P-IDEAL DICHOTOMY, ITERATING REALS AND UNIVERSAL STRUCTURES OF CARDINALITY \aleph_1

Juris Steprāns

Workshop on Set Theory and Its Applications in Topology Casa Matemática Oaxaca — September 12, 2016

It is well known that countably saturated models are universal for models of cardinality \aleph_1 . One way of stating the saturation property for graphs is the following.

DEFINITION

A saturated graph on ω_1 is a function $G: [\omega_1]^2 \to 2$ such that if the function $G_\eta: \eta \to 2$ is defined by $G_\eta(\xi) = G(\{\eta, \xi\})$ then

$$\{G_{\eta} \upharpoonright \alpha \mid \alpha \in \eta \in \omega_1\} = 2^{\alpha}$$

for each $\alpha \in \omega_1$.

It follows that the existence of a saturated graph is equivalent to $2^{\aleph_0} = \aleph_1$. These raises the question of whether it is possible to have a universal graph of cardinality \aleph_1 in the absence of the Continuum Hypothesis.

This was answered positively by Shelah in 1984 in *On universal graphs without instances of CH*, Ann. Pure Appl. Logic (26), 75–87. But one might also ask which of the following weak forms of saturation yield universal graphs.

DEFINITION

Given ideals \mathcal{I}_{α} on 2^{α} , an \mathcal{I}_{α} -saturated graph on ω_{1} is a function $G: [\omega_{1}]^{2} \rightarrow 2$ such that $\{G_{\eta} \upharpoonright \alpha \mid \alpha \in \eta \in \omega_{1}\} \notin \mathcal{I}_{\alpha}$ for each $\alpha \in \omega_{1}$.

So one talk about meagre or null saturated graphs. For the complete graph on ω_1 coloured in countably many colours there is now the notion of a bounded saturated colouring.

A P-IDEAL FROM ADDING REALS

Let PT denote Miller's perfect set forcing.

DEFINITION

If $G \subseteq \mathbf{PT}$ is generic over V define $\mathcal{S}(\mathbf{PT})$ to be the set of all $S \in [\omega_1]^{\aleph_0}$ such that there is $T \in G$ and $\psi : T \to [\omega_1]^{<\aleph_0}$ such that

- \bullet $\psi \in V$
- **3** $T \Vdash_{\mathbf{PT}} \text{"$\dot{S} = \bigcup_{j=0}^{\infty} \psi(r_{\dot{G}} \upharpoonright j)$" where <math>r_G : \omega \to \omega \text{ is the generic real obtained from the generic set G.}$

Lemma

Let $G \subseteq \mathsf{PT}$ be generic over V and $S \subseteq \omega_1$ in V[G]. Then the following are equivalent:

- \circ $S \in \mathcal{S}(\mathsf{PT})$
- of or all $F: \omega \times \omega \to \omega_1$ in V such that the mapping $j \mapsto F(n,j)$ is one-to-one for all $n \in \omega$, there is $g : \omega \to \omega$ in V such that for all $n \in \omega$ there is $k \leq g(n)$ such that $F(n, k) \notin S$
- **3** for all $F: \omega \times \omega \to \omega_1$ in V such that the mapping $j \mapsto F(n,j)$ is one-to-one for all $n \in \omega$, there is a one-to-one function $g: \omega \times \omega \to \omega$ in V such that $F(n, g(n, m)) \notin S$ for all $(n, m) \in \omega \times \omega$.

So S(PT) is an ideal containing no infinite set from V.

Lemma

If G is **PT** generic over V then S(PT) is a P-ideal in V[G].

A fusion argument and the disjointness property of $\mathcal{S}(\mathbf{PT})$ it is possible to prove the following.

LEMMA

If G is **PT** generic over V and $S \in \mathcal{S}(\mathbf{PT})$ and $f : S \to 2$ is a function in V[G] then there is $T \in G$ and ψ defined on T with disjoint range and f^* such that

- \bullet if $t \in T$ then $T[t] \Vdash_{\mathbf{PT}}$ " $\dot{f} \upharpoonright \psi(t) = f^* \upharpoonright \psi(t)$ " and, hence, $T \Vdash_{\mathbf{PT}}$ " $\dot{f} = f^* \upharpoonright S$ ".

LEMMA

If G is **PT** generic over V and $S \in \mathcal{S}(\mathbf{PT})$, $S \subseteq \xi \in \omega_1$, $f: S \to 2$ is a function in V[G] and $Z \subseteq 2^{\xi}$ is nowhere meagre, then there is $z \in Z$ such that $f \subseteq z$.

Proof: Use the preceding lemma to get T and f^* . Then the set of $h \in 2^{\xi}$ such that for all $k \in \omega$ and for all $t \in \mathbf{split}_k(T)$

$$|\left\{s \in \mathbf{split}_{k+1}(T) \mid s \supseteq t \text{ and } f^* \upharpoonright \psi(s) \subseteq h\right\}| = \aleph_0$$

is a dense G_{δ} above the restriction of f^* to the root of T because of the disjointness property of ψ .

APPLYING THE P-IDEAL DICHOTOMY

LEMMA

If G is **PT** generic over V then no uncountable subset of ω_1 is orthogonal to $\mathcal{S}(\mathbf{PT})$ in V[G]; and hence, not even the union of countably many sets orthogonal to $\mathcal{S}(\mathbf{PT})$.

Proof: Suppose that Z is a **PT**-name such that $T \Vdash_{\mathbf{PT}} "Z \in [\omega_1]^{\aleph_1}$ ". It suffices to construct a sequence of conditions $T_n \in \mathbf{PT}$ and ordinals ζ_n such that:

- $T_0 = T$,
- $T_{n+1} \leq_n T_n$ for each n
- $T_n\langle u_j\rangle \Vdash_{\mathsf{PT}} "\zeta_j \in Z"$ for each $j \in n$
- the mapping $j \mapsto \zeta_j$ is one-to-one.

THEOREM (ABRAHAM & TODORCEVIC)

If $\mathcal I$ is a P-ideal on ω_1 then there is a partial order $\mathbb P_{\mathcal I}$, that adds no reals, even when iterated with countable support, such that $\mathbb P_{\mathcal I}$ adds a set $Z\subseteq\omega_1$ such that for any $W\subseteq\omega_1$ which is not the union of countably many sets orthogonal to $\mathcal I$

$$1 \Vdash_{\mathbb{P}_{\mathcal{I}}} "\dot{Z} \cap W \neq \emptyset" \tag{1}$$

$$1 \Vdash_{\mathbb{P}_{\mathcal{I}}} "(\forall \eta \in \omega_1) \ \dot{Z} \cap \eta \in \mathcal{I}". \tag{2}$$

Proof: To get (1) is implicit in the proof of Abraham and Todorcevic.

THEOREM

Let V be a model of set theory and suppose that $U: \omega_1^2 \to 2$ is a symmetric, category saturated function in V and that $G \subseteq \mathbf{PT}$ is generic over V. In V[G] let $H \subseteq \mathbb{P}_{\mathcal{S}(\mathbf{PT})}$ be generic over V[G]. Then in V[G][H] the function U is universal.

Proof: Using the previous theorem in V[G] there is $R \subseteq \omega_1$ such that $[R]^{\aleph_0} \subseteq \mathcal{S}(\mathbf{PT})$ and $R \cap Y \neq \emptyset$ for each uncountable $Y \in V[G]$. Given $W : [\omega_1]^2 \to 2$, construct by induction embeddings $e_\eta : \eta \to R$ of $W \upharpoonright \eta^2$ into U such that $e_\eta \subseteq e_\zeta$ if $\eta \leq \zeta$.

Since limit stages of the induction are trivial, it suffices to show that given e_{η} there is $e_{\eta+1}$ as required. Let S be the range of e_{η} and suppose that $S\subseteq \xi$. Then $S\in [R]^{\aleph_0}\subseteq \mathcal{S}(\mathbf{PT})$. Let $f:S\to 2$ be defined by $f(\sigma)=W(e_{\eta}^{-1}(\sigma),\eta)$ and note that $f\in V[G]$ since V[G] and V[G][H] have the same reals. Recall that \mathbf{PT} preserves non-meagre sets.

It therefore follows that, recalling the notation from the first slide, $\{\gamma\in\omega_1\mid f\subseteq U_\gamma\}$ is an uncountable set in V[G]. By the preceding theorem it is possible to find $\gamma\in R\setminus \xi$ such that $f\subseteq U_\gamma$ and, hence, $W(e_\eta^{-1}(\sigma),\eta)=f(\sigma)=U(\sigma,\gamma)$ for all $\sigma\in\mu$. Let $e_{\eta+1}=e_\eta\cup\{(\eta,\gamma)\}$.

COROLLARY

It is consistent with $\mathfrak{b}=\aleph_1$ and $\mathfrak{d}=\aleph_2$ that there is a universal graph on ω_1 .

The argument actually yields that if V is any model of set theory in which there is a category saturated graph and if G is PT generic over V and H is $\mathbb{P}_{\mathcal{S}(\operatorname{PT})}$ generic over V[G] then already in the model V[G][H] the category saturated graph is universal. So if there were a model of $2^{\aleph_0} > \aleph_1$ with a category saturated graph such that forcing with $\operatorname{PT} * \mathbb{P}_{\mathcal{S}(\operatorname{PT})}$ does not collapse the continuum, then this would yield an even simpler method for obtaining a universal graph with the failure of the continuum hypothesis. But even the following question seems to be open.

QUESTION

Is there a model of set theory in which there is a non-meagre set of cardinality less than 2^{\aleph_0} such that forcing with **PT** over this model does not collapse the continuum?

Applying similar arguments with Laver reals yields the following.

COROLLARY

Consistently with $\mathfrak{b} = \mathfrak{d} = \aleph_2$ there is a universal graph on ω_1 .

Applying similar arguments with certain ω^{ω} -bounding reals yields the following.

COROLLARY

Consistently with $\mathfrak{b} = \mathfrak{d} = \aleph_1$ there is a universal graph on ω_1 .

