Even numbered problems

Alan Dow

Department of Mathematics and Statistics University of North Carolina Charlotte

September 12, 2016

\mathbb{N}^* is a Parovicenko space

compact K is Parovicenko if it is 0-dim'l weight 2^{ω} and disjoint non-compact F_{σ} 's have disjoint closures with infinite complements.

\mathbb{N}^* is a Parovicenko space

compact K is Parovicenko if it is 0-dim'l weight 2^{ω} and disjoint non-compact F_{σ} 's have disjoint closures with infinite complements.

but \mathbb{N}^* is $\beta\mathbb{N}\setminus\mathbb{N}$ and so has some mapping properties

\mathbb{N}^* is a Parovicenko space compact K is Parovicenko if it is 0-dim'l weight 2^{ω} and disjoint non-compact F_{σ} 's have disjoint closures with infinite complements.

but \mathbb{N}^* is $\beta \mathbb{N} \setminus \mathbb{N}$ and so has some mapping properties

special to ℕ*

\mathbb{N}^* is a Parovicenko space compact K is Parovicenko if it is 0-dim'l weight 2^{ω} and disjoint non-compact F_{σ} 's have disjoint closures with infinite complements.

but \mathbb{N}^* is $\beta \mathbb{N} \setminus \mathbb{N}$ and so has some mapping properties

special to \mathbb{N}^* • \mathbb{N}^* maps onto $\beta\mathbb{N}$; in fact $\beta\mathbb{N}$ is an absolute retract

\mathbb{N}^* is a Parovicenko space compact *K* is Parovicenko if it is 0-dim'l weight 2^{ω} and disjoint non-compact F_{σ} 's have disjoint closures with infinite complements.

but \mathbb{N}^* is $\beta \mathbb{N} \setminus \mathbb{N}$ and so has some mapping properties

special to \mathbb{N}^*

N* maps onto βN; in fact βN is an absolute retract
N* maps onto (D(c) + 1)^c because N ~ ∪_n (2ⁿ)^{2ⁿ} embeds

into
$$\prod_{x \in 2^{\omega}} \left(\left(\bigcup_{n} (2^{n})^{2^{n}} \right) \cup D(2^{\omega}) \cup \{\infty\}, \tau_{x} \right)$$
 where $\{ [x \upharpoonright n \to y \upharpoonright n] : n \in \omega \}$ converges to y in τ_{x}

\mathbb{N}^* is a Parovicenko space

compact K is Parovicenko if it is 0-dim'l weight 2^{ω} and disjoint non-compact F_{σ} 's have disjoint closures with infinite complements.

but \mathbb{N}^* is $\beta \mathbb{N} \setminus \mathbb{N}$ and so has some mapping properties

special to \mathbb{N}^*

- ${\rm I}\!{\rm I}$ maps onto $\beta{\mathbb N}$; in fact $\beta{\mathbb N}$ is an absolute retract
- for any maps f, g : N* → 2^ω and homeomorphism ψ : 2^ω → 2^ω, there is homeomorphism φ on N* so that the diagram commutes: ψ ∘ f = g ∘ φ. (i.e. ω₁-saturated)

\mathbb{N}^* is a Parovicenko space

compact K is Parovicenko if it is 0-dim'l weight 2^{ω} and disjoint non-compact F_{σ} 's have disjoint closures with infinite complements.

but \mathbb{N}^* is $\beta\mathbb{N}\setminus\mathbb{N}$ and so has some mapping properties

special to \mathbb{N}^*

- ${\color{black} 0} \ \mathbb{N}^*$ maps onto $\beta \mathbb{N}$; in fact $\beta \mathbb{N}$ is an absolute retract
- for any maps f, g : N* → 2^ω and homeomorphism ψ : 2^ω → 2^ω, there is homeomorphism φ on N* so that the diagram commutes: ψ ∘ f = g ∘ φ. (i.e. ω₁-saturated)

Parovicenko need not have these properties; per (3) there can even be a rigid Parovicenko space

We know that \mathbb{N}^* is often not mapping universal (e.g. Cohen model, PFA), but it is consistent with MA(σ -linked) that it is.

We know that \mathbb{N}^* is often not mapping universal (e.g. Cohen model, PFA), but it is consistent with MA(σ -linked) that it is.

It is too much to ask for a characterization of the \mathbb{N}^* images (not even $\mathbb{N}^*\times\mathbb{N}^*)$

We know that \mathbb{N}^* is often not mapping universal (e.g. Cohen model, PFA), but it is consistent with MA(σ -linked) that it is.

It is too much to ask for a characterization of the \mathbb{N}^* images (not even $\mathbb{N}^*\times\mathbb{N}^*)$

Is it consistent with $\mathsf{MA} + \neg \mathsf{CH}$ that \mathbb{N}^* maps onto every compact space of weight $\mathfrak{c}?$

We know that \mathbb{N}^* is often not mapping universal (e.g. Cohen model, PFA), but it is consistent with MA(σ -linked) that it is.

It is too much to ask for a characterization of the \mathbb{N}^* images (not even $\mathbb{N}^*\times\mathbb{N}^*)$

Is it consistent with $\mathsf{MA} + \neg \mathsf{CH}$ that \mathbb{N}^* maps onto every compact space of weight $\mathfrak{c}?$

What are the absolute retracts of \mathbb{N}^* ? Szymanski: CH characterization. (Simon: not all compact separable subspaces using indep matrices)

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

in fact, $|f^{-1}(x)| = 1$ if and only if x is an ω -far point of E

伺 ト く ヨ ト く ヨ ト

in fact, $|f^{-1}(x)| = 1$ if and only if x is an ω -far point of E

Question

Does every countable or Lindelof space have an ω -far point?

in fact, $|f^{-1}(x)| = 1$ if and only if x is an ω -far point of E

Question

Does every countable or Lindelof space have an ω -far point?

Derived question

in fact, $|f^{-1}(x)| = 1$ if and only if x is an ω -far point of E

Question

Does every countable or Lindelof space have an ω -far point?

Derived question

Suppose that $f : \mathbb{N}^* \to K$ is precisely 2-to-1,

• must K be non-separable?

in fact, $|f^{-1}(x)| = 1$ if and only if x is an ω -far point of E

Question

Does every countable or Lindelof space have an ω -far point?

Derived question

- must K be non-separable?
- 2 must countable subsets of K be C^* -embedded?

in fact, $|f^{-1}(x)| = 1$ if and only if x is an ω -far point of E

Question

Does every countable or Lindelof space have an ω -far point?

Derived question

- must K be non-separable?
- 2 must countable subsets of K be C^* -embedded?
- Image of Metric Control in Cohen model? (known CH, PFA, PFA[G])

in fact, $|f^{-1}(x)| = 1$ if and only if x is an ω -far point of E

Question

Does every countable or Lindelof space have an ω -far point?

Derived question

- must K be non-separable?
- 2 must countable subsets of K be C^* -embedded?
- I must K be a copy of N^{*} in Cohen model? (known CH, PFA, PFA[G])
- G can f be irreducible? (not under MA)

in fact, $|f^{-1}(x)| = 1$ if and only if x is an ω -far point of E

Question

Does every countable or Lindelof space have an ω -far point?

Derived question

Suppose that $f : \mathbb{N}^* \to K$ is precisely 2-to-1,

- must K be non-separable?
- 2 must countable subsets of K be C^* -embedded?
- In the second secon
- G can f be irreducible? (not under MA)

this can lead us to (Boban's) tie-points

a point $\mathcal{U} \in \mathbb{N}^*$ is a tie-point if there is a closed cover A, B(witnessed by) of \mathbb{N}^* so that \mathcal{U} is the unique common (limit) point.

a point $\mathcal{U} \in \mathbb{N}^*$ is a tie-point if there is a closed cover A, B(witnessed by) of \mathbb{N}^* so that \mathcal{U} is the unique common (limit) point.

CH implies every $\ensuremath{\mathcal{U}}$ is tie

a point $\mathcal{U} \in \mathbb{N}^*$ is a tie-point if there is a closed cover A, B(witnessed by) of \mathbb{N}^* so that \mathcal{U} is the unique common (limit) point.

CH implies every ${\mathcal U}$ is tie PFA implies no such ${\mathcal U}$

a point $\mathcal{U} \in \mathbb{N}^*$ is a tie-point if there is a closed cover A, B(witnessed by) of \mathbb{N}^* so that \mathcal{U} is the unique common (limit) point.

CH implies every \mathcal{U} is tie PFA implies no such \mathcal{U} Con MA plus $A \approx B$ (Velickovic)

a point $\mathcal{U} \in \mathbb{N}^*$ is a tie-point if there is a closed cover A, B(witnessed by) of \mathbb{N}^* so that \mathcal{U} is the unique common (limit) point.

CH implies every \mathcal{U} is tie PFA implies no such \mathcal{U} Con MA plus $A \approx B$ (Velickovic) Con MA plus $A \not\approx \mathbb{N}^* \not\approx B$

a point $\mathcal{U} \in \mathbb{N}^*$ is a tie-point if there is a closed cover A, B(witnessed by) of \mathbb{N}^* so that \mathcal{U} is the unique common (limit) point.

CH implies every \mathcal{U} is tie PFA implies no such \mathcal{U} Con MA plus $A \approx B$ (Velickovic) Con MA plus $A \not\approx \mathbb{N}^* \not\approx B$

a point $\mathcal{U} \in \mathbb{N}^*$ is a tie-point if there is a closed cover A, B(witnessed by) of \mathbb{N}^* so that \mathcal{U} is the unique common (limit) point.

CH implies every \mathcal{U} is tie PFA implies no such \mathcal{U} Con MA plus $A \approx B$ (Velickovic) Con MA plus $A \not\approx \mathbb{N}^* \not\approx B$

questions on tie points

• Can $A \approx B \not\approx \mathbb{N}^*$?

a point $\mathcal{U} \in \mathbb{N}^*$ is a tie-point if there is a closed cover A, B(witnessed by) of \mathbb{N}^* so that \mathcal{U} is the unique common (limit) point.

CH implies every \mathcal{U} is tie PFA implies no such \mathcal{U} Con MA plus $A \approx B$ (Velickovic) Con MA plus $A \not\approx \mathbb{N}^* \not\approx B$

```
• Can A \approx B \not\approx \mathbb{N}^*?
```

a point $\mathcal{U} \in \mathbb{N}^*$ is a tie-point if there is a closed cover A, B(witnessed by) of \mathbb{N}^* so that \mathcal{U} is the unique common (limit) point.

CH implies every \mathcal{U} is tie PFA implies no such \mathcal{U} Con MA plus $A \approx B$ (Velickovic) Con MA plus $A \not\approx \mathbb{N}^* \not\approx B$

```
• Can A \approx B \not\approx \mathbb{N}^*?
```

3 Can
$$t(\mathcal{U}, A) \neq t(\mathcal{U}, B)$$
?, χ ?; $\pi\chi$?

a point $\mathcal{U} \in \mathbb{N}^*$ is a tie-point if there is a closed cover A, B(witnessed by) of \mathbb{N}^* so that \mathcal{U} is the unique common (limit) point.

CH implies every \mathcal{U} is tie PFA implies no such \mathcal{U} Con MA plus $A \approx B$ (Velickovic) Con MA plus $A \not\approx \mathbb{N}^* \not\approx B$

• Can
$$A \approx B \not\approx \mathbb{N}^*$$
?

③ Can
$$t(\mathcal{U}, A) \neq t(\mathcal{U}, B)$$
?, χ ?; $\pi\chi$?
reminds me of (Stevo?) can there be $\mathcal{A} \perp \mathcal{B}$ of small size
such that $\bigcup \mathcal{A}^* \cap \bigcup \mathcal{B}^*$ is a single point?

a point $\mathcal{U} \in \mathbb{N}^*$ is a tie-point if there is a closed cover A, B(witnessed by) of \mathbb{N}^* so that \mathcal{U} is the unique common (limit) point.

CH implies every \mathcal{U} is tie PFA implies no such \mathcal{U} Con MA plus $A \approx B$ (Velickovic) Con MA plus $A \not\approx \mathbb{N}^* \not\approx B$

questions on tie points

• Can $A \approx B \not\approx \mathbb{N}^*$?

- Can t(U, A) ≠ t(U, B)?, χ?; πχ? reminds me of (Stevo?) can there be A ⊥ B of small size such that UA* ∩ UB* is a single point?
- similar to: is every point of N^{*} a butterfly point? MA⊨ yes Is N^{*} \ {U} ever normal?

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

æ

- Can \mathbb{N}^* be covered by nwd P-sets? under PFA?
 - CH implies No, seemingly often Yes (e.g. different cofinalities in $\omega^{\omega}, <^*$), and NCF, but (unpublished) Con(No in Cohen model)
- **2** Can \mathbb{N}^* be covered by nwd weak P-sets? (???)

• Can \mathbb{N}^* be covered by nwd P-sets? under PFA?

CH implies No, seemingly often Yes (e.g. different cofinalities in $\omega^{\omega}, <^*$), and NCF, but (unpublished) Con(No in Cohen model)

- **2** Can \mathbb{N}^* be covered by nwd weak P-sets? (???)
- Solution When can N^{*} be covered by *T*-sets: does every ultrafilter contain a tower?

• Can \mathbb{N}^* be covered by nwd P-sets? under PFA?

CH implies No, seemingly often Yes (e.g. different cofinalities in $\omega^{\omega}, <^*$), and NCF, but (unpublished) Con(No in Cohen model)

- **2** Can \mathbb{N}^* be covered by nwd weak P-sets? (???)
- Solution When can N^{*} be covered by *T*-sets: does every ultrafilter contain a tower?

Scarborough-Stone

For $\mathcal{U} \in \mathbb{N}^*$, does there exist a sequentially compact regular space that is not \mathcal{U} -compact?

・ 同 ト ・ ヨ ト ・ ヨ ト
Question

() Can \mathbb{N}^* be covered by nwd P-sets? under PFA?

CH implies No, seemingly often Yes (e.g. different cofinalities in $\omega^{\omega}, <^*$), and NCF, but (unpublished) Con(No in Cohen model)

- **2** Can \mathbb{N}^* be covered by nwd weak P-sets? (???)

Scarborough-Stone

For $\mathcal{U} \in \mathbb{N}^*$, does there exist a sequentially compact regular space that is not \mathcal{U} -compact?

if ${\mathcal U}$ contains a tower, then Yes. What if ${\mathcal U}$ is in a nwd P-set with $\chi=\omega_2?$

・ 同 ト ・ ヨ ト ・ ヨ ト

Question

• Can \mathbb{N}^* be covered by nwd P-sets? under PFA?

CH implies No, seemingly often Yes (e.g. different cofinalities in $\omega^{\omega}, <^*$), and NCF, but (unpublished) Con(No in Cohen model)

- **2** Can \mathbb{N}^* be covered by nwd weak P-sets? (???)
- Solution When can N^{*} be covered by *T*-sets: does every ultrafilter contain a tower?

Scarborough-Stone

For $\mathcal{U} \in \mathbb{N}^*$, does there exist a sequentially compact regular space that is not \mathcal{U} -compact?

if ${\mathcal U}$ contains a tower, then Yes. What if ${\mathcal U}$ is in a nwd P-set with $\chi=\omega_2?$

 $\mathfrak{b}=\mathfrak{c}$ implies Yes, but I haven't seen any other constructions.

- 4 同 2 4 日 2 4 日 2 4

compact X is Efimov if it is ω -free and does not contain $\beta \mathbb{N}$ (equiv: every closed set has a point with π -character less than \mathfrak{c})

compact X is Efimov if it is ω -free and does not contain $\beta \mathbb{N}$ (equiv: every closed set has a point with π -character less than \mathfrak{c})

Question

Does $(\mathfrak{s} < \mathfrak{c} \lor 2^{\mathfrak{s}} < 2^{\mathfrak{c}})$ imply there is an Efimov space? (drop a cf($[\mathfrak{s}]^{\aleph_0}$) assumption)

compact X is Efimov if it is ω -free and does not contain $\beta \mathbb{N}$ (equiv: every closed set has a point with π -character less than \mathfrak{c})

Question

Does $(\mathfrak{s} < \mathfrak{c} \lor 2^{\mathfrak{s}} < 2^{\mathfrak{c}})$ imply there is an Efimov space? (drop a cf($[\mathfrak{s}]^{\aleph_0}$) assumption)

For $A \subset X$, $A^{(1)} = A \cup \{x : \exists \{a_n\}_n \subset A, a_n \to x\}$, and for ordinal $\alpha \in \omega_1$, $A^{(\alpha)} = (\bigcup_{\beta < \alpha} A^{(\beta)})^{(1)}$. X is Frechet if $A^{(1)} = \overline{A}$ and has sequential order (at most) α if $A^{(\alpha)} = \overline{A}$.

compact X is Efimov if it is ω -free and does not contain $\beta \mathbb{N}$ (equiv: every closed set has a point with π -character less than \mathfrak{c})

Question

Does $(\mathfrak{s} < \mathfrak{c} \lor 2^{\mathfrak{s}} < 2^{\mathfrak{c}})$ imply there is an Efimov space? (drop a cf($[\mathfrak{s}]^{\aleph_0}$) assumption)

For $A \subset X$, $A^{(1)} = A \cup \{x : \exists \{a_n\}_n \subset A, a_n \to x\}$, and for ordinal $\alpha \in \omega_1$, $A^{(\alpha)} = (\bigcup_{\beta < \alpha} A^{(\beta)})^{(1)}$. X is Frechet if $A^{(1)} = \overline{A}$ and has sequential order (at most) α if $A^{(\alpha)} = \overline{A}$.

is there compact sequential order more than 2?

If ω sits in compact sequential X, then there is a madf \mathcal{A} on ω consisting of converging sequences. If these are all distinct points, then this is an interesting madf. [partition algebras]

- 4 回 > - 4 回 > - 4 回 >

weakly (ω, \mathfrak{b}) -separated madf? under $\mathfrak{b} < \mathfrak{c}$

Does there exist a madf \mathcal{A} such that for each countably infinite $\mathcal{A}_0 \subset \mathcal{A}$ and disjoint size $\mathfrak{b}, \mathcal{B} \subset \mathcal{A}$, there is a $Y \subset \omega$ separating \mathcal{B} from an infinite subset of \mathcal{A}_0 .

weakly (ω, \mathfrak{b}) -separated madf? under $\mathfrak{b} < \mathfrak{c}$

Does there exist a madf \mathcal{A} such that for each countably infinite $\mathcal{A}_0 \subset \mathcal{A}$ and disjoint size $\mathfrak{b}, \mathcal{B} \subset \mathcal{A}$, there is a $Y \subset \omega$ separating \mathcal{B} from an infinite subset of \mathcal{A}_0 .

We have been focussing on examples where sequential order $\omega^{(\alpha)}$ corresponds to scattering level. (what else could it be?)

weakly (ω, \mathfrak{b}) -separated madf? under $\mathfrak{b} < \mathfrak{c}$

Does there exist a madf \mathcal{A} such that for each countably infinite $\mathcal{A}_0 \subset \mathcal{A}$ and disjoint size $\mathfrak{b}, \mathcal{B} \subset \mathcal{A}$, there is a $Y \subset \omega$ separating \mathcal{B} from an infinite subset of \mathcal{A}_0 .

We have been focussing on examples where sequential order $\omega^{(\alpha)}$ corresponds to scattering level. (what else could it be?)

And!! the examples have all(?) been (Stone spaces of) *T*-algebras

weakly (ω, \mathfrak{b}) -separated madf? under $\mathfrak{b} < \mathfrak{c}$

Does there exist a madf \mathcal{A} such that for each countably infinite $\mathcal{A}_0 \subset \mathcal{A}$ and disjoint size $\mathfrak{b}, \mathcal{B} \subset \mathcal{A}$, there is a $Y \subset \omega$ separating \mathcal{B} from an infinite subset of \mathcal{A}_0 .

We have been focussing on examples where sequential order $\omega^{(\alpha)}$ corresponds to scattering level. (what else could it be?)

And!! the examples have all(?) been (Stone spaces of) T-algebras

Efimov

Is there an Efimov *T*-algebra? (yes if $\mathfrak{b} = \mathfrak{c}$)

If so, then the Scarborough-Stone question is also settled.

weakly (ω, \mathfrak{b}) -separated madf? under $\mathfrak{b} < \mathfrak{c}$

Does there exist a madf \mathcal{A} such that for each countably infinite $\mathcal{A}_0 \subset \mathcal{A}$ and disjoint size $\mathfrak{b}, \mathcal{B} \subset \mathcal{A}$, there is a $Y \subset \omega$ separating \mathcal{B} from an infinite subset of \mathcal{A}_0 .

We have been focussing on examples where sequential order $\omega^{(\alpha)}$ corresponds to scattering level. (what else could it be?)

And!! the examples have all(?) been (Stone spaces of) T-algebras

Efimov

Is there an Efimov *T*-algebra? (yes if $\mathfrak{b} = \mathfrak{c}$)

If so, then the Scarborough-Stone question is also settled.

T-algebras also involve tie-points (but not of \mathbb{N}^*)

T-algebras are a form of minimal Boolean algebras, the latter are known to keep π -character small (which is what we need for Efimov). For ω -free we have to destroy all converging sequences, for high sequential order we have to split apart many.

T-algebras are a form of minimal Boolean algebras, the latter are known to keep π -character small (which is what we need for Efimov). For ω -free we have to destroy all converging sequences, for high sequential order we have to split apart many.

Definition

a sequence $\{a_{\alpha} : \alpha \in \gamma\} \subset \mathcal{P}(\mathbb{N})$ coherently minimally generates Bif for all $\alpha < \gamma$, $\{a_{\beta} \land a_{\alpha} : \beta < \alpha\}$ generates the factor $B[a_{\alpha}]$. (think of how we build an Ostaszewski space) and the Stone space is compact scattered with the complements generating an ultrafilter (point at ∞) T-algebras are a form of minimal Boolean algebras, the latter are known to keep π -character small (which is what we need for Efimov). For ω -free we have to destroy all converging sequences, for high sequential order we have to split apart many.

Definition

a sequence $\{a_{\alpha} : \alpha \in \gamma\} \subset \mathcal{P}(\mathbb{N})$ coherently minimally generates Bif for all $\alpha < \gamma$, $\{a_{\beta} \land a_{\alpha} : \beta < \alpha\}$ generates the factor $B[a_{\alpha}]$. (think of how we build an Ostaszewski space) and the Stone space is compact scattered with the complements generating an ultrafilter (point at ∞)

Definition

A family $\{a_t : t \in \text{Succ}(T)\}$ is a *T*-algebra if $T \subset 2^{<\mathfrak{c}}$ is such that no element has a unique immediate successor, for all $t \cap 0 \in T$, $\{a_{t \cap 0}, a_{t \cap 1}\}$ are complements and for all branches ρ of *T* (not just maximal) $\{a_{\rho \upharpoonright \alpha+1} : \rho \upharpoonright \alpha+1 \in T\}$ is a coherent minimal generating sequence.

Hrusak et. al. using parametrized \Diamond are building T-algebras.

Hrusak et. al. using parametrized \Diamond are building T-algebras.

Hrusak et. al. using parametrized \Diamond are building T-algebras.

Question

In forcing models of $\mathfrak{b} < \mathfrak{s} = \aleph_2 = \mathfrak{c}$, are there Efimov or compact sequential order greater than 2, T-algebras.

What about $\mathfrak{d} = \aleph_1$?

Hrusak et. al. using parametrized \Diamond are building T-algebras.

Question

In forcing models of $\mathfrak{b}<\mathfrak{s}=\aleph_2=\mathfrak{c},$ are there Efimov or compact sequential order greater than 2, T-algebras.

What about $\mathfrak{d} = \aleph_1$?

Adapting Piotr's original T-algebra forcing construction:

Hrusak et. al. using parametrized \Diamond are building T-algebras.

Question

In forcing models of $\mathfrak{b}<\mathfrak{s}=\aleph_2=\mathfrak{c},$ are there Efimov or compact sequential order greater than 2, T-algebras.

What about $\mathfrak{d} = \aleph_1$?

Adapting Piotr's original T-algebra forcing construction:

Theorem (with K.P. Hart)

If there is a Mahlo cardinal then there is a forcing extension in which Moore-Mrowka holds and with a T-algebra (and $T = 2^{<\omega_1}$) that gives compact sequential with no points of countable character.

Can there be a compact ω -free and ω_1 -free space?

Can there be a compact ω -free and ω_1 -free space?

need $2^{\omega} = 2^{\omega_1}$, [JSz] necessarily of countable tightness

Can there be a compact ω -free and ω_1 -free space?

need $2^{\omega} = 2^{\omega_1}$, [JSz] necessarily of countable tightness

idea: use Δ -function and build a ccc forcing and 2^{< ω_2}-algebra [Koszmider genericity to avoid ω_1 traps]

Can there be a compact ω -free and ω_1 -free space?

need $2^{\omega} = 2^{\omega_1}$, [JSz] necessarily of countable tightness

idea: use Δ -function and build a ccc forcing and 2^{< ω_2}-algebra [Koszmider genericity to avoid ω_1 traps]

Question (Hušek, Juhasz)

Does every compact space of countable tightness have a point of character at most \aleph_1 ?

Alan Dow Even numbered problems

白 ト イヨ ト イ

A compact X has a small diagonal if X^2/Δ_X is ω_1 -free. Original: if $\{\{x_\alpha, y_\alpha\} : \alpha \in \omega_1\} \subset [X]^2$, there is an open F_{σ} 's splitting \aleph_1 -many of the pairs.

A compact X has a small diagonal if X^2/Δ_X is ω_1 -free. Original: if $\{\{x_\alpha, y_\alpha\} : \alpha \in \omega_1\} \subset [X]^2$, there is an open F_{σ} 's splitting \aleph_1 -many of the pairs.

is there a non-metrizable CSD (compact space small diagonal)?

< □ > < □ >

A compact X has a small diagonal if X^2/Δ_X is ω_1 -free. Original: if $\{\{x_\alpha, y_\alpha\} : \alpha \in \omega_1\} \subset [X]^2$, there is an open F_{σ} 's splitting \aleph_1 -many of the pairs.

is there a non-metrizable CSD (compact space small diagonal)?

 it can not be a T-algebra and no example if CH, PFA, or iterate property K posets.

A compact X has a small diagonal if X^2/Δ_X is ω_1 -free. Original: if $\{\{x_\alpha, y_\alpha\} : \alpha \in \omega_1\} \subset [X]^2$, there is an open F_{σ} 's splitting \aleph_1 -many of the pairs.

is there a non-metrizable CSD (compact space small diagonal)?

- it can not be a T-algebra and no example if CH, PFA, or iterate property K posets.
- \bigcirc can there be a first-countable example? weight less than \mathfrak{c} ?

A compact X has a small diagonal if X^2/Δ_X is ω_1 -free. Original: if $\{\{x_\alpha, y_\alpha\} : \alpha \in \omega_1\} \subset [X]^2$, there is an open F_{σ} 's splitting \aleph_1 -many of the pairs.

is there a non-metrizable CSD (compact space small diagonal)?

- it can not be a T-algebra and no example if CH, PFA, or iterate property K posets.
- **②** can there be a first-countable example? weight less than \mathfrak{c} ?
- In must an example have a point of countable character?

A compact X has a small diagonal if X^2/Δ_X is ω_1 -free. Original: if $\{\{x_\alpha, y_\alpha\} : \alpha \in \omega_1\} \subset [X]^2$, there is an open F_{σ} 's splitting \aleph_1 -many of the pairs.

is there a non-metrizable CSD (compact space small diagonal)?

- it can not be a T-algebra and no example if CH, PFA, or iterate property K posets.
- **②** can there be a first-countable example? weight less than \mathfrak{c} ?
- In must an example have a point of countable character?
- G can an example be homogeneous? (possibly trivial)

A compact X has a small diagonal if X^2/Δ_X is ω_1 -free. Original: if $\{\{x_\alpha, y_\alpha\} : \alpha \in \omega_1\} \subset [X]^2$, there is an open F_{σ} 's splitting \aleph_1 -many of the pairs.

is there a non-metrizable CSD (compact space small diagonal)?

- it can not be a T-algebra and no example if CH, PFA, or iterate property K posets.
- **②** can there be a first-countable example? weight less than \mathfrak{c} ?
- In must an example have a point of countable character?
- G can an example be homogeneous? (possibly trivial)
- S can the non-metrizable fiber tree be short?

A compact X has a small diagonal if X^2/Δ_X is ω_1 -free. Original: if $\{\{x_\alpha, y_\alpha\} : \alpha \in \omega_1\} \subset [X]^2$, there is an open F_{σ} 's splitting \aleph_1 -many of the pairs.

is there a non-metrizable CSD (compact space small diagonal)?

- it can not be a T-algebra and no example if CH, PFA, or iterate property K posets.
- **②** can there be a first-countable example? weight less than \mathfrak{c} ?
- In must an example have a point of countable character?
- G can an example be homogeneous? (possibly trivial)
- S can the non-metrizable fiber tree be short?
- o can the space be "mostly metrizable"?

A (a) < (b) < (b) < (b) </p>

Gruenhage proved that if CSD X is metrizably fibered, then it is metrizable. weight $\leq \aleph_1$ fibered is sufficient

i.e. maps onto a metric space so that every fiber is metrizable.

Gruenhage proved that if CSD X is metrizably fibered, then it is metrizable. weight $\leq \aleph_1$ fibered is sufficient

i.e. maps onto a metric space so that every fiber is metrizable.

Say that X is mostly metrizable if for every metric image, there are at most countably many non-metrizable fibers.

Gruenhage proved that if CSD X is metrizably fibered, then it is metrizable. weight $\leq \aleph_1$ fibered is sufficient

i.e. maps onto a metric space so that every fiber is metrizable.

Say that X is mostly metrizable if for every metric image, there are at most countably many non-metrizable fibers.

Have X as a subspace of 2^{ω_2} . for each $x \in X$ and $\alpha \in \omega_2$, let $[x \upharpoonright \alpha]$ be the usual closed subset of X.

Let $L_x = \{ \alpha : w([x \upharpoonright \alpha]) > \aleph_1 \text{ and } (\forall \beta < \alpha) [x \upharpoonright \alpha] \subsetneq [x \upharpoonright \beta] \}$
Gruenhage proved that if CSD X is metrizably fibered, then it is metrizable. weight $\leq \aleph_1$ fibered is sufficient

i.e. maps onto a metric space so that every fiber is metrizable.

Say that X is mostly metrizable if for every metric image, there are at most countably many non-metrizable fibers.

Have X as a subspace of 2^{ω_2} . for each $x \in X$ and $\alpha \in \omega_2$, let $[x \upharpoonright \alpha]$ be the usual closed subset of X.

Let $L_x = \{ \alpha : w([x \restriction \alpha]) > \aleph_1 \text{ and } (\forall \beta < \alpha)[x \restriction \alpha] \subsetneq [x \restriction \beta] \}$

Question

Could there be an example where the order-type of each L_x is some ω^n ? (or bounded above in ω^{ω}).

Conjecture: ccc Souslin free iteration (splitting ω_1 sequences like producing *Q*-sets in [0, 1].

Does the existence of a Souslin tree imply there is a Moore-Mrowka space?

Does the existence of a Souslin tree imply there is a Moore-Mrowka space?

Discussion

Let Y be a sequentially compact space of compact tightness, perhaps $h\pi\chi(Y) = \omega$. Construct / find / postulate a maximal free filter \mathcal{F} of closed subsets of Y. Define proper poset \mathbb{P} by $p : \mathcal{M}_p \to Y$ according to

 $M_1 \in M_2 \in \mathcal{M}_p$ implies $p(M_1) \in M_2 \cap \bigcap \{\overline{F \cap M_1} : F \in \mathcal{F} \cap M_1\}$. Possibly more conditions on the choice of p(M). e.g. $\chi = \omega$

Forcing with \mathbb{P} introduces a copy of ω_1 .

Does the existence of a Souslin tree imply there is a Moore-Mrowka space?

Discussion

Let Y be a sequentially compact space of compact tightness, perhaps $h\pi\chi(Y) = \omega$. Construct / find / postulate a maximal free filter \mathcal{F} of closed subsets of Y.

Define proper poset \mathbb{P} by $p : \mathcal{M}_p \to Y$ according to $M_1 \in M_2 \in \mathcal{M}_p$ implies $p(M_1) \in M_2 \cap \bigcap \{\overline{F \cap M_1} : F \in \mathcal{F} \cap M_1\}.$ Possibly more conditions on the choice of p(M). e.g. $\chi = \omega$

Forcing with \mathbb{P} introduces a copy of ω_1 .

Question

Does PFA imply that Y contains a copy of ω_1 ? or not

Does PFA(S) imply that if Y has a countably tight compactification, then we have, or can S-preserving force, an S-indestructible maximal filter \mathcal{F} ? Conclude that having Souslin S does not imply there is a Moore-Mrowka space.

e.g. with Eisworth we proved that $2^{<\omega_1}$ forces there is a maximal filter with a base of separable sets.

Does PFA(S) imply that if Y has a countably tight compactification, then we have, or can S-preserving force, an S-indestructible maximal filter \mathcal{F} ? Conclude that having Souslin S does not imply there is a Moore-Mrowka space.

e.g. with Eisworth we proved that $2^{<\omega_1}$ forces there is a maximal filter with a base of separable sets.

Does PFA(S) imply that if Y has a countably tight compactification, then we have, or can S-preserving force, an S-indestructible maximal filter \mathcal{F} ? Conclude that having Souslin S does not imply there is a Moore-Mrowka space.

e.g. with Eisworth we proved that $2^{<\omega_1}$ forces there is a maximal filter with a base of separable sets.

Oldies but goodies

Is there a first-countable separable, countably compact non-compact space?

Does PFA(S) imply that if Y has a countably tight compactification, then we have, or can S-preserving force, an S-indestructible maximal filter \mathcal{F} ? Conclude that having Souslin S does not imply there is a Moore-Mrowka space.

e.g. with Eisworth we proved that $2^{<\omega_1}$ forces there is a maximal filter with a base of separable sets.

- Is there a first-countable separable, countably compact non-compact space?
- What if you assume normal?

Does PFA(S) imply that if Y has a countably tight compactification, then we have, or can S-preserving force, an S-indestructible maximal filter \mathcal{F} ? Conclude that having Souslin S does not imply there is a Moore-Mrowka space.

e.g. with Eisworth we proved that $2^{<\omega_1}$ forces there is a maximal filter with a base of separable sets.

- Is there a first-countable separable, countably compact non-compact space?
- What if you assume normal?
- Is there a compact, ccc, radial space that is not Frechet?

Does PFA(S) imply that if Y has a countably tight compactification, then we have, or can S-preserving force, an S-indestructible maximal filter \mathcal{F} ? Conclude that having Souslin S does not imply there is a Moore-Mrowka space.

e.g. with Eisworth we proved that $2^{<\omega_1}$ forces there is a maximal filter with a base of separable sets.

- Is there a first-countable separable, countably compact non-compact space?
- What if you assume normal?
- Is there a compact, ccc, radial space that is not Frechet?
- Is pseudoradial countably productive for compact spaces?