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Cardinal invariants of P-ideals

Basic definitions

Definition
An ideal T on w is called a P-ideal if T is countably directed mod finite. In

other words, if {a, : n € w} C I, then there exists a € T such that
Vn e wla, C" al.

v

Ideals on w are always assumed to be proper (i.e. w ¢ I) and
non-principal (meaning every finite subset of w belongs to I ).

A\
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Cardinal invariants of P-ideals

@ In this talk | am primarily interested in 7 that are definable.
@ Especially analytic P-ideals.

When 1 is a tall P-ideal on w you can define the following:

add*(Z7) =min{|F|: F C T AVbe TdaeF [a ¢” b]},
cov'(X) =min{|F|: F C I AVa € [w]®Tb € F [lan b| = w]},
cof (X)) =min{|F|: F C T AVbeITdaeF [b " al]},
non*(7) = min{|¥| : F C [w]® AVb € Tda € F [la N b| < w]}.
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Cardinal invariants of P-ideals

@ There are actually equal to the add, cov, cof, and non of an associated
o-ideal.

@ Foreacha e P(w),leta={bCw:|anbl = w}.
@ Foreacha e P(w),leta={bCw:|anbl = w}.

e Foratallideal 7, 7 = (X C P(w) : Ja € T [X C al} is an ideal on P(w)
generated by Borel sets.
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Cardinal invariants of P-ideals

@ There are actually equal to the add, cov, cof, and non of an associated
o-ideal.

@ Foreacha e P(w),leta={bCw:|anbl = w}.
@ Foreacha e P(w),leta={bCw:|anbl = w}.

e Foratallideal 7, 7 = (X C P(w) : Ja € T [X C al} is an ideal on P(w)
generated by Borel sets.

@ 7 is a P-ideal iff 7 is a o-ideal.

@ add(J) = add*(7), cov(d) = cov*(T), cof(1) = cof*(1),
non(j') = non*(Z) hold.
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Cardinal invariants of P-ideals

Definition
. , , , ... |Ann
A setA C w is said to have asymptotic density O if lim =0.
n—oo
AN
ZO:{AQw: fim A0 :o}.
n—o0 n

@ This an F,s P-ideal.
@ We are interested in the invariants cov*(Zp) and non*(Zy).
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Splitting numbers and colorings

Four basic invariants

Definition

Forf,g e w®, f <* g meansthat|{ne w: gn) < f(n)} <w. AsetF C w® is
said to be unbounded if there does not exist g € w® such that

VfeF[f <"g]. AsetF C w” is said to be dominating or cofinal if
Vfew“dge FIf <" g].
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Splitting numbers and colorings

Four basic invariants

Definition

Forf,g e w®, f <* g meansthat|{ne w: gn) < f(n)} <w. AsetF C w® is
said to be unbounded if there does not exist g € w® such that

VfeF[f <"g]. AsetF C w” is said to be dominating or cofinal if
Vfew“dge F[f <* gl

| \

Definition

For a,b € P(w) we say that a splits b if bothb Nna and b N (w\ a) are
infinite. A family F C P(w) is called a splitting family if

Vb € [w]“Ja € F [a splits b].
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Splitting numbers and colorings

We define the cardinal invariants b, d, s, and v as follows:

b = min{|F| : F C w” A F is unbounded};

b = min{|F| : F C w® A F is dominating};

s = min{|F| : F C P(w) A F is a splitting family};

v = min{|F| : F C [w]® A =da € P(w)¥b € F [a splits b]}.

N1 < max{b,s} <bd < c.
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Splitting numbers and colorings

We define the cardinal invariants b, d, s, and v as follows:

b = min{|F| : F C w” A F is unbounded};

b = min{|F| : F C w® A F is dominating};

|F|: F C P(w) A F is a splitting family};

|F|: F C [w]” A =da € P(w)¥b € F [a splits b]}.

= min

{
{

T = min

N1 < max{b,s} <bd < c.

Ni<b<r<e
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Splitting numbers and colorings

Theorem (Hernandez-Hernandez and Hrusak [1])

min{cov(/N), b} < cov*(Zp) < max{b, non(N)} and
min{d, cov(N)} < non*(Zp) < max{d, non(N)} hold.
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Splitting numbers and colorings

Theorem (Hernandez-Hernandez and Hrusak [1])

min{cov(/N), b} < cov*(Zp) < max{b, non(N)} and
min{d, cov(N)} < non*(Zp) < max{d, non(N)} hold.

Theorem (R. and Shelah [3])
cov*(Zp) < d andb < non*(LZp).

@ This can be improved slightly.
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Splitting numbers and colorings

@ We adopt the convention that forasetx C w, x’ = xandx' = w \ x

Definition

LetX = (x; : i € w) be a sequence of elements of P(w). We say that X
promptly splits a if for each n € w and each o € 2!, (ﬂi<n+1x§’(’)) Nais
infinite. A family ¥ C (P(w))“ is said to be a promptly splitting family if

for each a € [w]®, there exists X € F which promptly splits a.
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Splitting numbers and colorings

@ We adopt the convention that forasetx C w, x’ = xandx' = w \ x

LetX = (x; : i € w) be a sequence of elements of P(w). We say that X
promptly splits a if for each n € w and each o € 2!, (ﬂi<n+1x§’(’)) Nais
infinite. A family ¥ C (P(w))® is said to be a promptly splitting family if
for each a € [w]®, there exists X € F which promptly splits a.

Let P = (x; : i € w) be a partition of w (that is, | J;c,xi = w and for any
i<j<w,x;Nx;=0). We say that P splits a if for eachi € w x; N a is
infinite. A family of partitions ¥ is called a splitting family of partitions if
for each a € [w]?, there exists P € ¥ which splits a.

Dilip Raghavan More on the density zero ideal



Splitting numbers and colorings

Definition

s“ = min{|F| : F is a splitting family of partitions}.
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Splitting numbers and colorings

Definition

s“ = min{|F| : F is a splitting family of partitions}.

s = min{|F| : F C (P(w))*” A F is a promptly splitting family}.

@ Next we will see that % is also the least cardinal for which a certain
type of strong coloring exists.
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Splitting numbers and colorings

Definition

Let k be any cardinal. We say that a coloring ¢ : k X w X w — 2 is tortuous
if for each A € [w]® and each patrtition of k, (K, : n € w), there exists n € w
such that

Vo e2™ o eK,Fk e Alk>nAVi<n+1[o@) = cla, k,i)]].

Let (X, : @ < k) be a promptly splitting family. There exists a tortuous
coloring on «.

s“ = min{x : there is a tortuous coloring on «}.
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Splitting numbers and colorings

Let k be a cardinal on which a tortuous coloring exists. Then
cov*(Zop) < max{x, b}.

cov*(Zp) < max{s®, b}.
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Splitting numbers and colorings

Let k be a cardinal on which a tortuous coloring exists. Then
cov*(Zp) < max{x, b}.

cov*(Zp) < max{s®, b}.

max{s“, b} < d.
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Splitting numbers and colorings

Suppose F C [w] is a family of size less than . Then there exists a
sequence X = (x; : k < w) € (P(w))* such that X promptly splits A, for
eachA € F.

min{d, r} < non*(Zy).
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Splitting numbers and colorings

@ These results are all based on a general method for generating sets
in .Z().

Definition
Let J be an interval partition where the size of J,, is some power of 2
(larger than n), for each n € w. Let ¥; be the family of all functions f in w®
such that for each n,l € w:
o Itk € Jn : f(k) > 1} <2l
al
Q foranyi,jetkeJ,: f(k) =1}, ifi #j, then|i—j > 211,
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Splitting numbers and colorings

Definition

Let J be an interval partition where the size of J,, is some power of 2
(larger than n), for each n € w. For any interval partition I, function f € ¥y,
andl € w, define Zy j5; = {m € w : Ik € I; [m € Ji A f(m) > []}. Define

Zryf = UewZiifi-
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Splitting numbers and colorings

Definition

Let J be an interval partition where the size of J,, is some power of 2
(larger than n), for each n € w. For any interval partition I, function f € ¥y,
andl € w, define Zy j5; = {m € w : Ik € I; [m € Ji A f(m) > []}. Define

Zryf = UewZiifi-

Foranyl,J, and f as above, Z; ;s has density 0.

@ In all cases the proof consists of identifying a “large enough” subclass
F CF.

@ Here “large enough” essentially means for every A € [w]® there exists
f € F which is unbounded on A.
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Splitting numbers and colorings

@ To get cov*(Zp) < k, one needs to find an ¥ C ¥, such that || < «
but still 7 is large enough in the above sense.

@ To get k > non*(Zy), one needs to find a single f € F; which is
unbounded on k many A € [w]®.
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s versus s“

Is s different from s“?

Is it true that s“ < max{s,b}? Is s = s%

If P is a Suslin c.c.c. forcing, then V N (P(w))“ remains promptly splitting.
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s versus s“

Is s different from s“?

Is it true that s“ < max{s,b}? Is s = s%

If P is a Suslin c.c.c. forcing, then V N (P(w))“ remains promptly splitting.

Definition
Letk, A, and 8 be cardinals. Then Y(x, A, 0) is the following principle:

@ There is a family € C [K]NO of size A such that for any X € (1%, there
exists A € € such that A C X.
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s versus s“

If 2(s, 5, 81) holds, then s = . If Y(max{b, s}, max{b, s}, b) holds, then
s < max{b, s}.
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s versus s“

If 2(s, 5, 81) holds, then s = . If Y(max{b, s}, max{b, s}, b) holds, then
s < max{b, s}.

Is cov*(Zp) < b?
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