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Cutting-planes: Introduction

Cutting Plane
@ Cutting-planes in a linear inequality that is valid for all integer feasible points, but
may not be valid for the linear programming relaxation.

® Huge amount of research in Integer Programming on
problem-specific and general purpose cutting-planes.

® General purpose cutting-planes have been extremely
useful in practice to solve IPs.
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" Most commercial/successful IP solvers have very sophisticated methods of
cutting-planes selection and use.

© "Dept of cut”
® "Parallelism"
® "Numerical stability"
@ "Cutting-plane sparsity"
‘Cut pool management system’, ‘Cutting-plane filter system’
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@ Linear Programming
solvers can take advantage
of sparsity of constraints.
Since in a Branch and
Bound tree we solve many
LPs, sparsity helps!
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Most solvers prefer to use sparse
cutting-planes.

Pros... Cons...

@ Linear Programming @ Sparse constraints may not
solvers can take advantage approximate trlle integer hull (a
of sparsity of constraints. polytope) well!

Since in a Branch and
Bound tree we solve many
LPs, sparsity helps!

Main Goal: Theoretically analyze performance of sparse cutting-planes.
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Prior results: Quality of sparse closure

SSD, Marco Molinaro, Qianyi Wang, "Approximating Polyhedra with Sparse
Inequalities,"” Mathematical Programming, 2015.

a X< b

t

at most k non-zero entries

Pk:= Outer approximation to P using inequalities with k-sparse inequalities.
d(P, P¥): = distance between P and P*.
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Rolfas d(P, P¥): = distance between P and P*.

Wang

Introduction Theorem
Votvat Letn> 2. Let P C [0,1]" be the convex hull of points {p', ..., p'}. Then
Motivation (1] d(P7 Pk) < 4max{/7:£ \/8 maXie[q ‘p/H |Og4tl7 Sgkﬁ |og4lln}

Main results

@ d(P,P“y<2yn(2-1).

/—— ~ % Jlog(n. #vert(P))
v

d(p,P¥)

« zﬁ(z— 1)

k (density)

Consequences

@ Polynomial number of vertices as a function of dimension
with ~ % sparsity, implies d(P, P¥) is very small (~ . /logn),
i.e. sparse cutting planes are good.
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Prior results: Sparse cuts are bad for dense
packing IPs

Random packing instances: Sparse cutting-planes are bad.

Hard packing IPs

[o, ..., M] sum of lhs
uniform < 2
distribution
x € {0,1}"
d(P, P¥)
k (density)




Sparse
Cutting-
planes for
Sparse IPs

Dey,
Molinaro,
Wang

Introduction

and

Motivation
Motivation

We want analysis for “real" IPs

e “Real" IPs are sparse: The average number (median) of non-zero
entries in the constraint matrix of MIPLIB 2010 instances is 1.63%

(0.17%).

How does sparsity of IPs effect the performance of sparse cutting-
planes?
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examples and separately on the last 5 inequalities.
® In practice many instances are
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@ Consider the following IP set
i 2 A <b
Motivation 2}26 A] X/ S b2
x ez,

@ Clearly the convex hull is given by inequalities in the support of the first five
examples and separately on the last 5 inequalities.
® In practice many instances are

® Classic computation paper: “Solving Large-Scale Zero-One Linear
Programming Problems" by H. Crowder, E. L. Johnson, M. Padberg
(1982). Some quotes:

(1) “All problems are characterized by sparse constraint matrix with
rational data." ] ) ) .
(2] “We note that the support of an inequality obtained by lifting (2.7)

or (2.9) is contained in the support of the inequality (2.5) ...
Therefore, the inequalities that we generate preserve the
sparsity of the constraint matrix."

17
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Vi€ELVIeT, ZervieTVvjel,...

Another example of sparse IPs:
Two-stage stochastic IPs

+(d1)TZ1 +(d2)T22 +(d3)T23

+B'Z'
+B272
+B3°

Scenario-specific cuts: o'y + 2/ < ~

+...

7k}

+(dk)Tzk

+BkZ-

<b
< b
< b
<b’
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© Packing-type IPs:
max Y7, 0
s.t. Ax <b (P)
x €2 x R?

where c, A, b are non-negative.

29
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bk



Sparse
Cutting-

e Overview of results
Doy Multiplicative bounds for three types of problems:

Mg @ Packing-type IPs:

max Y7, cx

s.t. Ax<b (P)
oliees X €LY xR
problems
SRS where ¢, A, b are non-negative.
e ® Covering-type
with arbitrary
min Y7, 6%

s.t. Ax>b (0

x € ZI' x R?

where ¢, A, b are non-negative.
® “Packing-type" problem with milder assumptions:

max >t GX
s.t. Ax<b (P — Arbitrary A)
x € 2 x R?
where c is non-negative.

24
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Overview of results contd.

©@ We present a method to "quantity" the sparsity of A.
® We present a specific way to describe a hierarchy of sparse
cutting-planes with different supports.
® We present multiplicative bounds:
@ Packing-type problem (max objective):

ZCUt

25
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Overview of results contd.

©@ We present a method to "quantity" the sparsity of A.
® We present a specific way to describe a hierarchy of sparse
cutting-planes with different supports.
® We present multiplicative bounds:
@ Packing-type problem (max objective):

< [function of (sparsity pattern of A, support of sparse cuts)] z.

e Result is independent of datal!

26
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Overview of results contd.

©@ We present a method to "quantity" the sparsity of A.
® We present a specific way to describe a hierarchy of sparse
cutting-planes with different supports.
® We present multiplicative bounds:
@ Packing-type problem (max objective):

< [function of (sparsity pattern of A, support of sparse cuts)] z.

e Result is independent of data!
e We construct examples to show that these bounds are tight.

27
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Overview of results contd.

©@ We present a method to "quantity" the sparsity of A.
® We present a specific way to describe a hierarchy of sparse
cutting-planes with different supports.
® We present multiplicative bounds:
@ Packing-type problem (max objective):

< [function of (sparsity pattern of A, support of sparse cuts)] z.

e Result is independent of data!
e We construct examples to show that these bounds are tight.
® Covering-type problem (min objective):
L]
Z° > function of [(sparsity pattern of A, support of sparse cuts)] z'.
e We construct examples to show that these bounds are tight.
® Packing-type arbitrary A problem (max objective):
L]
z°" < [function of (sparsity pattern of A, support of sparse cuts)] z.

e We construct examples to show that these bounds are tight.

o8
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The matrix A with:
@ Column partition
J = {J1 g eeny Je}
® Unshaded boxes correspond
to zeros in A.

® Shaded boxes may have
non-zero entries.

20

Describing sparsity of A
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The matrix A with:

The corresponding graph G2 :
© Column partition P g graph G, 7

© One node for every block of

j:: {J1,...,J6}. .
® Unshaded b correspond variables.
nshaded boxes
to zeros in A. P ® (v, vj) € E if and only if there

is a row in A with non-zero
© Shaded boxes may have entries in both parts J; and J;.
non-zero entries.

29
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Describing the sparsity of cutting-planes:
Notation
Given the problem (P), let 7 := {Ji, J, ..., Jq} be a partition of the index
set of columns of A (that is [n]).
@ For a setof nodes S C V, we say that inequality ax < g is a sparse cut
on S if the support of v is on the variables corresponding to vertices in
S, namely U, .5 J

Adding a cut of the form:
(a1)TX1 +(Oz4)TX4 S B
corresponds to:
S={vi,va}.

kPl
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Describing the sparsity of cutting-planes:
Notation

Given the problem (P), let 7 := {Ji, Ja, ..., Jq} be a partition of the index
set of columns of A (that is [n]).

© For asetof nodes S C V, we say that inequality ax < 3 is a sparse cut
on S if the support of « is on the variables corresponding to vertices in
S, namely

VGS

@® The closure of sparse cuts on S: Pt

k]
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Describing the sparsity of cutting-planes:
Notation

Given the problem (P), let 7 := {Ji, Ja, ..., Jq} be a partition of the index
set of columns of A (that is [n]).

© For asetof nodes S C V, we say that inequality ax < 3 is a sparse cut
on S if the support of « is on the variables corresponding to vertices in
S, namely UV€S

@® The closure of sparse cuts on S: Pt

@® Support list of sparse cuts: Given a collection V = {S', 82, 8%, ..., 8%}
of subsets of the vertices V, we use PY?** to denote the closure
obtained by adding all sparse cuts on the sets in V’s, namely

PV,pack — m P(Si).

Siev

24
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max

CTy +(d1)TZ1

Ay
Ay
Ay
Ay

Aty

+(d2)T22

+BZZ2

25

Example of notation

+(d3)TZS

+B%7

+...

+(dk)TZk

+Bkz"

<b
<b
< b
<b’
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Example of notation

max CTy +(d1)TZ1 +(d2)T22 +(d3)TZS
st. Ay

A1y +B1Z1

A2y +3222

A3y +B323

Aty

0 J={y2, . ., 2 thatis V={w,...,w}
@ E = {(vo,v1), (vo, v2),. .., (vo, Vic)}

26

+...

_,’_(dk)TZk

+Bkz"

< b'
<b?
<b®
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Wang max c’y +(d)'z' +(d®)Z +d*ZF +... +(d)
st. Ay <
A1y +B1 Z1 S b1
A2y +3222 S b2
Sl Ay +B7° < b
Aky +Bkzk S bk

0 J={y2, . ., 2 thatis V={w,...,w}

@ E = {(v, v1), (o, v2),---, (o, vi)}

@® Specific-scenario closure: closure using all valid inequalities of the
form: o’y + 872 <+, ie,

k
Pv,pack _ ﬂ P({V07Vi})7
i=1

where V = {{v, vi}, {vo, Vo},. .., {vo, Vk}}.

27
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Some graph-theoretic definition I:
Mixed stable set

Definition (Mixed stable set)

Let G = (V, E) be a simple graph. Let V be a collection of subsets of the
vertices V. We call a collection of subsets of vertices M C 2" a mixed
stable set subordinate to V if the following hold:

© Every setin M is contained in a setin V.

9
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Some graph-theoretic definition I:
Mixed stable set

Definition (Mixed stable set)

Let G = (V, E) be a simple graph. Let V be a collection of subsets of the
vertices V. We call a collection of subsets of vertices M C 2" a mixed
stable set subordinate to V if the following hold:

© Every setin M is contained in a setin V.
® The sets in M are pairwise disjoint.

20
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Some graph-theoretic definition I:
Mixed stable set

Definition (Mixed stable set)

Let G = (V, E) be a simple graph. Let V be a collection of subsets of the
vertices V. We call a collection of subsets of vertices M C 2" a mixed
stable set subordinate to V if the following hold:

© Every setin M is contained in a setin V.
® The sets in M are pairwise disjoint.
® There are no edges of G with endpoints in distinct sets in M.

40
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Some graph-theoretic definition I:
Mixed stable set

Definition (Mixed stable set)

Let G = (V, E) be a simple graph. Let V be a collection of subsets of the
vertices V. We call a collection of subsets of vertices M C 2" a mixed
stable set subordinate to V if the following hold:

© Every setin M is contained in a setin V.
® The sets in M are pairwise disjoint.
® There are no edges of G with endpoints in distinct sets in M.

Example:

° V= {{V17 V2}7 {Vg, V3}7 {V37 V4}7 {V4, V5}7 {VT~ V5}

O M= {{va}, {vi. v5}
Original Graph: Mixed Stable Set:
Vi

v \ \'/]

V3 V3

a1
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Some graph-theoretic definition II:
Mixed chromatic number
Consider a simple graph G = (V, E) and a collection V of subset of vertices.

e Mixed chromatic number with respect to V (Denoted as ﬁ("G)): It is the

smallest number of mixed stables sets M', ..., M* subordinate to V
that cover all vertices of the graph (that is, every vertex v € V belongs
to a set in one of the M'’s).

42
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e Some graph-theoretic definition II:
By Mixed chromatic number
“Wae.  Consider a simple graph G = (V, E) and a collection V of subset of vertices.
o Mixed chromatic number with respect to V (Denoted as 7 ) It is the
smallest number of mixed stables sets M', ..., M* subordlnate toV
that cover all vertices of the graph (that is, every vertex v € V belongs
B to a set in one of the M"s).

Covering-type

e Fractional mixed chromatic number with respect to V (Denoted as 77(VG))3

Given a mixed stable set M subordinate to V), let ¢ € {0,1}!V!
denote its incidence vector (that is, for each vertex v € V, xm(v) = 1if
v belongs to a set in M, and x(v) = 0 otherwise.) Then we define
the fractional mixed chromatic number

ne) = minZYM
M
s.t. ZyMXM >1 (1)
M

Ym >0 VM,

where the summations range over all mixed stable sets subordinate to
V.

43



Sparse
Cutting-
planes for
Sparse IPs

Dey,
Molinaro,
Wang

Packing-type
problems

Covering-type

Packing-type

Main result: Packing Problem

Theorem

Consider a packing integer program. Let J be a partition of the index set of
columns of A and let G:‘f}"( V, E) be the packing-type induced graph of A.
Then for any sparse cut support listV C 2" we have

1% !

cut p .
z" < ,/(G/Zf'}) z,

where z = max{c'x|x € P¥}.

44
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Main result: Packing Problem

Theorem

Consider a packing integer program. Let J be a partition of the index set of
columns of A and let G:‘f}"( V, E) be the packing-type induced graph of A.
Then for any sparse cut support listV C 2" we have

1% !

Ccut
<N pack |+ Z,
z < ,/(G/A,}) s

where z = max{c'x|x € P¥}.

Comments:

@ The results depend only on the packing-type induced graph and sparse
cut support list.

0 n(‘gpuck) is upper bounded by the standard fractional chromatic number.
AT

45
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“Natural" Sparse Closure

Natural sparse closure Let Aq, ..., Am be the rows of A. Let V' be the set of
(nodes corresponding to) block variables that have non-zero entries in A;.
Then for this sparse cut support list Vv = {V', V2 ... V™.

Ji J2 J3 Jy T Jo

Natural sparse closure corresponds to support list:

V = {{V17 V3, V5}7 {V27 Vs, V6}7 {V37 V4}7 {V1, V6}7 {V27 V4}7 {V37 VG}}

46
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Packing-type

“Natural" Sparse Closure

Natural sparse closure Let Aq, ..., Am be the rows of A. Let V' be the set of
(nodes corresponding to) block variables that have non-zero entries in A;.
Then for this sparse cut support list V = {V', V2 ... V™}.

For stochastic integer program:

specific-scenario closure = Natural sparse closure .

a7
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“Natural" Sparse Closure

Natural sparse closure Let Aq, ..., Am be the rows of A. Let V' be the set of
(nodes corresponding to) block variables that have non-zero entries in A;.
Then for this sparse cut support list V = {V', V2 ... V™}.

For stochastic integer program:

specific-scenario closure = Natural sparse closure .

Theorem
Consider a two-stage packing integer program with k scenarios.

fic-scenar 2k — 1
zspecmc scenario closure < ( p Z’.

48
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“Natural" Sparse Closure

For stochastic integer program:

specific-scenario closure = Natural sparse closure .

Theorem
Consider a two-stage packing integer program with k scenarios.

fic-scenar 2k — 1
zspecmc scenario closure < ( p Z’.

More general result:

Theorem

If G}7 is a tree max degree k, then n)iy.. | = (*) where V corresponds
, pock

to natural sparse closure.

49
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Some consequences for stochastic programs

Theorem
Consider a two-stage packing integer program with k scenarios.

fic-scenark 2k —1
zspecmc scenario closure < ( Zl.

k
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Some consequences for stochastic programs

Theorem
Consider a two-stage packing integer program with k scenarios.

specific-scenario closure < <2k -1 ) zl

‘ K

Theorem
For any e > 0, there exists a two-stage packing integer program with k
scenarios such that

ific- i 2k —1
Zspecmc scenario closure > < p ¢ ZI.

Rq
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Theorem (Natural sparse closure of cycles)

Consider a packing integer program as defined in (P). Let 7 C 21" pe a
partition of the index set of columns of A and let G;‘f? be the packing-type
wwens induced graph of A. If Gi% is a cycle of length K, then:
' O (K =8k, k€ Z., then 25 < 37
@ IfK=38k+1,keZ, thenz"-S < i 7,
© IfK=38k+2keZ,thenz"S < 327
Moreover, for any e > 0, there exists a packing integer program with a
suitable partition V of variables, where Gﬁ{f"]" is a cycle of length K such that

© K =3k keZi, thenz"5 > (% —¢) 2.
® IfK =3k +1,k€Zy, thenz"S > (361 —¢) 2!,

© IfK=38k+2keZ,, thenz"'S > (%22 _¢) 7.

5O
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Packing-type sparsity description does not
work!
Example of packing instance

max (c")Tx! + (c®)Tx?
st AXT+A2x2<b (P)
x € 7' x R?
If we add cuts on the support of x! and x2 variable blocks separately, then

Zout < 22/_
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Packing-type sparsity description does not
work!

Example of packing instance
max (c")Tx! + (c®)Tx?
st AXT+A2x2<b (P)
x € 7' x R?
If we add cuts on the support of x! and x2 variable blocks separately, then

o < 27!,
Example of covering instance

min  (c")Tx" + (c?)Tx?
st. A'X' 4+ A2x2>b (©)
x € Z' x RI?
If we add cuts on the support of x! and x2 variable blocks separately, then

zcut > (?)ZI.
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Packing-type sparsity description does not
work!
Example of packing instance

max (c")Tx! + (c®)Tx?
st AXT+A2x2<b (P)

x € 7' x R?

If we add cuts on the support of x! and x2 variable blocks separately, then

o < 27!,
Example of covering instance

min  (c")Tx" + (c?)Tx?
st. A'X' 4+ A2x2>b (©)

x €2 x R

If we add cuts on the support of x! and x2 variable blocks separately, then
zcut > (?)ZI.
It turns out, for any e > 0 there exists an instance such that:

z% < ezl (and Z/ > 0)
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Describing sparsity of A

Is Ve

The matrix A with: The corresponding graph G35
© Row partition Z := {h, ..., ls}. @ Onenode for every block of

® Unshaded boxes correspond rows.

to zeros in A. ® (v;,v)) € Eif and only if there
is a column in A with
non-zero entries in row
corresponding to /; and ;.

® Shaded boxes have non-zero
entries.
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Sparse
Cutting-

e Describing sparsity of cutting-planes:

Doy, Notation
Mo Given the problem (C), let Z = {h, k, ..., |,} be a partition of index set of

rows of A (that is [m]).
© For asetof nodes S C V, we say that the inequality o < 3 is a sparse
cut on S if the support of « is on the variables which have non-zero

S coefficients in the rows corresponding to vertices in S.
Comrgape L o
problems

matrix A I3

I

Is

Is
Adding a cut of the form:

(@) %+ (a®) x5+ () x4 + (®) x5 > 8

corresponds to:
S={vs, vs}.

g8



Sparse
Cutting-
planes for
Sparse IPs

Dey,
Molinaro,
Wang

Introduction
and

Motivation

Main results

Packing-type
problems
Covering-type
problems
‘Packing-type
problems”
with arbitrary
matrix A

Describing sparsity of cutting-planes:
Notation

Given the problem (C), let Z = {h, b, ..., Ir} be a partition of index set of
rows of A (that is [m]).

© For aset of nodes S C V, we say that the inequality o < 3 is a sparse
cut on S if the support of « is on the variables which have non-zero
coefficients in the rows corresponding to vertices in S.

@® The closure of sparse cuts on S: P9,

e}
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Describing sparsity of cutting-planes:
Notation

Given the problem (C), let Z = {h, b, ..., Ir} be a partition of index set of
rows of A (that is [m]).

© For aset of nodes S C V, we say that the inequality o < 3 is a sparse
cut on S if the support of « is on the variables which have non-zero
coefficients in the rows corresponding to vertices in S.

@® The closure of sparse cuts on S: P9,

@® Support list of sparse cuts: Given a collection V = {S', S2,..., 89} of
subsets of vertices V, we use PY'P* to denote the closure obtained by
adding all the sparse cuts in the sets in V, namely

PV,cover o ﬂ PS’
Siev

680
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Example of notation

max c’y +(d")'z' +(d*F +... +(d)'Z

st. Ay +B'Z <b Y= h
Ay +B27° <b }ob
Ay +B 2K < Y sk

01:{/1,...,Ik},thatis V:{V1,...,Vk}
® Complete graph!

/82
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Packing-type

Example of notation

max c’y +(d")'z' +(d*F +... +(d)'Z

st. Ay +B'Z <b b= h
Ay +B27° <b }ob
Aky +BZF <bk =k

01:{/1,...,Ik},thatis V:{V1,...,Vk}
® Complete graph!
® (Weakly) specific-scenario cut closure: closure using

V={{n}{v} {w). .. (v}
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Example of notation

max c’y +(d")'z' +(d*F +... +(d)'Z

st. Ay +B'Z <b b= h
Ay +B27° <b }ob
Ay +B 2K < Y sk

01:{/1,...,Ik},thatis V:{V1,...,Vk}
® Complete graph!
® (Weakly) specific-scenario cut closure: closure using

V= {{vi}, {ve},{va},..., {w}}ie,

k
PV,pack _ m P{v;}’

i=1

where V = {{vi},{va},..., {}}.
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Main result

Theorem

Consider a covering integer program. Let T be a partition of the index set of
columns of A and let G5 (V, E) be the covering-type induced graph of A.
Then for any sparse cut support listV C 2V we have

z,

z(‘ur >

e

where z' = min{CTX | = Pv,mver}'

@ The above Theorem holds even if upper bounds are present on some
or all of the variables (in this case, we also need to assume that the
instance is feasible).
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Consequence and bounds is tight:
Two stage stochastic problem

Corollary

Consider a covering-type two-stage stochastic problem for k scenario. Let
zZ* be the objective function obtained after adding all weakly
specific-scenario cuts. Then:

/ scenario-specific cuts
z < kz ! .
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Consequence and bounds is tight:
Two stage stochastic problem

Corollary

Consider a covering-type two-stage stochastic problem for k scenario. Let
zZ* be the objective function obtained after adding all weakly
specific-scenario cuts. Then:

/ scenario-specific cuts
z < kz .

Bound is tight:

Theorem

Let z* be the objective function obtained after adding all weakly
specific-scenario cuts for a covering type two-stage stochastic problem.
Given any € > 0 there exists an instance of the covering-type two-stage
stochastic problem with k scenarios such that:

z'> (k _ e)zsanarto specific cuts.
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2.3
Main results: “Packing-type problems" with arbitrary matrix A
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Corrected density of sparse cutting-planes

e We use the same notation as the packing case.

o Specifically, we use the same kind of definition of sparsity of A and cuts
as in the packing case.

Definition (Corrected average cutting-plane density)
LetV = {V', V2 ..., V!} be the sparse cut support list. For any subset
V={v% v ., V%} CV define its density as

k
o _
D(V) = 2 > IV,
i=1

We define the corrected average cutting-plane density of V (denoted as Dy)
as the value of D(V) where:

© V covers V, thatis, Uy, V= V.
® Among all subsets of V that cover V, V is the subset with largest
density.
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oliaro, Theorem
uae Let (P) be defined by an arbitrary A € Z™*", b € Z™, c € R and L C [n].

Let J :={J1,>,...,Jq} be a partition of the index set of columns of A (that
is [n]). If P! is non-empty, then:

ZV<(IV|+1-Dy)Z.

Moreover these results are tight:

problems”
with arbitrary

matrx 4 Corollary

Consider a two stage packing-type problem with arbitrary A € Z™*" and
b € Z™ and with k scenarios. Suppose that P' is non-empty. Then:

Zsccnario-speciﬁc closure S ( k) ZI )

Proposition

Forevery k € Z, ., there exists an instance of two stage packing-type
problem with arbitrary A € Z™*" and b € Z" and k scenarios such that:

Z.vcenarin—xpez‘iﬁc closure _ (k)Z’.
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Conclusion

© Introduced a natural framework to analyze strength of sparse cuts for
sparse IPs.

® The results obtained show that in many cases, sparse cuts provide
good bounds for sparse IPs.

® The analysis is tight: all the bounds obtained are tight.
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Conclusion

© Introduced a natural framework to analyze strength of sparse cuts for
sparse IPs.

® The results obtained show that in many cases, sparse cuts provide
good bounds for sparse IPs.

® The analysis is tight: all the bounds obtained are tight.
@ Can we design supports of cuts so that we get good bounds?
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Thank You!
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