaded boxes may have
non-zero entries.

v1 v4

v2 v3

v6 v5

The corresponding graph Gpack
A,J :

1 One node for every block of
variables.

2 (vi , vj ) ∈ E if and only if there
is a row in A with non-zero
entries in both parts Ji and Jj .

30
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Describing the sparsity of cutting-planes:
Notation

Given the problem (P), let J := {J1, J2, . . . , Jq} be a partition of the index
set of columns of A (that is [n]).

1 For a set of nodes S ⊆ V , we say that inequality αx ≤ β is a sparse cut
on S if the support of α is on the variables corresponding to vertices in
S, namely

⋃
vj∈S Jj .

J1 J2 J3 J4 J5 J6

Adding a cut of the form:

(α1)T x1 + (α4)T x4 ≤ β
corresponds to:

S = {v1, v4} .

2 The closure of sparse cuts on S: P(S).
3 Support list of sparse cuts: Given a collection V = {S1,S2,S3, ...,Sq}

of subsets of the vertices V , we use PV,pack to denote the closure
obtained by adding all sparse cuts on the sets in V ’s, namely

PV,pack :=
⋂

Si∈V

P(Si ).
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Example of notation

max cT y +(d1)T z1 +(d2)T z2 +(d3)T z3 + . . . +(dk )T zk

s.t. Ay ≤ b
A1y +B1z1 ≤ b1

A2y +B2z2 ≤ b2

A3y +B3z3 ≤ b3

. . . . . .

Ak y +Bk zk ≤ bk

1 J = {y , z1, . . . , zk}, that is V = {v0, . . . , vk}
2 E = {(v0, v1), (v0, v2), . . . , (v0, vk )}
3 Specific-scenario closure: closure using all valid inequalities of the

form: αT y + βT z i ≤ γ, i.e.,

PV,pack =
k⋂

i=1

P({v0,vi}),

where V = {{v0, v1}, {v0, v2}, . . . , {v0, vk}}.
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form: αT y + βT z i ≤ γ, i.e.,

PV,pack =
k⋂

i=1

P({v0,vi}),

where V = {{v0, v1}, {v0, v2}, . . . , {v0, vk}}.
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Example of notation

max cT y +(d1)T z1 +(d2)T z2 +(d3)T z3 + . . . +(dk )T zk

s.t. Ay ≤ b
A1y +B1z1 ≤ b1

A2y +B2z2 ≤ b2

A3y +B3z3 ≤ b3

. . . . . .

Ak y +Bk zk ≤ bk

1 J = {y , z1, . . . , zk}, that is V = {v0, . . . , vk}
2 E = {(v0, v1), (v0, v2), . . . , (v0, vk )}
3 Specific-scenario closure: closure using all valid inequalities of the

form: αT y + βT z i ≤ γ, i.e.,

PV,pack =
k⋂

i=1

P({v0,vi}),

where V = {{v0, v1}, {v0, v2}, . . . , {v0, vk}}.
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Some graph-theoretic definition I:
Mixed stable set

Definition (Mixed stable set)
Let G = (V ,E) be a simple graph. Let V be a collection of subsets of the
vertices V . We call a collection of subsets of verticesM⊆ 2V a mixed
stable set subordinate to V if the following hold:

1 Every set inM is contained in a set in V.

2 The sets inM are pairwise disjoint.

3 There are no edges of G with endpoints in distinct sets inM.

Example:

1 V = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}, {v1, v5}}
2 M = {{v3}, {v1, v5}}

Original Graph:
	
   v1	
   v2	
  

v4	
  

v3	
  
v5	
  

Mixed Stable Set:
	
  

v1	
   v2	
  

v4	
  

v3	
  
v5	
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Some graph-theoretic definition I:
Mixed stable set

Definition (Mixed stable set)
Let G = (V ,E) be a simple graph. Let V be a collection of subsets of the
vertices V . We call a collection of subsets of verticesM⊆ 2V a mixed
stable set subordinate to V if the following hold:

1 Every set inM is contained in a set in V.

2 The sets inM are pairwise disjoint.

3 There are no edges of G with endpoints in distinct sets inM.

Example:

1 V = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}, {v1, v5}}
2 M = {{v3}, {v1, v5}}

Original Graph:
	
   v1	
   v2	
  

v4	
  

v3	
  
v5	
  

Mixed Stable Set:
	
  

v1	
   v2	
  

v4	
  

v3	
  
v5	
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Some graph-theoretic definition I:
Mixed stable set

Definition (Mixed stable set)
Let G = (V ,E) be a simple graph. Let V be a collection of subsets of the
vertices V . We call a collection of subsets of verticesM⊆ 2V a mixed
stable set subordinate to V if the following hold:

1 Every set inM is contained in a set in V.

2 The sets inM are pairwise disjoint.

3 There are no edges of G with endpoints in distinct sets inM.

Example:

1 V = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}, {v1, v5}}
2 M = {{v3}, {v1, v5}}

Original Graph:
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Mixed Stable Set:
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Some graph-theoretic definition I:
Mixed stable set

Definition (Mixed stable set)
Let G = (V ,E) be a simple graph. Let V be a collection of subsets of the
vertices V . We call a collection of subsets of verticesM⊆ 2V a mixed
stable set subordinate to V if the following hold:

1 Every set inM is contained in a set in V.

2 The sets inM are pairwise disjoint.

3 There are no edges of G with endpoints in distinct sets inM.

Example:

1 V = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}, {v1, v5}}
2 M = {{v3}, {v1, v5}}

Original Graph:
	
   v1	
   v2	
  

v4	
  

v3	
  
v5	
  

Mixed Stable Set:
	
  

v1	
   v2	
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Some graph-theoretic definition II:
Mixed chromatic number

Consider a simple graph G = (V ,E) and a collection V of subset of vertices.

• Mixed chromatic number with respect to V (Denoted as η̄V(G)): It is the
smallest number of mixed stables setsM1, . . . ,Mk subordinate to V
that cover all vertices of the graph (that is, every vertex v ∈ V belongs
to a set in one of theMi ’s).

• Fractional mixed chromatic number with respect to V (Denoted as ηV(G)):
Given a mixed stable setM subordinate to V, let χM ∈ {0, 1}|V |
denote its incidence vector (that is, for each vertex v ∈ V , χM(v) = 1 if
v belongs to a set inM, and χM(v) = 0 otherwise.) Then we define
the fractional mixed chromatic number

ηV(G) = min
∑
M

yM

s.t.
∑
M

yMχM ≥ 1 (1)

yM ≥ 0 ∀M,

where the summations range over all mixed stable sets subordinate to
V.
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Some graph-theoretic definition II:
Mixed chromatic number

Consider a simple graph G = (V ,E) and a collection V of subset of vertices.

• Mixed chromatic number with respect to V (Denoted as η̄V(G)): It is the
smallest number of mixed stables setsM1, . . . ,Mk subordinate to V
that cover all vertices of the graph (that is, every vertex v ∈ V belongs
to a set in one of theMi ’s).

• Fractional mixed chromatic number with respect to V (Denoted as ηV(G)):
Given a mixed stable setM subordinate to V, let χM ∈ {0, 1}|V |
denote its incidence vector (that is, for each vertex v ∈ V , χM(v) = 1 if
v belongs to a set inM, and χM(v) = 0 otherwise.) Then we define
the fractional mixed chromatic number

ηV(G) = min
∑
M

yM

s.t.
∑
M

yMχM ≥ 1 (1)

yM ≥ 0 ∀M,

where the summations range over all mixed stable sets subordinate to
V.
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Main result: Packing Problem

Theorem
Consider a packing integer program. Let J be a partition of the index set of
columns of A and let Gpack

A,J (V ,E) be the packing-type induced graph of A.
Then for any sparse cut support list V ⊆ 2V we have

zcut ≤ ηV
(Gpack

A,J )
· z I ,

where zcut = max{cT x | x ∈ PV}.

Comments:

1 The results depend only on the packing-type induced graph and sparse
cut support list.

2 ηV
(Gpack

A,J )
is upper bounded by the standard fractional chromatic number.
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Main result: Packing Problem

Theorem
Consider a packing integer program. Let J be a partition of the index set of
columns of A and let Gpack

A,J (V ,E) be the packing-type induced graph of A.
Then for any sparse cut support list V ⊆ 2V we have

zcut ≤ ηV
(Gpack

A,J )
· z I ,

where zcut = max{cT x | x ∈ PV}.

Comments:

1 The results depend only on the packing-type induced graph and sparse
cut support list.

2 ηV
(Gpack

A,J )
is upper bounded by the standard fractional chromatic number.
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“Natural" Sparse Closure

Natural sparse closure Let A1, . . . ,Am be the rows of A. Let V i be the set of
(nodes corresponding to) block variables that have non-zero entries in Ai .
Then for this sparse cut support list V = {V 1,V 2, . . . ,V m}.

J1 J2 J3 J4 J5 J6

Natural sparse closure corresponds to support list:

V = {{v1, v3, v5}, {v2, v5, v6}, {v3, v4}, {v1, v6}, {v2, v4}, {v3, v6}}
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“Natural" Sparse Closure

Natural sparse closure Let A1, . . . ,Am be the rows of A. Let V i be the set of
(nodes corresponding to) block variables that have non-zero entries in Ai .
Then for this sparse cut support list V = {V 1,V 2, . . . ,V m}.

For stochastic integer program:

specific-scenario closure = Natural sparse closure .
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“Natural" Sparse Closure

Natural sparse closure Let A1, . . . ,Am be the rows of A. Let V i be the set of
(nodes corresponding to) block variables that have non-zero entries in Ai .
Then for this sparse cut support list V = {V 1,V 2, . . . ,V m}.

For stochastic integer program:

specific-scenario closure = Natural sparse closure .

Theorem
Consider a two-stage packing integer program with k scenarios.

zspecific-scenario closure ≤
(

2k − 1
k

)
z I .
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“Natural" Sparse Closure

For stochastic integer program:

specific-scenario closure = Natural sparse closure .

Theorem
Consider a two-stage packing integer program with k scenarios.

zspecific-scenario closure ≤
(

2k − 1
k

)
z I .

More general result:

Theorem
If Gpack

A,J is a tree max degree k, then ηV
(Gpack

A,J )
=
( 2k−1

k

)
where V corresponds

to natural sparse closure.
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Some consequences for stochastic programs

Theorem
Consider a two-stage packing integer program with k scenarios.

zspecific-scenario closure ≤
(

2k − 1
k

)
z I .
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Some consequences for stochastic programs

Theorem
Consider a two-stage packing integer program with k scenarios.

zspecific-scenario closure ≤
(

2k − 1
k

)
z I .

Theorem
For any ε > 0, there exists a two-stage packing integer program with k
scenarios such that

zspecific-scenario closure ≥
(

2k − 1
k

− ε
)

z I .
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Natural sparsity for cycles

Theorem (Natural sparse closure of cycles)
Consider a packing integer program as defined in (P). Let J ⊆ 2[n] be a
partition of the index set of columns of A and let Gpack

A,J be the packing-type
induced graph of A. If Gpack

A,J is a cycle of length K , then:

1 If K = 3k , k ∈ Z++, then zN.S. ≤ 3
2 z I .

2 If K = 3k + 1, k ∈ Z++, then zN.S. ≤ 3k+1
2k z I .

3 If K = 3k + 2, k ∈ Z++, then zN.S. ≤ 3k+2
2k+1 z I .

Moreover, for any ε > 0, there exists a packing integer program with a
suitable partition V of variables, where Gpack

A,J is a cycle of length K such that

1 If K = 3k , k ∈ Z++, then zN.S. ≥
( 3

2 − ε
)

z I .

2 If K = 3k + 1, k ∈ Z++, then zN.S. ≥
( 3k+1

2k − ε
)

z I .

3 If K = 3k + 2, k ∈ Z++, then zN.S. ≥
( 3k+2

2k+1 − ε
)

z I .
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Packing-type sparsity description does not
work!

Example of packing instance

max (c1)T x1 + (c2)T x2

s.t. A1x1 + A2x2 ≤ b (P)

x ∈ Zn1
+ × Rn2

+

If we add cuts on the support of x1 and x2 variable blocks separately, then

zcut ≤ 2z I .

Example of covering instance

min (c1)T x1 + (c2)T x2

s.t. A1x1 + A2x2 ≥ b (C)

x ∈ Zn1
+ × Rn2

+

If we add cuts on the support of x1 and x2 variable blocks separately, then

zcut ≥ (?)z I .

It turns out, for any ε > 0 there exists an instance such that:

zcut ≤ εz I (and z I > 0)
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Packing-type sparsity description does not
work!

Example of packing instance

max (c1)T x1 + (c2)T x2

s.t. A1x1 + A2x2 ≤ b (P)

x ∈ Zn1
+ × Rn2

+

If we add cuts on the support of x1 and x2 variable blocks separately, then

zcut ≤ 2z I .

Example of covering instance

min (c1)T x1 + (c2)T x2

s.t. A1x1 + A2x2 ≥ b (C)

x ∈ Zn1
+ × Rn2

+

If we add cuts on the support of x1 and x2 variable blocks separately, then

zcut ≥ (?)z I .

It turns out, for any ε > 0 there exists an instance such that:

zcut ≤ εz I (and z I > 0)

55



Sparse
Cutting-

planes for
Sparse IPs

Dey,
Molinaro,

Wang

Introduction
and
Motivation

Main results
Packing-type
problems

Covering-type
problems

‘Packing-type
problems"
with arbitrary
matrix A

Packing-type sparsity description does not
work!

Example of packing instance

max (c1)T x1 + (c2)T x2

s.t. A1x1 + A2x2 ≤ b (P)

x ∈ Zn1
+ × Rn2

+

If we add cuts on the support of x1 and x2 variable blocks separately, then

zcut ≤ 2z I .

Example of covering instance

min (c1)T x1 + (c2)T x2

s.t. A1x1 + A2x2 ≥ b (C)

x ∈ Zn1
+ × Rn2

+

If we add cuts on the support of x1 and x2 variable blocks separately, then

zcut ≥ (?)z I .

It turns out, for any ε > 0 there exists an instance such that:

zcut ≤ εz I (and z I > 0)
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Describing sparsity of A

I1

I2

I3

I4

I5

I6

The matrix A with:

1 Row partition I := {I1, ..., I6}.
2 Unshaded boxes correspond

to zeros in A.

3 Shaded boxes have non-zero
entries.

v1 v4

v2 v3

v6 v5

The corresponding graph Gcover
A,J :

1 One node for every block of
rows.

2 (vi , vj ) ∈ E if and only if there
is a column in A with
non-zero entries in row
corresponding to Ii and Ij .
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Describing sparsity of cutting-planes:
Notation

Given the problem (C), let I = {I1, I2, . . . , Ip} be a partition of index set of
rows of A (that is [m]).

1 For a set of nodes S ⊂ V , we say that the inequality α ≤ β is a sparse
cut on S if the support of α is on the variables which have non-zero
coefficients in the rows corresponding to vertices in S.

I1

I2

I3

I4

I5

I6

Adding a cut of the form:

(α2)T x2 + (α3)T x3 + (α4)T x4 + (α6)T x6 ≥ β
corresponds to:

S = {v5, v6}.

2 The closure of sparse cuts on S: P(S).
3 Support list of sparse cuts: Given a collection V = {S1,S2, . . . ,Sq} of

subsets of vertices V , we use PV,pack to denote the closure obtained by
adding all the sparse cuts in the sets in V, namely

PV,cover :=
⋂

Si∈V

PSi
.
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Describing sparsity of cutting-planes:
Notation

Given the problem (C), let I = {I1, I2, . . . , Ip} be a partition of index set of
rows of A (that is [m]).

1 For a set of nodes S ⊂ V , we say that the inequality α ≤ β is a sparse
cut on S if the support of α is on the variables which have non-zero
coefficients in the rows corresponding to vertices in S.

2 The closure of sparse cuts on S: P(S).

3 Support list of sparse cuts: Given a collection V = {S1,S2, . . . ,Sq} of
subsets of vertices V , we use PV,pack to denote the closure obtained by
adding all the sparse cuts in the sets in V, namely

PV,cover :=
⋂

Si∈V

PSi
.
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Describing sparsity of cutting-planes:
Notation

Given the problem (C), let I = {I1, I2, . . . , Ip} be a partition of index set of
rows of A (that is [m]).

1 For a set of nodes S ⊂ V , we say that the inequality α ≤ β is a sparse
cut on S if the support of α is on the variables which have non-zero
coefficients in the rows corresponding to vertices in S.

2 The closure of sparse cuts on S: P(S).

3 Support list of sparse cuts: Given a collection V = {S1,S2, . . . ,Sq} of
subsets of vertices V , we use PV,pack to denote the closure obtained by
adding all the sparse cuts in the sets in V, namely

PV,cover :=
⋂

Si∈V

PSi
.
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Example of notation

max cT y +(d1)T z1 +(d2)T z2 + . . . +(dk )T zk

s.t. A1y +B1z1 ≤ b1 } → I1
A2y +B2z2 ≤ b2 } → I2
. . . . . .

Ak y +Bk zk ≤ bk } → Ik

1 I = {I1, . . . , Ik}, that is V = {v1, . . . , vk}
2 Complete graph!

3 (Weakly) specific-scenario cut closure: closure using
V = {{v1}, {v2}, {v3}, . . . , {vk}} i.e.,

PV,pack =
k⋂

i=1

P{vi},

where V = {{v1}, {v2}, . . . , {vk}}.
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Example of notation

max cT y +(d1)T z1 +(d2)T z2 + . . . +(dk )T zk

s.t. A1y +B1z1 ≤ b1 } → I1
A2y +B2z2 ≤ b2 } → I2
. . . . . .

Ak y +Bk zk ≤ bk } → Ik

1 I = {I1, . . . , Ik}, that is V = {v1, . . . , vk}
2 Complete graph!

3 (Weakly) specific-scenario cut closure: closure using
V = {{v1}, {v2}, {v3}, . . . , {vk}} i.e.,

PV,pack =
k⋂

i=1

P{vi},

where V = {{v1}, {v2}, . . . , {vk}}.
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Example of notation

max cT y +(d1)T z1 +(d2)T z2 + . . . +(dk )T zk

s.t. A1y +B1z1 ≤ b1 } → I1
A2y +B2z2 ≤ b2 } → I2
. . . . . .

Ak y +Bk zk ≤ bk } → Ik

1 I = {I1, . . . , Ik}, that is V = {v1, . . . , vk}
2 Complete graph!

3 (Weakly) specific-scenario cut closure: closure using
V = {{v1}, {v2}, {v3}, . . . , {vk}}

i.e.,

PV,pack =
k⋂

i=1

P{vi},

where V = {{v1}, {v2}, . . . , {vk}}.
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Example of notation

max cT y +(d1)T z1 +(d2)T z2 + . . . +(dk )T zk

s.t. A1y +B1z1 ≤ b1 } → I1
A2y +B2z2 ≤ b2 } → I2
. . . . . .

Ak y +Bk zk ≤ bk } → Ik

1 I = {I1, . . . , Ik}, that is V = {v1, . . . , vk}
2 Complete graph!

3 (Weakly) specific-scenario cut closure: closure using
V = {{v1}, {v2}, {v3}, . . . , {vk}} i.e.,

PV,pack =
k⋂

i=1

P{vi},

where V = {{v1}, {v2}, . . . , {vk}}.
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Main result

Theorem
Consider a covering integer program. Let I be a partition of the index set of
columns of A and let Gcover

A,J (V ,E) be the covering-type induced graph of A.
Then for any sparse cut support list V ⊆ 2V we have

zcut ≥ 1
η̄V(Gcover

A,I )

z I ,

where zcut = min{cT x | x ∈ PV,cover}.

1 The above Theorem holds even if upper bounds are present on some
or all of the variables (in this case, we also need to assume that the
instance is feasible).
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Consequence and bounds is tight:
Two stage stochastic problem

Corollary
Consider a covering-type two-stage stochastic problem for k scenario. Let
z∗ be the objective function obtained after adding all weakly
specific-scenario cuts. Then:

z I ≤ kzscenario-specific cuts.

Bound is tight:

Theorem
Let z∗ be the objective function obtained after adding all weakly
specific-scenario cuts for a covering type two-stage stochastic problem.
Given any ε > 0 there exists an instance of the covering-type two-stage
stochastic problem with k scenarios such that:

z I ≥ (k − ε)zscenario-specific cuts.
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Consequence and bounds is tight:
Two stage stochastic problem

Corollary
Consider a covering-type two-stage stochastic problem for k scenario. Let
z∗ be the objective function obtained after adding all weakly
specific-scenario cuts. Then:

z I ≤ kzscenario-specific cuts.

Bound is tight:

Theorem
Let z∗ be the objective function obtained after adding all weakly
specific-scenario cuts for a covering type two-stage stochastic problem.
Given any ε > 0 there exists an instance of the covering-type two-stage
stochastic problem with k scenarios such that:

z I ≥ (k − ε)zscenario-specific cuts.
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Corrected density of sparse cutting-planes

• We use the same notation as the packing case.
• Specifically, we use the same kind of definition of sparsity of A and cuts

as in the packing case.

Definition (Corrected average cutting-plane density)
Let V = {V 1,V 2, . . . ,V t} be the sparse cut support list. For any subset
Ṽ = {V u1 ,V u2 , ...,V uk } ⊆ V define its density as

D(Ṽ ) =
1
k

k∑
i=1

|V ui |.

We define the corrected average cutting-plane density of V (denoted as DV )
as the value of D(V) where:

1 V covers V , that is,
⋃

V̄∈V V̄ = V .

2 Among all subsets of V that cover V , V is the subset with largest
density.
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Corrected density of sparse cutting-planes

• We use the same notation as the packing case.
• Specifically, we use the same kind of definition of sparsity of A and cuts

as in the packing case.

Definition (Corrected average cutting-plane density)
Let V = {V 1,V 2, . . . ,V t} be the sparse cut support list. For any subset
Ṽ = {V u1 ,V u2 , ...,V uk } ⊆ V define its density as

D(Ṽ ) =
1
k

k∑
i=1

|V ui |.

We define the corrected average cutting-plane density of V (denoted as DV )
as the value of D(V) where:

1 V covers V , that is,
⋃

V̄∈V V̄ = V .

2 Among all subsets of V that cover V , V is the subset with largest
density.
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Main results

Theorem
Let (P) be defined by an arbitrary A ∈ Zm×n, b ∈ Zm, c ∈ Rn

+ and L ⊆ [n].
Let J := {J1, J2, . . . , Jq} be a partition of the index set of columns of A (that
is [n]). If P I is non-empty, then:

zV ≤ (|V |+ 1− DV) z I .

Moreover these results are tight:

Corollary
Consider a two stage packing-type problem with arbitrary A ∈ Zm×n and
b ∈ Zm and with k scenarios. Suppose that P I is non-empty. Then:

zscenario-specific closure ≤ (k)z I .

Proposition
For every k ∈ Z++, there exists an instance of two stage packing-type
problem with arbitrary A ∈ Zm×n and b ∈ Zm and k scenarios such that:

zscenario-specific closure = (k)z I .
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Conclusion

1 Introduced a natural framework to analyze strength of sparse cuts for
sparse IPs.

2 The results obtained show that in many cases, sparse cuts provide
good bounds for sparse IPs.

3 The analysis is tight: all the bounds obtained are tight.

4 Can we design supports of cuts so that we get good bounds?
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Conclusion

1 Introduced a natural framework to analyze strength of sparse cuts for
sparse IPs.

2 The results obtained show that in many cases, sparse cuts provide
good bounds for sparse IPs.

3 The analysis is tight: all the bounds obtained are tight.

4 Can we design supports of cuts so that we get good bounds?
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Thank You!
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