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Quantum Tunneling
Tunneling is an example of 
Quantum Mechanics in action 
– a classical particle with 
energy less than barrier height 
will rebound, 


but quantum mechanically the wave 
function never cuts off under a finite 
barrier, but decays – meaning that a 
little emerges through the other side:




Quantum Tunneling

Standard 1+1 Schrodinger tunneling exactly soluble
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ẋ2 = �V

Z ⇤
2�V dx =

Z
2�V d�

=

Z ✓
�V +

1

2
ẋ2
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Euclidean Perspective
Now rotate to imaginary time:



A classical particle moving in imaginary 
time has kinetic energy equal to the 
potential drop, so the amplitude |T|2 now 
looks like the action integral for this 
classical motion.
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Euclidean Trick

Generally, to compute leading behaviour of a tunneling 
amplitude take action of a classical particle moving in an 
inverted potential. The particle rolls from the (now) unstable 
point to the “exit” and back again – a “bounce”.















The action of this bounce gives the exponent in the amplitude 
of the wavefunction – a nice way of computing tunneling 
probability.




The Vacuum

Even maybe not a true ground 
state at all!



Here, at low energies, if we live in 
the left “vacuum” we see a 
‘normal’ particle spectrum 
(vacuum) and do not see it is not 
a global minimum.
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Coleman Bounce
Coleman described this by the Euclidean solution of a 
bubble of true vacuum inside false vacuum separated by a 
“thin wall” (cf the Euclidean tunneling)



















Like steam – we gain energy from moving to true vacuum, 
but the bubble wall costs energy
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Coleman
Solving the Euclidean field equations should give the saddle 
point approximation for the tunneling solution. 







Original work of Coleman took a field theory with a “false” 
vacuum: in limit of small energy difference (relative to 
barrier) transition modeled by a “thin wall” bubble.
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ẋ2

◆
d⇧

d2⌃

d⇧2
+⇧2⌃ = �⌥V

⌥⌃
= 2⇤⌃(⌃2 � ⇥2) +O(�)

⌃00 +
3

⌅
⌃0 = 2⇤⌃(⌃2 � ⇥2) [⌅2 = ⇧2 + x

2]

⌃ ⇥ ⇥ tanh[
⌅
⇤⇥(⌅� ⌅0)]

1



Euclidean Action
Amplitude determined by action of Euclidean tunneling 
solution: “The Bounce”


€ 

ϕF

€ 

ϕT

B = ⌥

⇧
d4x

⇤
g � ⇧

⇧
d3x

⇤
h

⇥ ⌅2

2
⌥R4 � 2⌅2⇧R3

R =
3⇧

⌥
, B =

27⌅2⇧4

2⌥3

P ⇥ e�B/h̄

ds2 = f(r)dt2 ±
�
f�1(r)dr2 + r2dx2

⇥

⇥

f(r) = ⇥� ⇤

3
r2 � 2GM

r

S =
1

16⌅G

⇧
d4x

⇤
g(R� 2⇤)� ⇧

⇧

W
d3x

⇤
h

⇥Kab = �4⌅G⇧hab

Wall
Xµ = (t(⇤), R(⇤), �,⌃)

gttṫ
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Coleman
Since the bounce is a solution to eqns of motion, it should 
be stationary under variation of R:


Tunneling amplitude:







(Notice, R is big, so justifies use of the “thin wall” approximation.)
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2 = 1
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Gravity and the Vacuum
Vacuum energy gravitates – e.g. our current universe is 
accelerating – so we must add gravity to our picture.



A cosmological constant gives us de Sitter spacetime.






Coleman de Luccia (CDL)

Coleman and de Luccia showed how to do this with a 
bubble wall.



o  The instanton is a solution of the Euclidean Einstein 
equations with a bubble of flat space separated from dS 
space by a thin wall. 

o  The wall radius is determined by the Israel junction 
conditions

o  The action of the bounce is the difference of the action 
of this wall configuration and a pure de Sitter geometry.


Coleman and de Luccia, PRD21 3305 (1980)




De Sitter spacetime has a Lorentzian (real time) and 
Euclidean (imaginary time) spacetime. The real time 
expanding universe looks like a hyperboloid and the 
Euclidean a sphere:


Our instanton must 
cut the sphere and 
replace it with flat 
space (true 
vacuum).  




CDL Instanton

Euclidean de Sitter space is a sphere, 
of radius l  related to the cosmological 
constant. The true vacuum has zero 
cosmological constant, so must be flat.
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The bounce looks like a 
truncated sphere. 




To compute action, we have to integrate Ricci curvature









Israel conditions give truncation radius:







hence bounce action:


CDL Action
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The universe is complex – so how dependent are our 
results on the assumptions of homogeneity and isotropy? 
Phase transitions in nature are more “dirty” – how does 
that affect modelling?



Tweaking CDL
The bubble of true vacuum has a spherical symmetry, so we 
can add a black hole at “minimal expense”!
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The wall now will separate two different regions of spacetime, 
each of which solve the Einstein equations:













The regions in general have different cosmological constants, 
and possibly a black hole mass.


A more general bubble
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We can compute the wall trajectory and use the Israel 
junction conditions determine the equation of motion:















- a Friedmann like equation for R. Similar in appearance to 
CDL, and can match Lorentz and Euclidean solutions at R=0


Wall trajectories

S = ⌥

Z
d4x

⇤
g � ⇧

Z
d3x

⇤
h ⇥ ⌅2

2
⌥R4 � 2⌅2⇧R3

R =
3⇧

⌥
, S =

27⌅2⇧4

2⌥3

S =
1

16⌅G

Z
d4x

⇤
g(R� 2⇤)� ⇧

Z

W
d3x

⇤
h

⇥Kab = �4⌅G⇧hab

Wall
Xµ = (t(⇤), R(⇤), ⇥,⌃)

gttṫ
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Geometry
 Bubble


Straightforward to find solutions.

In each case we have to calculate the difference between 
the background black hole action and the effect of the 
bubble.

Need to deal with conical singularities (sometimes).

The general action with a black hole on each side is (details 
vary with Lambda):


Bounces



Looks rather different to usual CDL – here we are in the “static 
patch” of de Sitter – or half the sphere. Must be sure it gives 
the right answer.




Check CDL
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Euclidean de Sitter – Static

For de Sitter in black hole coordinates, we have a 
“cosmological horizon”, and again τ is periodic with 
a specific value. 


r=0


r=L








Solved by sine/cosine functions:



















But gives same result.


CDL Wall
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Ṙ

R

!2

+
1

R2
=

✓
⇧̄ +

1

4⇧̄�2

◆2

R(⇤) = � cos
⇤

�

t�(⇤) = � sin
⇤

�
p

�2 � �2 tan
t+(⇤)

�
= � sin

⇤

�

1

Periodicity 
not the 
same as 
static patch

HENCE CONICAL DEFICIT IN BOUNCE



General Bounce
•   The general solution has a black hole inside the 

bubble (remnant) and a mass term outside 
(seed). 


•   The solution in general depends on time, but for 
each seed mass there is a unique bubble with 
lowest action.


•   For small seed masses this is time dependent – 
a perturbed CDL – with no remnant.


•   For larger seed masses this is static and has a 
remnant.


•   For a special Mcrit, there is a static bubble with 
no remnant.


•   Large range of solutions with B<BCDL
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We can calculate the energy of the 
Higgs vacuum at different scales 
using masses of other fundamental 
particles (top quark). The LHC tells 
us that we seem to be in a sweet 
spot between stability and 
instability – metastability.


Is Our Vacuum Stable?



Main change is the value of lambda on each side, this changes 
the action ratio surprisingly little.
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Black holes can also evaporate – so we must check which 
process wins. Compare the evaporation rate:







to our calculated tunneling rate 
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Plot shows that evaporation (perturbative) is much stronger 
than decay (nonperturbative) until the black holes are very 
small. 



Decay NOT an issue for astrophysical black holes.



Primordial black holes have a temperature above the CMB, 
so these do evaporate over time. Eventually, they become 
light enough that they hit the “danger range” for vacuum 
decay and WILL catalyse it.


Primordial Black Holes



2⌃ 1010 4⌃ 1010 6⌃ 1010 8⌃ 1010 1⌃ 1011

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

⇥⌅ �r⇥⇤⇥⌅ �⇧⇥
⇤ �r⇥⇤⇤ �rh⇥

⇥⌅thin⇤⇥⌅�⇧⇥

Thin to Thick wall

The main uncertainty in the potential is due to the uncertainty of the top quark
mass. The potential has a fairly smooth shape which can be computed by direct
numerical integration of the ��functions [17]. Since we are interested in scanning
through a range of potentials, and exploring the impact of BSM and quantum gravity
corrections, it is expedient to model the potential analytically by fitting to simple
functions with a small number of parameters. Although two-parameter fits have been
used before [5, 29, 30], we use here a three parameter model,

⇥e�(⇤) = ⇥� + b

�
ln

⇤

Mp

⇥2

+ c

�
ln

⇤

Mp

⇥4

. (2.2)

which gives a much better fit over the range of (large) values of ⇤ that are relevant
for tunnelling phenomena. (See figure 1.)

Since the value of ⇥e� at energies around the Higgs mass is accessible to exper-
imental particle physics, we can fix ⇥e� at the lower end of the range with some
confidence. This leaves two fitting parameters, ⇥� and b. We shall explore the de-
pendence of our results on both of these parameters, thus our conclusions can be
incorporated into more general potentials, including non gravitational BSM correc-
tions.

At very high energies, apart from BSM physics, we may have to contend with
the e�ects of quantum gravity. We adopt the ‘e�ective field theory’ approach, and
add extra polynomial terms to the potential which contain the mass scale of new
physics, in this case the Planck mass [37–39]
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Adding extra terms to the potential can alter the relationship between the original
parameters in ⇥e� and the particle masses. This is one reason why we will give results
in terms of the parameters such as ⇥�, rather than top quark or other particle masses.
It is also easier to see how sensitive (or robust) our conclusions are to the shape of
the potential.

2.2 The “CDL” instanton

Although Coleman and de Luccia concentrated on the gravitational instanton repre-
senting a bubble with an infinitesimally thin domain wall, the CDL instanton is also
a good approximation to a wall of finite thickness, as the Israel equations are simply
a leading order approximation for a thin, but finite thickness, wall [40, 41]. As we
alter the parameters in the potential, the wall can become very thick, to the extent
that the Higgs may not even reach the true vacuum in the bubble interior. The key
feature of the CDL instanton is however the O(4) symmetry, therefore we refer to
an O(4) symmetric configuration of the Einstein-Higgs system that has a bubble of
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First pass indicates a problem, so 
tackle in detail for a realistic Higgs 
potential. Idea is to scan through 
parameter space (beyond standard 
model) to see how robust result it.
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Thickening the wall increases the effectiveness of the 
instanton – the primordial black hole will hit the danger 
zone much sooner, and the decay will proceed rapidly.
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Primordial black holes start out with small enough mass to 
evaporate and will eventually hit these curves.



Can view as a constraint on PBH’s or (weak) on 
corrections to the Higgs potential.



Small black holes also possible in theories with Large Extra 
Dimensions.



(but the branching 

ratio seems to drop

with D – shown here 

for thin wall)
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Summary

§  Depending on higher energy physics, the Higgs 
vacuum may be unstable.


§  We can construct an instanton to describe the 
decay process – even including gravity.


§  Tunneling amplitude significantly enhanced in the 
presence of a black hole – bubble forms around black 
hole and can remove it altogether.


§  Very efficient for small black holes, so either they 
don’t exist – or the vacuum is stable.




Schwarzschild-De Sitter
Putting a black hole in de Sitter means we can never have a 
smooth geometry: SdS has a conical deficit/excess on at least 
one horizon:
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Conical Actions
The conical deficit has a delta function in the Ricci tensor 
(caveat – no transverse energy momentum, metric a product 
space) so can compute the action:







Smooth out A:
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SdS Action

Calculating the action of the SdS black hole now gives an 
interesting result. For a general periodicity:













i.e. the result is independent of β


(as it should be for a physically reasonable

solution) 
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