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Discretely generated spaces

A space X is discretely generated at a point p if for every A C X
with p € A there is a discrete set D C Asuch that pe D. X is
discretely generated if it is discretely generated at each of its
points.

This notion was defined in a paper (2002) by Dow, Tkachenko,
Tkachuk and Wilson.

All Fréchet-Urysohn spaces are discretely generated but there are
discretely generated spaces of any given tightness.

Let X = kU {oo}, where & is discrete and the neighborhoods of oo
are of the form AU {oo}, where |k \ A| < k. Then X is discretly
generated with tightness equal to .



Discretely generated examples



Discretely generated examples

» It was shown that box products of monotonically normal
spaces (Tkachuk and Wilson, 2012) and countable products
of monotonically normal spaces (Alas and Wilson, 2013) are

discretely generated.



Discretely generated examples

» It was shown that box products of monotonically normal
spaces (Tkachuk and Wilson, 2012) and countable products
of monotonically normal spaces (Alas and Wilson, 2013) are
discretely generated.

Example: linearly ordered spaces



Discretely generated examples

» It was shown that box products of monotonically normal
spaces (Tkachuk and Wilson, 2012) and countable products
of monotonically normal spaces (Alas and Wilson, 2013) are
discretely generated.

Example: linearly ordered spaces

» A regular, maximal (countable) space is not discretely
generated at any point.



Discretely generated examples

» It was shown that box products of monotonically normal
spaces (Tkachuk and Wilson, 2012) and countable products
of monotonically normal spaces (Alas and Wilson, 2013) are
discretely generated.

Example: linearly ordered spaces

» A regular, maximal (countable) space is not discretely
generated at any point.

Maximal = topology is maximal among crowded topologies



Discretely generated examples

» It was shown that box products of monotonically normal
spaces (Tkachuk and Wilson, 2012) and countable products
of monotonically normal spaces (Alas and Wilson, 2013) are
discretely generated.

Example: linearly ordered spaces

» A regular, maximal (countable) space is not discretely
generated at any point.

Maximal = topology is maximal among crowded topologies

Discrete subspaces of maximal spaces are closed.
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A compact space X is weakly discretely generated: if A C X is not
closed, then there is D C A discrete, such that D\ A # (. (this
follows from a result by Tkachuk, 1988)

But some are not discretely generated: take RU {p} C SR, where
p is a remote point.

p is a remote point of 3X = p ¢ N for any N nowhere dense in X.

Question

(Alas, Junqueria and Wilson, 2014) Is there a locally compact and
discretely generated space with its one-point compactification
NOT discretely generated?
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Theorem
There is a first countable locally compact space with its one-point
compactification not discretely generated if either:

(1) CH holds (Alas, Junqueira, Wilson, 2014) or
(2) there is a Souslin tree. (Aurichi 2009)

How can we modify the CH example to obtain one under MA?
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Example under MA

Theorem
(HG, 2014) If p = cof(M), there is a compact space that is
discretely generated at all points except one.

There is a closed set F remote from w x “2 with a base linearly
ordered of type p. Consider the quotient space

X =(wx“2)ul0,p) U{F}
of f(w x “2). Then

» X is dg at w x “2 by first countability,

» X is dg at [0,p) because local character is < p and because it
is linearly ordered, but

» X is NOT discretely generated at {F}.
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Theorem

(Dow-HG, 2015) PFA implies that every locally compact, discretely
generated space of countable tightness has its one point
compactification discretely generated.

Notice that the p = cof(M) example exists under PFA.
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The harder part

Let X be locally compact, discretely generated and countably
tight. Let A C X be non-compact (so that co € A). Passing to a
subspace, we me assume that A is dense in X. It is possible to
reduce this situation to one of the two following cases:

Case 1 A'is countable.

Case 2 No countable subset of A has oo in its closure and oo has
character wy (in X U {o0}).
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Case 1: A is countable.

There is a partition A = [J{A,: n < w}, where each A, is
compact and has dense interior.

oo

A, A

%

Y:X\U{Tn:n<w}

Non-trivial case: oo € Y.

If there is a countable, discrete and non-compact set D C Y, we
are done: by our hypothesis there is a countable discrete set with
D in its closure.
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A sequence {x, : @ < w1} C K is a free wi-sequence if for every
B <uwi,

{aa<BIN{xy:B<a<wi}=0

Lemma

Let K be a compact space and p € K such that K\ {p} is
countably tight, p is not isolated and p is not in the closure of
any countable discrete subset of K. Then there is a free
wi-sequence in K such that p is its only complete accumulation
point.
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Case 1: A is countable.

So assume that no countable subset of Y has oo in its closure. Let
{Xa 1@< w1} C Y be a free wi-sequence.

Fix an enumeration A, = {a(n,m) : m < w}. For each a < wy, let
E, € [w]¥ and f, : E, — w be such that {a(n, f(n)) : n € E,}
converges to x,. By MA(ctble),,, there is f : w — w such that f,
is equal to f infinitely often, for all a.

Then {a(n, f,(n)) : n € E,} converges to co.
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Case 2: No countable subset of A has oo in its closure and
oo has character wj.

(We will assume first countability to simplify this proof)

There is a point-countable 7-base I3 of X such that each of its
members has compact closure. (Shapirovskii, Todor&evi¢)
Let P be the set of all p = (Hp, N}) such that the following holds:
(i) Hp is a finite set of pairs (a, B) where a€ AN B and B € B,
(i) if (a0, Bo) # (a1, B1) are in Hp then a; ¢ By_; for i € 2,
(iii) Np is a finite €-chain of countable elementary submodels of
(H(x), €),
(iv) if (ao, Bo) # (a1, B1) are in H, then there is N € N, and
Jj € 2 such that a; € N iff B; € N iff i =,

(v) if N € N, and (a, B) € H, \ N then for every 8 € AN N and
every B’ € B with &’ € B’ it follows that a ¢ B'.

g <pif Hy C Hy and N, C Ny
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Case 2: No countable subset of A has oo in its closure and
oo has character wj.

[P is proper (we will not prove this). Given a generic filter G,
D={a:3pe G3IBeB((aB)cG)}

is discrete by property (ii):

i) if ag, Bo ai, By) are in H, then a; ¢ B;_; for
(ii) o
i €2

Let {U, : @ < w1} be a base at co. Then, given o < wy, the set
Dy,={peP:3aB)ecHy,(ac Uy}

is dense.
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(a) V= Uy \ (U{Bi: i < k}) is an open neighborhood of oo so
it's not separable.

(b)y C={BeB:FJac MnA (a€c B)} is countable.

Thus, there is By € B\ C contained in V' (|B| > w). Finally,
choose a, € B, N A.

Define g such that Hy = Hp U {{ax, Bx)} and Ny = N, U{M}.

Condition (b) was needed for

(v) if N € N, and (a, B) € H, \ N then for every
a € ANN and every B’ € B with & € B’ it follows that
a¢B.

which we need for properness. Then g € PN D, and g < p. [
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