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We have A and b given, describing a nonempty polytope

P :=
{
x ∈ Rd : Ax ≤ b, 0 ≤ x ≤ ē

}
.

We are interested in 0, 1 vectors in P:

PI := conv
(
P ∩ {0, 1}d

)
.
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We will consider operators Γ that take a compact convex set
Ck ⊆ [0, 1]d and return a compact convex set Ck+1 such that

Ck ∩ {0, 1}d ⊆ Ck+1 := Γ(Ck) ⊆ Ck ,

Ck+1 6= Ck unless Ck = conv
(
Ck ∩ {0, 1}d

)
.
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Note that the given system of polynomial equations and
inequalities is:

Ax ≤ b, 0 ≤ x ≤ ē,

x2
j − xj = 0, ∀j ∈ {1, 2, . . . , d}.
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P :=
{
x ∈ Rd : Ax ≤ b, 0 ≤ x ≤ ē

}
.

We are interested in 0, 1 vectors in P:

PI := conv
(
P ∩ {0, 1}d

)
.

BCC(j)(P) := conv {(P ∩ {x : xj = 0}) ∪ (P ∩ {x : xj = 1})} ,

where j ∈ {1, 2, . . . , d}. Since the inclusions

PI ⊆ BCC(j)(P) ⊆ P

are clear for every j , it makes sense to consider applying this
operator iteratively, each time for a new index j .
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Let us define

J := {j1, j2, . . . , jk} ⊆ {1, 2, . . . , d}.

Let us denote

BCC(J)(P) := BCC(jk )

(
BCC(jk−1)

(
· · ·BCC(j1)(P) · · ·

))
.

It is easy to check that in the above context, the operators BCC(j)

commute with each other.
Therefore, the notation BCC(J)(·) is justified.
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A beautiful, fundamental property of these operators is:

Lemma

For every J ⊆ {1, 2, . . . , d}, we have

BCC(J)(P) = conv (P ∩ {x : xj ∈ {0, 1}, ∀j ∈ J}) .

The lemma directly leads to the convergence theorem.

Theorem

(Balas [1974]) Let P be as above. Then

BCC({1,2,...,d})(P) = PI .
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BCC(j) LS0 LS SA SA′ BZ BZ′′ BZ′

LS+ SA+ SA′+ BZ+ BZ′′+ BZ′+

Las

PSD
Operators

Polyhedral
Operators

Tractable w/ weak separation oracle for P

Tractable w/ facet description of P

Figure: Various properties of lift-and-project operators (Au and T. [2011,
2013]).
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BCC(j) LS0 LS SA SA′ BZ BZ′′ BZ′

LS+ SA+ SA′
+ BZ+ BZ′′

+ BZ′
+

Las

Thm. 10

Thm. 5Prop. 2

Cor. 16

PSD
Operators

Polyhedral
Operators

Tractable w/ weak separation oracle for P

Tractable w/ facet description of P

Figure: An illustration of several restricted reverse dominance results
(dashed arrows) Au and T. [2013, 2015].
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Lovász and Schrijver [1991] proposed:

M0(K ) :=
{
Y ∈ R(d+1)×(d+1) : Ye0 = Y T e0 = diag(Y ),

Yei ∈ K ,Y (e0 − ei ) ∈ K ,

∀i ∈ {1, 2, . . . , d}}

LS0(K ) := {Ye0 : Y ∈ M0(K )} .
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Tighter,

M(K ) := M0(K ) ∩ Sd+1,

LS(K ) := {Ye0 : Y ∈ M(K )} .
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and tighter,

M+(K ) := M0(K ) ∩ Sd+1
+ ,

LS+(K ) := {Ye0 : Y ∈ M+(K )} .
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Lemma

Let K be as above. Then

KI ⊆ LS+(K ) ⊆ LS(K ) ⊆ LS0(K ) ⊆ K .
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Theorem

(Lovász and Schrijver [1991]) Let P be as above. Then

P ⊇ LS0(P) ⊇ LS2
0(P) ⊇ · · · ⊇ LSd

0 (P) = PI .

Similarly for LS as well as LS+.
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Moreover, the relaxations obtained after a few iterations are still
tractable if the original relaxation P is.

Theorem

(Lovász and Schrijver [1991]) Let P be as above. If we have a
polynomial time weak separation oracle for P then we can optimize
any linear function over any of LSk

0 (P), LSk(P), LSk
+(P) in

polynomial time, provided k = O(1).

There is a wide spectrum of lift-and-project type operators: Balas
[1974], Sherali and Adams [1990], Lovász and Schrijver [1991],
Balas, Ceria and Cornuéjols [1993], Kojima and T. [2000], Lasserre
[2001], de Klerk and Pasechnik [2002], Parrilo [2003], Bienstock
and Zuckerberg [2004].
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Moreover, the relaxations obtained after a few iterations are still
tractable if the original relaxation P is.

Theorem

(Lovász and Schrijver [1991]) Let P be as above. If we have a
polynomial time weak separation oracle for P then we can optimize
any linear function over any of LSk

0 (P), LSk(P), LSk
+(P) in

polynomial time, provided k = O(1).

There is a wide spectrum of lift-and-project type operators: Balas
[1974], Sherali and Adams [1990], Lovász and Schrijver [1991],
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Such a general method (it applies to every combinatorial
optimization problem)...

Can it be really good on any problem?
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Let G = (V ,E ) be an undirected graph.
We define the fractional stable set polytope as

FRAC(G ) :=
{
x ∈ [0, 1]V : xi + xj ≤ 1 for all {i , j} ∈ E

}
.

This polytope is used as the initial approximation to the convex
hull of incidence vectors of the stable sets of G , which is called the
stable set polytope:

STAB(G ) := conv
(

FRAC(G ) ∩ {0, 1}V
)
.
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Let us define the class of odd-cycle inequalities. Let H be the node
set of an odd-cycle in G then the inequality∑

i∈H
xi ≤

|H| − 1

2

is valid for STAB(G ). We define

OC(G ) := {x ∈ FRAC(G ) : x satisfies all odd-cycle constraints for G} .
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If H is an odd-anti-hole then the inequality∑
i∈H

xi ≤ 2

is valid for STAB(G ).
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If we have an odd-wheel in G with hub node represented by x2k+2

and the rim nodes represented by x1, x2, . . . , x2k+1, then the
odd-wheel inequality

kx2k+2 +
2k+1∑
i=1

xi ≤ k

is valid for STAB(G ).
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Based on these classes of inequalities we define the polytopes

OC(G ),ANTI-HOLE(G ),WHEEL(G ).
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Theorem

(Lovász and Schrijver [1991]) For every graph G,

LS0(G ) = LS(G ) = OC(G ).

Note that this theorem provides a compact lifted representations of
the odd-cycle polytope of G (in the spaces R({0}∪V )×({0}∪V ) and
S{0}∪V ). This polytope can have exponentially many facets in the
worst case.
However, M(G ) is represented by

|V |(|V |+ 1)/2 variables and O
(
|V |3

)
linear inequalities.
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Theorem

(Lovász and Schrijver [1991]) For every graph G,

LS0(G ) = LS(G ) = OC(G ).

Note that this theorem provides a compact lifted representations of
the odd-cycle polytope of G (in the spaces R({0}∪V )×({0}∪V ) and
S{0}∪V ). This polytope can have exponentially many facets in the
worst case.

However, M(G ) is represented by

|V |(|V |+ 1)/2 variables and O
(
|V |3

)
linear inequalities.

Yu Hin (Gary) Au, Levent Tunçel Lift-and-project ranks
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What about LS2
0(G ), LS2(G )?
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What about LS2
0(G ), LS2(G )?

There exist graphs G for which

LS2
0(G ) 6= LS2(G ) Au and T. [2009].

Open Problem: Give good combinatorial characterizations for
LS2

0(G ) and LS2(G ).

Some partial results by Lipták [1999] and by Lipták and T. [2003].
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A clique in G is a subset of nodes in G so that every pair of them
are joined by an edge. The clique polytope of G is defined by

CLQ(G ) :=

x ∈ RV
+ :
∑
j∈C

xj ≤ 1 for every clique C in G

 .

Optimizing a linear function over FRAC(G ) is easy!
Linear optimization over CLQ(G ) (and STAB(G )) is NP-hard!
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Orthonormal Representations of Graphs and the Theta Body of
G := (V ,E )

u(1), u(2), . . . , u(|V |) ∈ Rd such that

〈u(i), u(j)〉 = 0, for all i 6= j , {i , j} /∈ E ,

and
〈u(i), u(i)〉 = 1, for all i ∈ V .
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TH(G ) :=

{
x ∈ R|V |+ :

∑
i∈V

(
cTu(i)

)2
xi ≤ 1,

∀ ortho. representations and c ∈ Rd s.t. ‖c‖2 = 1
}

TH(G ) ⊇ STAB(G )

but infinitely many linear inequalities!
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Theorem

Let G = (V ,E ). Then TFAE

(i) G is perfect

(ii) TH(G ) is a polytope

(iii) TH(G ) = CLQ(G )

(iv) STAB(G ) = CLQ(G )

(v) G does not contain an odd-hole or odd anti-hole

(vi) the ideal generated by
{

(x2
v − xv ), ∀v ∈ V ; xuxv ,∀{u, v} ∈ E

}
is (1, 1)-SoS.
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(v) G does not contain an odd-hole or odd anti-hole

(vi) the ideal generated by
{

(x2
v − xv ), ∀v ∈ V ; xuxv ,∀{u, v} ∈ E

}
is (1, 1)-SoS.
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There is a strong connection between LS+(G ) and TH(G ):

Theorem

(Lovász and Schrijver [1991]) Let G = (V ,E ). Then

TH(G ) =

{
x ∈ RV :

(
1
x

)
= Ye0;Yij = 0,∀{i , j} ∈ E ;

Ye0 = diag (Y );Y � 0} .
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Theorem

(Lovász and Schrijver [1991]) For every graph G,

LS+(G ) ⊆ OC(G )∩ANTI-HOLE(G )∩WHEEL(G )∩CLQ(G )∩TH(G ).

Open Problem: Give full, elegant, combinatorial characterizations
for LS+(G ).

Yu Hin (Gary) Au, Levent Tunçel Lift-and-project ranks
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Is LS+(G ) polyhedral for every G?
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Is LS+(G ) polyhedral for every G?

Let Gαβ be the graph in the following figure:

. . .
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Is LS+(G ) polyhedral for every G?

Let Gαβ be the 8-node graph in the following figure, on the board:
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A two dimensional cross-section of the compact convex relaxation
LS+(Gαβ) has a nonpolyhedral piece on its boundary.
We say that z ∈ R8 is an αβ-point, if α and β are both

nonnegative and zi :=

{
α if i ∈ {1, 2, 3, 4} ,
β if i ∈ {5, 6, 7, 8} .

Theorem

(Bianchi, Escalante, Nasini, T. [2014]) An αβ-point with
1
4 ≤ α ≤

1
2 belongs to LS+(Gαβ) if and only if

β ≤ 3−
√

1+8(−1+4α)2

8 .
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The SDP relaxation LS+(G ) of STAB(G ) is stronger than TH(G ).

By following the same line of reasoning used for perfect graphs,
MWSSP can be solved in polynomial time for the class of graphs
for which LS+(G ) = STAB(G ).

We call these LS+-perfect graphs.
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If G ′ is a node-induced subgraph of G (G ′ ⊆ G ), we consider every
point in STAB(G ′) as a set of points in STAB(G ), although they
do not belong to the same space

(for the missing nodes, we take direct sums with the interval [0, 1],
since originally STAB(G ) ⊆ STAB(G ′)⊕ [0, 1]V (G)\V (G ′)).
With this notation, given any family of graphs F and a graph G ,
we denote by F(G ) the relaxation of STAB(G ) defined by

F(G ) :=
⋂

G ′⊆G ;G ′∈F
STAB(G ′).

Yu Hin (Gary) Au, Levent Tunçel Lift-and-project ranks
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A graph is called near-bipartite if after deleting the closed
neighborhood of any node, the resulting graph is bipartite. Let us
denote by NB the class of all near-bipartite graphs.
For every graph G ,

LS+(G ) ⊆ NB(G ) and

NB(G ) ⊆ CLQ(G ) ∩OC(G ) ∩ ANTI-HOLE(G ) ∩WHEEL(G ).
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Recall:

If G ′ is a node-induced subgraph of G (G ′ ⊆ G ), we consider every
point in STAB(G ′) as a point in STAB(G ), although they do not
belong to the same space (for the missing nodes, we take direct
sums with the interval [0, 1], since originally
STAB(G ) ⊆ STAB(G ′)⊕ [0, 1]V (G)\V (G ′)). With this notation,
given any family of graphs F and a graph G , we denote by F(G )
the relaxation of STAB(G ) defined by

F(G ) :=
⋂

G ′⊆G ;G ′∈F
STAB(G ′).
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Open Problem: Find a combinatorial characterization of
LS+-perfect graphs.

Current best characterization (Bianchi, Escalante, Nasini, T.
[2014])

LS+(G ) ⊆ NB(G ) ∩ T̂H(G ).
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What is the smallest graph which is LS+-imperfect?

In a related context, Knuth (1993) asked what is the smallest
graph for which STAB(G ) 6= LS+(G )?
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Figure: Little graph that could! G2 with corresponding weights
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Proposition

(Lipták, T., 2003) G2 is the smallest graph for which
LS+(G ) 6= STAB(G ).
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The LS-rank of P is the smallest k for which LSk(P) = PI .
Analogously, LS0-rank of P, LS+-rank of PI relative to P ...
We denote these ranks by r(G ), r0(G ), and r+(G ), respectively.
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Theorem

(Lipták, T. [2003]) For every graph G = (V ,E ), r+(G ) ≤
⌊
|V |
3

⌋
.

n+(k) := min{|V (G )| : r+(G ) = k}.

Open Problem: What are the values of n+(k) for every k ∈ Z+? In
particular,
Conjecture (Lipták, T. [2003]): Is it true that n+(k) = 3k for all
k ∈ Z+?
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n+(k) := min{|V (G )| : r+(G ) = k}.

Open Problem: What are the values of n+(k) for every k ∈ Z+? In
particular,
Conjecture (Lipták, T. [2003]): Is it true that n+(k) = 3k for all
k ∈ Z+?

k = 1 (triangle is the answer);
k = 2 the above graph G2 is the answer;
k = 3, Escalante, Montelar, Nasini (2006);
k = 4?
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What about the polyhedral graph ranks?

Conjecture (Lipták, T. [2003]): r0(G ) = r(G ) ∀ graphs G .

True for:

bipartite graphs, series-parallel graphs, perfect graphs and
odd-star-subdivisions of graphs in B (which contains cliques and
wheels, among many other graphs), antiholes and graphs that have
N0-rank ≤ 2. Also true for all 8-node graphs, and for 9-node
graphs that contain a 7-hole or a 7-antihole as an induced
subgraph Au [2008].
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Other lower bound results: Stephen and T. [1999], Cook and Dash
[2000], Goemans and T. [2001], Laurent [2002], Laurent [2003],
Aguilera, Bianchi and Nasini [2004], Escalante, Montelar and
Nasini [2006], Arora, Bollobás, Lovász and Tourlakis [2006],
Cheung [2007], Georgiou, Magen, Pitassi, Tourlakis [2007],
Schoeneback, Trevisan and Tulsiani [2007], Charikar, Makarychev
and Makarychev [2009], Mathieu and Sinclair [2009], Raghavendra
and Steurer [2009], Benabbas and Magen [2010], Karlin, Mathieu
and Thach Nguyen [2010], Chan, Lee, Raghavendra and Steurer
[2013]. Many of the lower bound proofs have been
unified/generalized: Hong and T. [2008].
Other work on convex relaxation methods on the stable set
problem: de Klerk and Pasechnik [2002], Peña, Vera and Zuluaga
[2008], ...

Stronger “lower bound” results via study of extended complexity.
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BCC(j) LS0 LS SA SA′ BZ BZ′′ BZ′

LS+ SA+ SA′+ BZ+ BZ′′+ BZ′+

Las

PSD
Operators

Polyhedral
Operators

Tractable w/ weak separation oracle for P

Tractable w/ facet description of P

Figure: Various properties of lift-and-project operators (Au and T. [2011,
2013]).
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Denote {0, 1}d by F . Define A := 2F . For each x ∈ F , we define
the vector xA ∈ RA such that

xAα =

{
1, if x ∈ α;
0, otherwise.
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For any given x ∈ F , if we define Y x
A := xA(xA)T , then, the

following must hold:

Y x
Ae0 = (Y x

A)T e0 = diag (Y x
A) = xA;

Y x
Aeα ∈

{
0, xA

}
, ∀α ∈ A;

Y x
A ∈ SA+;

Y x
A[α, β] = 1 ⇐⇒ x ∈ α ∩ β;

If α1 ∩ β1 = α2 ∩ β2, then Y x
A[α1, β1] = Y x

A[α2, β2].
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Given S ⊆ [d ] and t ∈ {0, 1}, we define

S |t := {x ∈ F : xi = t, ∀i ∈ S} .

For any integer i ∈ [0, d ], define

Ai := {S |1 ∩ T |0 : S ,T ⊆ [n], S ∩ T = ∅, |S |+ |T | ≤ i}

and
A+

i := {S |1 : S ⊆ [d ], |S | ≤ i} .
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1 Let S̃A
k

(P) denote the set of matrices Y ∈ RA
+
1 ×Ak that

satisfy all of the following conditions:
(SA 1) Y [F ,F ] = 1;
(SA 2) x̂(Yeα) ∈ K (P) for every α ∈ Ak ;
(SA 3) For each S |1 ∩ T |0 ∈ Ak−1, impose

YeS|1∩T |0 = YeS|1∩T |0∩j|1 + YeS|1∩T |0∩j|0 , ∀j ∈ [n] \ (S ∪ T ).

(SA 4) For each α ∈ A+
1 , β ∈ Ak such that α ∩ β = ∅, impose

Y [α, β] = 0;
(SA 5) For every α1, α2 ∈ A+

1 , β1, β2 ∈ Ak such that
α1 ∩ β1 = α2 ∩ β2, impose Y [α1, β1] = Y [α2, β2].

2 Let S̃A
k
+(P) denote the set of matrices Y ∈ SAk

+ that satisfies
all of the following conditions:

(SA+ 1) (SA 1), (SA 2) and (SA 3);
(SA+ 2) For each α, β ∈ Ak such that conv(α) ∩ conv(β) ∩ P = ∅,

impose Y [α, β] = 0;
(SA+ 3) For any α1, α2, β1, β2 ∈ Ak such that α1 ∩ β1 = α2 ∩ β2,

impose Y [α1, β1] = Y [α2, β2].
3 Define

SAk(P) :=
{
x ∈ Rd : ∃Y ∈ S̃A

k
(P) : YeF = x̂

}
and

SAk
+(P) :=

{
x ∈ Rd : ∃Y ∈ S̃A

k
+(P) : x̂(YeF ) = x̂

}
.

The SAk
+ operator extends the lifted space of the SAk operator to

a set of square matrices, and imposes an additional positive
semidefiniteness constraint. Moreover, SAk

+ refines the operator
LSk

+ operator.
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Given P :=
{
x ∈ [0, 1]d : Ax ≤ b

}
, and an integer k ∈ [d ],

1 Let L̃as
k
(P) denote the set of matrices Y ∈ SA

+
k+1

+ that satisfy all of
the following conditions:

(Las 1) Y [F ,F ] = 1;
(Las 2) For each j ∈ [m], let Aj be the j th row of A. Define the matrix

Y j ∈ SA+
k such that

Y j [S |1,S ′|1] := bjY [S |1,S ′|1]−
n∑

i=1

Aj
iY [(S∪{i})|1, (S ′∪{i})|1]

and impose Y j � 0.
(Las 3) For every α1, α2, β1, β2 ∈ A+

k such that α1 ∩ β1 = α2 ∩ β2,
impose Y [α1, β1] = Y [α2, β2].

2 Define

Lask(P) :=
{
x ∈ Rd : ∃Y ∈ L̃as

k
(P) : x̂(YeF ) = x̂

}
.

In our setting, the Las-rank of a polytope P (the smallest k such
that Lask(P) = PI ) is equal to the Theta-rank, defined by
Gouveia, Parrilo, Thomas [2010].
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Consider the set

Pn,α :=

{
x ∈ [0, 1]n :

n∑
i=1

xi ≤ n − α

}
.

Theorem

(Au and T. [2015]) Suppose an integer n ≥ 5 is not a perfect
square. Then there exists α ∈ (

⌊√
n
⌋
, d
√
ne) such that the

BZ′+-rank of Pn,α is at least
⌊√

n+1
2

⌋
.
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Theorem

(Au and T. [2015]) For every n ≥ 2, the SA+-rank of Pn,α is n for
all α ∈ (0, 1).

Theorem

(Cheung [2007])

1 For every even integer n ≥ 4, the Las-rank of Pn,α is at most
n − 1 for all α ≥ 1

n ;

2 For every integer n ≥ 2, there exists α ∈
(
0, 1

n

)
such that the

Las-rank of Pn,α is n.

Theorem

(Au and T. [2015]) Suppose n ≥ 2, and

0 < α ≤ n

(
3−
√

5

4n − 4

)n

.

Then Pn,α has Las-rank n.
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(
0, 1

n

)
such that the

Las-rank of Pn,α is n.

Theorem

(Au and T. [2015]) Suppose n ≥ 2, and

0 < α ≤ n

(
3−
√

5

4n − 4

)n

.

Then Pn,α has Las-rank n.
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Figure: Computational results and upper bounds for
g(n) := max

{
α : Lasn−1(Pn,α) 6= (Pn,α)I

}
(Au and T. [2015]).

Yu Hin (Gary) Au, Levent Tunçel Lift-and-project ranks
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Figure: Computational results and upper bounds for
g(n) := max

{
α : Lasn−1(Pn,α) 6= (Pn,α)I

}
(Au and T. [2015]).
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Given α > 0, we define the set

Qn,α :=

x ∈ [0, 1]n :
∑
i∈S

(1− xi ) +
∑
i 6∈S

xi ≥ α, ∀S ⊆ [n]

 .

Theorem

(Au and T. [2015]) Suppose n ≥ 2, and

0 < α ≤

(
3−
√

5

4

)n

.

Then Qn,α has Las-rank n.
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Figure: Computational results and possible ranges for
f (n) := max

{
α : Lasn−1(Qn,α) 6= ∅

}
(Au and T. [2015]).
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}
(Au and T. [2015]).
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For the complete graph G := Kn, FRAC(G ) has rank 1 with
respect to LS+, SA+ and Las operators. However, the rank is
known to be Θ(n) for all other operators that yield only polyhedral
relaxations, such as SA and Lovász and Schrijver’s LS operator.
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For the complete graph G := Kn, FRAC(G ) has rank 1 with
respect to LS+, SA+ and Las operators. However, the rank is
known to be Θ(n) for all other operators that yield only polyhedral
relaxations, such as SA and Lovász and Schrijver’s N operator.

Theorem

(Au and T. [2013]) Suppose G is the complete graph on n ≥ 3
vertices. Then the BZ′-rank (and the BZ-rank) of FRAC(G ) is
between

⌈
n
2

⌉
− 2 or

⌈
n+1

2

⌉
.
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The convex relaxation methods I discussed can all be phrased
so that they are based on polynomial systems of inequalities.
This area which is a meeting place for combinatorial
optimization, convex optimization and real algebraic geometry
continues to be very exciting and vibrant.
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There is more to come!

How about approaches based on Hilbert’s Nullstellensatz? De
Loera, Lee, et al. [2008-...]
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Tractable w/ weak separation oracle for P

Tractable w/ facet description of P

Figure: An illustration of several restricted reverse dominance results
(dashed arrows) Au and T. [2013, 2015].

Yu Hin (Gary) Au, Levent Tunçel Lift-and-project ranks


