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Black Holes: Two ways

• A black hole is a region of 
spacetime from which nothing 
ever escapes:                       . 
Boundary is the event horizon. 

BH I: Causal black holes

BH II: Geometric black holes
 (apparent, isolated, trapping, dynamical  
  horizons, holographic screen)

• Interior is made up of 
trapped surfaces


• Boundary is (intuitively) a 
marginally outer trapped 
surface (MOTS)
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Trapped Surfaces

• “Regular” convex surface (ie sphere): 


• Trapped surface:


• Interior of stationary holes is trapped


• Trapped surfaces imply the existence of singularities 
and event horizons (Penrose 65)

spacelike two-surface

- inward null normal

- outward null normal�a

na

The Mathematics
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Schwarzschild Black Holes
The Mathematics

for all     constant surfaces
Ln✓(`) < 0
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Geometric Horizons
✓(`) = 0 , ✓(n) < 0 , Ln✓(`) < 0

marginally 
outer trapped  
(MOTS)

fully trapped surfaces 
inside (FOTH)

Many well-known geometric horizon theorems from  
mathematical relativity depend on these properties:

apparent horizon,  
FOTH, MTT, 
dynamical horizon,

isolated horizon,

strictly stably 
outermost MOTS,  
holographic screens


The Mathematics

• Persistence of horizon and uniqueness of  
time-evolution Andersson, Mars, Simon (05)


• Area increase theorems:  
Hayward (93), Ashtekar-Krishnan (01), Bousso (15)


• Area bounds on charge and angular momentum:  
                  Dain, Reiris, Jaramillo, Khuri et al (06+) 


Ȧ � 0

Q4 + 4J2  R4
H
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The Andersson-Mars-Simon Theorem

IF a strictly stably outermost  
MOTS exists on one leaf of a  
smooth foliation of a spacetime  

The Mathematics

 = strictly stably outermost        Ln✓(`) < 0 =) 9 spacelike r̂ st Lr̂✓(`) < 0
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GIVEN the null energy condition it is: i) null if isolated 
                                              ii) spacelike if dynamical

 = strictly stably outermost        Ln✓(`) < 0 =) 9 spacelike r̂ st Lr̂✓(`) < 0

(Hayward 93)
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(Basic) Example #1: Vaidya

Describes infalling shells  
of null dust with density: 

n = � @

@r

falling along   = constant  
curves with tangent vector: 

` =
@

@v
+

1

2

✓
1� 2m

r

◆
@

@r
Outward null

Simple expansion

✓(`) = 0 , r = 2m(v)Then                            ,           and                   Ln✓(`) = � 1

r2
< 0✓(n) < 0

All are strictly stably outermost
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So with                       :

All are space-like and expanding

(Basic) Example #1: Vaidya
Simple expansion
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So with                       :

All are space-like and expanding

(Basic) Example #1: Vaidya
Simple expansion

Can we get more interesting evolutions?
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Spherical horizon dynamics I

For a tangent/evolution vector:
Va = `a � Cna

we have

LV✓(`) = 0

=) L`✓(`) � CLn✓(`) = 0

=) C =
L`✓(`)
Ln✓(`)

=) C =
Gab`a`b

1/r2 �Gab`anb
by the null energy condition this 

is positive unless Gab`

anb > 1/r2

evolution parameter

The Mathematics

ie                    not strictly stably outermost Ln✓(`) > 0 =)

(Hayward 93)
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Spherical horizon dynamics II

For a tangent vector:
Va = `a � Cna

V · V = 2C

LV
p

q̃ = �
p

q̃C✓(n)

Then    determines the geometryC

• signature:


• expansion:

C = 0

C > 0

C < 0

null not-expanding

spacelike expanding

timelike contracting
C =

Gab`a`b

1/r2 �Gab`anb

The Mathematics

10



(Extended) Oppenheimer-Snyder Collapse

• Ben-Dov (2004) suggests that this picture is incomplete
◦ cutting and pasting FRW (dust) and Schwarzschild, one
can simulate certain dust shell collapses

Sc
hw
arz

Sc
hw
arz

Sc
hw
arz

Sc
hw
arz FR
WFR
W

FR
W

increasing areal radius

tim
e

◦ here the “horizon" alternates between being null (C = 0)
and timelike (C < 0) — it is never spacelike (C > 0)

◦ further, the “horizon" doesn’t expand but instead shrinks
◦ this all happens because L nθ(ℓ) > 0 on the timelike
regions – not a FITH/timelike membrane

Marginally trapped tubes and dynamical horizons – p.10/??

Horizon jumps

• Ben-dov (2004) demonstrated a very different behaviour by  
cutting and pasting Schwarzschild and (collapsing) FRW

• Are there smooth spacetimes exhibiting timelike sections?

Gab`
anb >

1

r2
=) Ln✓(`) > 0

Example 2: Schwarz-FRW
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• Lemaitre-Tolman-Bondi describes the collapse of timelike dust  
 
 
 
where                       and           are explicit functions of                     
 
and                                    (initial mass distribution)


• MOTS at


• Allows us to evolve dust/spacetime and track geometric horizons

Example 3: Tolman-Bondi (smooth)
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Smooth horizon “jumps”

✓(`) = 0 () R(r
o

, t) = 2m(r
o

)

A(r
o

, t) , B(r
o

, t) R(r
o

, t) (r
o
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Collapse of timelike dust - schematic

• Timelike sections = either horizon “jumps” or creations/annihilations

•  Doesn’t violate AMS existence theorem as it isn’t  
strictly stably outermost in interesting sections


•  There can be shell-crossing singularities

Gab = 8⇡⇢uaub

Gab`
anb = 4⇡⇢

C =
Gab`a`b

1/r2 �Gab`anb

Gab`
a`b =

4⇡

⇠2
⇢

⇢ >
1

A
) spacelike

Horizon jumps

There may be critical exponents associated  
with jumps… Cao, Cai, Yang arXiv:1604.03363

Aside:
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Example 4: Tolman-Bondi (shockwaves)

•  It is straightforward to identify 
shell-focussing and shell-crossing 
singularities:  

•  These mark out coordinate regions 
where the spacetime is ill-defined


•  These singularities can be replaced 
by shockwaves 


(B.Tippett and IB, 2014)

Discontinuous horizons 
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Shockwaves II

• Remove by identifying R=constant points (motivated by shockwave physics)


• Darmois-Israel junction conditions => thin shell of matter remains


• Geometric horizon “jumps” - it can disappear into and reappear out of 
singularity

(Nolan 2003)
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Example 5: Evolutions from extremality

ds2 = �
✓
1� 2m(v)

r
+

q(v)2

r2

◆
dv2 + 2dvdr + r2d⌦2

A =
q(v)

r
dv

Tab = µ[dv]a ⌦ [dv]b + T EM
ab

Vaidya RN:

µ =
1

4⇡r3
(ṁr � qq̇)

Then the stress-energy tensor is:

for

energy conditions
µ � 0

Bifurcating horizons

Null vectors:

MOTS location: ✓(`) = 0 =) r2 � 2m(v)r + q(v)2 = 0

d

dv

�
q2
�
 d

dv

�
m2

�
at extremality

IB 2016

` =
@

@v
+

1

2

✓
1� 2m

r
+

q2

r2

◆
@

@r
and

n = � @

@r
.
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Exits from extremality

C± = ±
 

r±ṁ� qq̇p
m2 � q2

!

• Take limits of


• Horizons bifurcate 


• Doesn’t violate unique evolution 
theorems due to extremality

m(v) = m
o

 
1 + (v/v

o

)k +O

✓
v

v
o

◆
k+1
!

Bifurcating hoirzons

k=1 equilibrium-maximal 
     expansion

k=2 rate of expansion  
     discontinuous

k>2 rate of expansion  
     continuous
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Evolutions at extremality

• When extremal matter falls 
onto an extremal horizon a 
dynamical extremal horizon 
results


• Some care needs to be taken in 
constructing and interpreting 
these solutions. Recall:  
 

• Full solution pastes together 
ingoing and outgoing Vaidya RN


• There is a thin shell along the 
horizon… 
 

µ =
1

4⇡r3
(ṁr � qq̇)

Assorted exotica

Ori, CQG 1991
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Extremal formations

• Accrete matter onto a charged 
naked singularity


• Then there can be event horizons 
without a geometric horizon (a)


• OR a geometric horizon can form 
instantaneously (b)

Horizons from nowhere…
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Conclusion I
When conditions are calm (aka the AMS assumptions)  
horizon evolution is similarly calm and stately 
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Green Gardens 
Gros Morne



Conclusion II
However those conditions don’t always hold and so the

evolution can be more interesting.  
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Wind: 80-100km/hr 
Rain: heavy 
Scree: unstable

Blow-Me-Down Mountains  
West Coast, Newfoundland


