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Black Holes: Two ways

BH I: Causal black holes

® A black hole is a region of
spacetime from which no’rhmg
ever escapes:B = [M —J~ # 0.

U

Boundary is the event horlzon

apparent

horizon ™\,

(apparent, isolated, trapping, dynamical
horizons, holographic screen) 10

event

® Interior is made up of
horizon

trapped surfaces
-20

® Boundary is (intuitively) a
marginally outer trapped

BH II: Geometric black holes i
surface (MOTS) 30E




The Mathematics

Trapped Surfaces

/%~ outward null normal

n% - inward null normal

spacelike two-surface

® "Regular” convex surface (ie sphere):
® Trapped surface:
® Interior of stationary holes is trapped

® Trapped surfaces imply the existence of singularities
and event horizons (Penrose 65)
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The Mathematics

Trapped Surfaces

/%~ outward null normal

n% - inward null normal

spacelike two-surface

® “"Regular” convex surface (ie sphere): 6 >0, 6(,,) <0
® Trapped surface:
® Interior of stationary holes is trapped

® Trapped surfaces imply the existence of singularities
and event horizons (Penrose 65)
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The Mathematics

Trapped Surfaces

/%~ outward null normal

n% - inward null normal

/

spacelike two-surface
® “"Regular” convex surface (ie sphere): 6 >0, 6(,,) <0
® Trapped surface: 0 <0, 6, <0
® Interior of stationary holes is trapped

® Trapped surfaces imply the existence of singularities
and event horizons (Penrose 65)
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The Mathematics

Schwarzschild Black Holes

2
ds’ = — (1 — _m) dv® + 2dvdr + r2dQ?

v = constant

(9(n) < (

for all » = constant surfaces
Ene(@ <0
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The Mathematics

Schwarzschild Black Holes

2
ds’ = — (1 — _m) dv® + 2dvdr + r2dQ?

v = constant

00y =

Q(n) <0

for all » = constant surfaces
Ene(@ <0
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The Mathematics

Schwarzschild Black Holes

2
ds’ = — (1 — _m) dv® + 2dvdr + r2dQ?

r =00 - OO
v = constant
Oy =
Q(n) <0 ®)
for all » = constant surfaces Oy > 0

Ene(@ <0
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The Mathematics

Schwarzschild Black Holes

2
ds’ = — (1 — _m) dv® + 2dvdr + r2dQ?

= 00
(9(5) <0
v = constant
Ogy =0
Q(n) <0
for all » = constant surfaces Oy > 0

Lnﬁ(@ <0
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The Mathematics

Geometric Horizons

9@) =0 , Q(n) <0 Lne(@ <0
_
marginally fully trapped surfaces
outer trapped inside (FOTH)
(MOTS)
@(g) <0
Many well-known geometric horizon theorems from Oy =0
mathematical relativity depend on these properties: 00y > 0
¢
J P.er5|s’rence.oF horizon and uniqueness of apparent horizon,
time-evolution Andersson, Mars, Simon (05) FOTH, MTT,
® Area increase theorems: A > 0 dynamical horizon,
Hayward (93), Ashtekar-Krishnan (01), Bousso (15) isolated horizon,
® Area bounds on charge and angular momentum: strictly stably
Qr +4J° < Rjrl{ Dain, Reiris, Jaramillo, Khuri et al (06+) outermost MOTS,

holographic screens



The Mathematics

Geometric Horizons

9(g) =0 , Q(n) <0 ,Cn@(g) < 0
————

marginally fully trapped surfaces
outer trapped inside (FOTH)
(MOTS)
Q(g) <0
Many well-known geometric horizon theorems from Oy =0
mathematical relativity depend on these properties: 00y > 0
time-evolution Andersson, Mars, Simon (05) FOTH, MTT,
® Area increase theorems: A > 0 dynamical horizon,
Hayward (93), Ashtekar-Krishnan (01), Bousso (15) isolated horizon,
® Area bounds on charge and angular momentum: strictly stably
Qr +4J° < Rjrl{ Dain, Reiris, Jaramillo, Khuri et al (06+) outermost MOTS,

holographic screens



The Mathematics

The Andersson-Mars-Simon Theorem

L0 < 0= dspacelike © st L0 <0 = strictly stably outermost

IF a strictly stably outermost
MOTS exists on one leaf of a
smooth foliation of a spacetime




The Mathematics

The Andersson-Mars-Simon Theorem

L0 < 0= 3 spacelike 7 st L0, < 0 = strictly stably outermost

IF a strictly stably outermost
MOTS exists on one leaf of a
smooth foliation of a spacetime

—=~
— -

— -

"o\ — - -

—
A - — ==
N — -

THEN MOTS exist on future slices
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The Mathematics
The Andersson-Mars-Simon Theorem
L0 < 0= 3 spacelike 7 st L0, < 0 = strictly stably outermost

IF a strictly stably outermost
MOTS exists on one leaf of a
smooth foliation of a spacetime

. S
S £\ S
S | S -

\\\\\

THEN MOTS exist on future slices

AND form a smooth 3D geometric
horizon which exists at least as

long as the MOTS remain strictly
stably outermost.




The Mathematics

The Andersson-Mars-Simon Theorem

L0 < 0= 3 spacelike 7 st L0, < 0 = strictly stably outermost

IF a strictly stably outermost
MOTS exists on one leaf of a S
smooth foliation of a spacetime

THEN MOTS exist on future slices

AND form a smooth 3D geometric
horizon which exists at least as S

\ W W

\\\\

W ¥

\\\\

\\\\\

AW =\ LN A

\ W WY

long as the MOTS remain strictly e L
stably outermost.

GIVEN the null energy condition it is: i) null if isolated
(Hayward 93) ii) spacelike if dynamical



Simple expansion

(Basic) Example #1: Vaidya

2
ds’ = — (1 — m(v)) dv® + 2dvdr + r2d$)?

-
Describes infalling shells ~ dm
\ / of null dust with density: A=
® falling along v = constant o 9d
/ \ curves with tangent vector: =~ 0Or
o 1 2m\ 0
OQutward null /= — 4+ = (1 —
{ Ov i 2 (1 r ) or
1
Then 6 =0 < r=2m(v), 0,) <0and L0 = —— <0
T

All are strictly stably outermost
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Simple expansion

(Basic) Example #1: Vaidya

103 VU
So with m = % (3 +erf(v/L)): }
L=1

-20

-30

All are space-like and expanding



Simple expansion
(Basic) Example #1: Vaidya

U

So with m — % (3 + exf(v/L)):

-10

L =1/100

-20

-30

All are space-like and expanding



Simple expansion

(Basic) Example #1: Vaidya

400

So with m — % (3 + exf(v/L)):

S R R e e P IR

200 /
y A
7
L = 200 o S R / "
] /
|
-200 ¢ //
2 /

-400 f

All are space-like and expanding



Simple expansion

(Basic) Example #1: Vaidya

400

So with m — % (3 + exf(v/L)):

L = 200 = T '/Ar

S R R e e P IR

i /
y 4
$ 7/
~200 ¥ I/
$ /
2

-400 f

All are space-like and expanding

Can we get more interesting evolutions?
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The Mathematics (Hayward 93)

Spherical horizon dynamics I

For a tangent/evolution vector:

V¢ =10t —Cn”®
we have \ evolution parameter
LyvOiy =0
— ﬁg@(g) — CCnH(@ =0
ﬁg@(g)
— C —
L0
. Gyl by the null energy condition this

T 1/r2 — Ggplond s positive unless G,,¢%n’ > 1/r?

Ge L0 >0 = not strictly stably ou’rermosD
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The Mathematics

Spherical horizon dynamics II

G opl2l?

B 1/12 — Gaplonb

For a tangent vector:

V¢ =4 - Cn”

Then C determines the geometry

¢ signature:

V.V =2C

® expansion: £V\/§ — —\/509(70

C=0 null not-expanding
C >0 spacelike expanding
C <0 timelike contracting




Horizon jumps

Example 2: Schwarz-FRW

¢ Ben-dov (2004) demonstrated a very different behaviour by
cutting and pasting Schwarzschild and (collapsing) FRW

|
|
|
|

Gapl®n® > = = L0 >0

¢ Are there smooth spacetimes exhibiting timelike sections?
I



Smooth horizon “jumps”

Example 3: Tolman-Bondi (smooth)

e Lemaitre-Tolman-Bondi describes the collapse of timelike dust

B(r,,t)
A(ro,t)1/3

ds* = —dt* + ( )2 dr? + R(r,,t)?dQ*  (Yodzis 70s)
where A(r,,t) , B(r,,t) and R(7,,t) are explicit functions of (70,1)
and m(r,) = /0707T OZW\/Ep drdfd¢ (initial mass distribution)

¢ MOTS at 0(y) =0 <= R(r,,t) = 2m(r,)

 Allows us to evolve dust/spacetime and track geometric horizons

0,031 ) 201 6
matfter time ] . -
density o ] spacelike
] 1 2
0.025 : ) 5
0.015§ 105 )
0.01§ ) timelike
0.0055 ] J -6
] ] IB, Brits, Gonzalez,

0 1 2 3 4 5 Van Den Broeck

Mass distribution MTT evolution 12 MTT signature CQG 2006



Smooth horizon “jumps”

Example 3: Tolman-Bondi (smooth)
e Lemaitre-Tolman-Bondi describes the collapse of timelike dust

2 1,2 B(r,,1) ’ 2 2 102 :
ds” = —dt” + Ary. 1)1/3 dr; + R(r,,t)°dS2 (Yodzis 70s)
To,

where A(r,,t) , B(r,,t) and R(7,,t) are explicit functions of (70,1)

TofT P27
and m(r,) / / Vhpdrddds (initial mass distribution)
0J0J0

¢ MOTS at 0(y) =0 <= R(r,,1)

= 2m/(r,)

 Allows us to evolve dust/spacetime and track geometric horizons

matteroos
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, time nk
denSIfy 0.02 3 \ \\\ N\
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Horizon jumps
Collapse of timelike dust - schematic

e Timelike sections = either horizon “jumps” or creations/annihilations

p— — — —

S C' =0, equilibrium _: Gab:Sﬂ-puCLub
to— — — — — — A O < __________ __ _____ 47‘(‘
timelike \ Gabéaéb — 5—2,0
7 G pln’ = Ap
e Doesnt violate AMS existence theorem as it isnt G pagh
strictly stably outermost in interesting sections (' — ab
. . . 1/T2 o Gabganb
® There can be shell-crossing singularities _
\/
1

P> = spacelike
Aside: There may be critical exponents associated

with jumps... Cao, Cai, Yang arXiv:1604.03363
13



Discontinuous horizons

Example 4: Tolman-Bondi (shockwaves)
(B.Tippett and IB, 2014)

arctan(I'(r, — 7)) arctan(I'7,)

| m(ro)EmoJru-[

7w /2 + arctan(I'r,)  7w/2 4+ arctan(I'7,)

40 -

® It is straightforward to identify t
shell-focussing and shell-crossing
singularities:

/
Rsps =0 sos =0
20 A

® These mark out coordinate regions

where the spacetime is ill-defined .

® These singularities can be replaced

by shockwaves o



Discontinuous horizons

Shockwaves 11

= e

20~
10\
‘ ‘ ‘ ‘ O\x
5 10 15 R(ro.t)

(a) Pre-excision Post excision

* Remove by identifying R=constant points (mo’rlva’red by shockwave physics)
(Nolan 2003)

e Darmois-Israel junction conditions => thin shell of matter remains

o S S
== ey
/\d
0\~
/4
, 3
/ 7
1
/ /

15 R(ro,t)

e Geometric horizon “jumps” - it can disappear into and reappear out of

singularity
15



Bifurcating horizons IB 2016

Example 5: Evolutions from extremality

2m(v) | a(v)?

Vaidya RN:  ds? = — (1 - ) dv? + 2dvdr + r2dQ>

r r2
A= ®dv
r
Then the stress-energy tensor is: energy conditions
B PPN
Tap = M[d?}]a ® [dv]b + ab for K= Amr3 (mr R QQ) at extremality
d 2 d 2
o 1 2m  ¢*\ O o () = g (m7)
=4+ -=-(1—-— d
Null vectors 50 + 5 ( . + 7“2> 5, an
ho_9
- Or

MOTS location: 6y =0 = 77 —2m(v)r + q(v)*> =0



Bifurcating horizons IB 2016

Example 5: Evolutions from extremality

2 2
Vaidya RN: ds® = — (1 — m(v) + a(v) ) dv? + 2dvdr + r?d§)?

r r?
A= _q(v) dv
r
Then the stress-energy tensor is: energy conditions
oo PP
Tap = M[dv]a ® [dv]b + ab for K= Amr3 (mr R QQ) at extremality

o 1 2 2\ 9 i<q2) <i(m2)
m q dv — dv
— 4 (122
Null vectors: ¢ = 50 + 5 ( . + r2> 5 and
o9
- or
MOTS location: 0y =0 — r? — 2m(v q(v)* =0

s )




Bifurcating hoirzons

Exits from extremality

T+ — qq

\/mz _ q2

e Take limits of CL =+

® Horizons bifurcate

e Doesnt violate unique evolution
theorems due to extremality

m(v) =my [ 14 (v/v)* + 0 <U>k+1

Uo




Assorted exotica

Evolutions at extremality

/\g ® When extremal matter falls
ST onto an extremal horizon a
4 P . .
RN dynamical extremal horizon
/ VRNoﬁt//// //,.'::'io results
s
out S .
PN ® Some care needs to be taken in
N constructing and interpreting
dynamic extremal horizon .
these solutions. Recall:
\\‘\\“ 1 ( . -)
“\\j—i- — mr — qq
: \\ - 43
NN N
N OWRN O .
AN ® Full solution pastes together
Ny . . . .
N ingoing and outgoing Vaidya RN
o . :
S escasing o ® There is a thin shell along the

horizon... Ori, CQG 1991



Horizons from nowhere...

Extremal formations

AN NN
\\\\ \\\\ \\\ ",'
NN NN N
NN NN NN

N NN ANEVARY

N N NONN DN O

AN AN N\ \\\\‘
ANERN N N n
\\ \\ \\\\\/\ \\ \\\‘:f
D OO NN OO NN NN
N N OO AN O NN AN
NN \\\\\

SN\ ® Accrete matter onto a charged
NN e . .
\\\Q;,??m_w naked singularity
| ® Then there can be event horizons
without a geometric horizon (a)
AN
NN ® OR a geometric horizon can form
NN T .
NN instantaneously (b)
NN )
NN N *
b) \\\i/\\zi\\\ M
>< \\\\\\\ R
AN \\\\\ \ ,"'
// N \\\\\ N o g
AN \\\\\ o'
NN
N \\"y

\"Y increasing v



Green Gardens
Gros Morne

Conclusion 1

e - When conditions are calm (aka the AMS assumptions)
. horizon evolution is similarly calm and stately




Blow-Me-Down Mountains

ConCIUSiOI’l II West Coast, Newfoundland

However those conditions dont always hold and so the
evolution can be more interesting.




