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Gravitational waves 101

Unavoidable consequence of General Relativity
Classical phenomenon (as far as we know)
Theory and phenomenology well understood
Measured in the weak regime
Can be used to probe strong gravitational fields,
Can be used to test GR or alternative theg
Can be used to test fundamental ph

Information complementary tg#ght and particles
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The gravitational-wave spectrum

> Supermassive Black Hole Binary Merger g
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The gravitational-wave spectrum

> Supermassive Black Hole Binary Merger g
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Sources LIGO can probe

Compact binary Bystems
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Advanced LIGO

Optical Layout, L1 or H1

with Seismic Isolation and Suspensions
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What it looks I
out
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What it looks like from the inside
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Partners

/5+ agreements with
astronomers for electromagnetic
follow-up
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GW150914: September 14, 2015, 9:50:45 UTC

Hanford, Washington (H1) Livingston, Louisiana (L1)

Frequency (Hz)

0.35
Time (s)

Normalized amplitude

B. P. Abbott et al. (LIGO Scientifi@Collaboration and Virgo Collaboration) Phys. Rev. Lett. 116, 061102
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Inspiral Merger Ring-
down

Iannsdpivrvael:a :?w velocity é/ 0/ ) O g
ol ) =

gravitational field.

Late inspiral/plunge:
high velocity and
strong gravitational
field.

Merger: nonlinear , _
—— Numerical relativity

and glelp : Reconstructed (template)
perturbative effects. ' '

Rln_gdc?wn: — Black hole separation
excitation of ' ' === Black hole relative velocity
guasinormal modes

i
0.40

Separation (Rs)

B. P. Abbott et al. (LIGO Scienf#C Collaboration and Virgo Collaboration) Phys. Rev. Lett. 116, 061102
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Black hole masses

Overall
IMRPhenom
EOBNR

| |
35 40
m, iamu‘m'z / 1\[ -
B. P. Abbott et al. (LIGOg@¥ientific Collaboration and Virgo Collaboration) arXiv:1602.03840
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Distance and final black hole
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B. P. Abbott et al. (LIGO Sgi@htific Collaboration and Virgo Collaboration) arXiv:1602.03840
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B. P. Abbott et al. (LIGO Sgi@htific Collaboration and Virgo Collaboration) arXiv:1602.03840
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observed by LIGO L1, H1 duration from 30 Hz ~ 200 ms
source type black hole (BH) binary | # cycles from 30 Hz ~10
date 14 Sept 2015

time 09:50:45 UTC

peak GW strain 1x102

peak displacement of
likely distance 0.75 to 1.9 Gly interferometers arms
230 to 570 Mpc frequency/wavelength

redshift 0.054 to 0.136 at peak GW strain
peak speed of BHs ~06c

=0.002 fm

150 Hz, 2000 km

signal-to-noise ratio 24

peak GW luminosity 3.6 x 10°° erg s™
false alarm prob. < 1in 5 millien radiated GW energy 2.5.3.5 Mo

false alarm rate < 1 in 200,000 yr

remnant ringdown freq. ~ 250 Hz
Source Masses Mo

remnant damping time ~ 4 ms
total mass 60 to 70

primary BH 32 to 41
secondary BH 25 to 33

remnant size, area 180 km, 3.5 x 10° km?
consistent with passes all tests
general relativity? performed

remngut BH 58 to 65 graviton mass bound <1.2x102eV

mass ratio 0.6 to 1
primary BH spin < 0.7
secondary BH spin < 0.9

coalescence rate of

2 to 400 Gpc3yr!
binary black holes 1 A

online trigger latency ~ 3 min

remnant BH spin 0.57 t0 0.72 # offline analysis pipelines 5

signal arrival time arrived in L1 7 ms L0 i (=20,000
delay before H1 CPU hours consumed N A=<t
PCs run for 100 days)
likely sky position Southern Hemisphere

f _ \ papers on Feb 11, 2016 13
likely orientation face-on/off

~1000, 80 institutions
resolved to ~600 sq. deg. # researchers N obh Ll
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GW150914 statistical significance

Binary coalescence search

20 30 40 b5.10
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mEm Search Result
— Search Background
- Background excluding GW150914
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il * A significance of

> 3.1 sigma

B. P. Abbott et al. (LIGO Scientific@®llaboration and Virgo Collaboration) Phys. Rev. Lett. 116, 061102
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Where did it come from?
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Skymap sent for EM follow-up

GW [
radio
optical/IR
X-ray
~-ray (all-sky)

B. P. Abbott et al. (LIGO Scientif ollaboration and Virgo Collaboration + Astronomers) arXiv:1602.08492
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ol R |

— R
i

R -~

T
10!
R (Gpc—?yr~1)

Figure 4. The posterior density on the rate of
GW150914-like BBH inspirals, R; (green), LVT151012-
like BBH inspirals, Rs (red), and the inferred total rate,
R = Ry + Rz (blue). The median and 90% credible lev-
els are given in Table 1. Solid lines give the rate inferred
from the pycbc trigger set, while dashed lines give the
rate inferred from the gstlal trigger set.

Mass Distribution R/ (Grpc_3 yr— 1)
pycbc gstlal Combined

GW150914 fetss Ry o
LVT151012 gt REiD BN o
Both g2l sat l’ 55

Astrophysical

Flat 3315 3205 1
Power Law 102233 99i$€,“ 100i§31

B. P. Abbott et al. (LIGO Scientific
Collaboration and Virgo Collaboratj
arXiv:1602.03842

Astrophysical
implications

10!
(VT) [(VT)o

Weak wind

0.1
Z/ 2

B. P. Abbott et al. (LIGO Scientific Collaboration
and Virgo Collaboration) ApJL, 818, L22, 2016
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http://arxiv.org/abs/arXiv:1602.03842

General Relativity tests

> Inspiral, merger and ringdown consistency tesﬁs >

- Tests of QNMs g o ;;f ERece
/ f!g

> Deviations from GR waveforms

> Graviton Compton length
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IMR consistency tests

A(f)e'ifb(f )
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cientific Collaboration and Virgo Collaboration) arXiv:1602.03841
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IMR consistency tests
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FIG. 3. Top panel: 90% confidence regions on the joint posterior
distributions for the mass My and dimensionless spin ay of the final
compact object predicted from the inspiral (dark violet, dashed) and
measured from the post-inspiral (violet, dot-dashed), as well as the
result from a full inspiral-merger-ringdown (IMR) analysis (black).
Bottom panel: Posterior distributions for the parameters AM /My
and Aay/ay that describe the fractional difference in the estimates
of the final mass and spin from inspiral and post-inspiral parts. The
contour shows the 90% confidence region. The plus symbol indicates
the expected value (0, 0) in GR.

cientific Collaboration and Virgo Collaboration) arXiv:1602.03841
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QNM tests

Can we probe the event horizon
from the ringdown?

h(tzt,)=Ae " "cos[2xf,(t—t,)+g,]
f€[200,300] Hz, 7€[0.5,20 |ms

o
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IMR(I=2m=2,n=0)

QNM tests

Can we probe the event horizon
from the ringdown?

QNM decay time (ms)

h(tzt,)=Ae " cos[ 2f,(t—t,)+,]
f€[200,300] Hz, 7€[0.5,20 |ms

3.0 ms

-
ey |

-
-
---------------

220 240 260

- One measured damped mode QNM frequency (Hz)
> Qual |ty faCtor can be Obtai ned FIG. 4. We show the posterior 90% confidence regions from
. - . Bayesian parameter estimation for a damped-sinusoid model, assum-
Wlth dlﬂ:e rent maSS_ and Spl n’ ing different start-times #y = )y + 1, 3,5, 7 ms, labeled by offset from
overton es, h armonics. the merger time f; of the most-probable waveform from GW150914.
The black solid line shows contours of 90% confidence region for the
> Con Si stent Wlth GR but frequency f, and decay time T of the £ = 2, m = 2 and n = 0 (i.e.,
. . the least damped) QNM obtained from the inspiral-merger-ringdown

|nC0nC| usive waveform for the entire detector’s bandwidth.

B. P. Abbott et al. (LIGO Sg@ntific Collaboration and Virgo Collaboration) arXiv:1602.03841
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Deviations from GR waveforms

- Allow for fractional changes
with respect to the GR value

> Obtain constraints on
possible deviations from GR
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Deviations from GR waveforms

- Allow for fractional changes
with respect to the GR value

> Obtain constraints on
possible deviations from GR

OPN 05PN IPN 15PN 2PN 25PN 3PN 3.5PN
PN order

FIG. 6. 90% upper bounds on the fractional variations for the
known PN coefficients compared to their known value in GR.

3PN 3PN® 35PN

i A E |
2| M GWI150914 (Single)
GW 150914 (Multiple)

B. P. Abbott et al. (LIGO.S

entific Collaboration and Virgo Collaboration) arXiv:1602.03841
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Graviton Compton length
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Graviton Compton length

GM —r /A
Q= (1—e ™) .
}\‘g ™ il 206 _%
m, £
e =
= 0.4 ot
2 284 =9 =)
E"=p c+m_,c =
2 5 ) =
V
Yo_q_ h™c
2 2 2
C 7\,gE O'0109 1010 10! 1012 1013 104 1013 10'6 1017

Ag (km)

Limit on graviton g#@Ss: m_ < 1.2 x 10-22eV/c?

B. P. Abbott et al. (LIGO Scieg

¢ Collaboration and Virgo Collaboration) arXiv:1602.03841

Orizons, Oaxaca, Mexico, May 15-20, 2016 - LIGO Document G1600885




LIGO has opened a new window on the
universe

In the next 5 years, it is likely we will have:
> Hundreds of compact binary coalescence and other source detections
-~ SNR ~ 100 (GW150914 is ~ 24)

- Observation of fine details of these systems (number, dIS !
EoS, environment...)
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LIGO has opened a new window on the
universe
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-~ SNR ~ 100 (GW150914 is ~ 24)

- Observation of fine details of these systems (number, dis
EoS, environment...)

What can we do with
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LIGO has opened a new window on the
universe

In the next 5 years, it is likely we will have:
> Hundreds of compact binary coalescence and other source detections
SNR ~ 100 (GW150914 is ~ 24) /( 3

Observation of fine details of these systems (number, diste
EoS, environment...)

\4

\4

What can we do with

\4

Astrophysics of compact objects

A4

Cosmology

\4

Fundamental physics
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Challenges / food for thought
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Challenges / food for thought

> What can we learn on the structure, formation, evolution of black holes and neutron stars?
Can we think of new measurable effects?
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Challenges / food for thought

> What can we learn on the structure, formation, evolution of black holes and neutron stars?
Can we think of new measurable effects?

> Is GR the “correct theory” of gravity in strong regimes? Can we devise further tests of GR
which exploit the information contained in GWs?
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> What can we learn on the structure, formation, evolution of black holes and neutron stars?
Can we think of new measurable effects?

> Is GR the “correct theory” of gravity in strong regimes? Can we devise further tests of GR
which exploit the information contained in GWs?

-~ Which alternative models of gravity can we rule out? Can we use L
Lorentz invariance or general covariance?
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Do “exotic” compact objects exist?
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Challenges / food for thought

What can we learn on the structure, formation, evolution of black holes and neutron stars?
Can we think of new measurable effects?

Is GR the “correct theory” of gravity in strong regimes? Can we devise further tests of GR
which exploit the information contained in GWs?

Which alternative models of gravity can we rule out? Can we use LI O detections tc
Lorentz invariance or general covariance?

Do “exotic” compact objects exist?

Can we prove/disprove the presence of a horizon?. Test the no-h
hole mechanics/thermodynamics? .

- -'..

Can we use this information to learn about the large sca e
matter, dark energy?
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Challenges / food for thought

What can we learn on the structure, formation, evolution of black holes and neutron stars?
Can we think of new measurable effects?

Is GR the “correct theory” of gravity in strong regimes? Can we devise further tests of GR
which exploit the information contained in GWs?

Which alternative models of gravity can we rule out? Can we use LIGO detections tc

Lorentz invariance or general covariance?
Do “exotic” compact objects exist?

Can we prove/disprove the presence of a horlzon’? Test the no-h
hole mechanics/thermodynamics? QL

Can we use this information to learn about the large scal '
matter, dark energy?

Can we probe quantum gravity with compact bin alescence detections? Can we

observe a new gravitational scale?
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Challenges / food for thought

> What can we learn on the structure, formation, evolution of black holes and neutron stars?
Can we think of new measurable effects?

> Is GR the “correct theory” of gravity in strong regimes? Can we devise further tests of GR
which exploit the information contained in GWs?

-~ Which alternative models of gravity can we rule out? Can we use LI
Lorentz invariance or general covariance?

- Do “exotic” compact objects exist?

- Can we prove/disprove the presence of a horlzon? Te
hole mechanics/thermodynamics? o

- Can we use this information to learn about the large sce =
matter, dark energy?

~ Can we probe quantum gravity with compact big
observe a new gravitational scale?

> Are there any other astrophysical/cos

We have an open windgiin front of us, let's look what's beyond it!
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