
Spaces that are discretely generated at infinity

Rodrigo Hernández-Gutiérrez
rodrigo.hdz@gmail.com

Universidad Autónoma Metropolitana (UAM), Iztapalapa
Joint work with Alan Dow

September 12, 2016



Discretely generated spaces

A space X is discretely generated at a point p if for every A ⊂ X
with p ∈ A there is a discrete set D ⊂ A such that p ∈ D.

X is
discretely generated if it is discretely generated at each of its
points.

This notion was defined in a paper (2002) by Dow, Tkachenko,
Tkachuk and Wilson.

All Fréchet-Urysohn spaces are discretely generated but there are
discretely generated spaces of any given tightness.

Let X = κ∪ {∞}, where κ is discrete and the neighborhoods of ∞
are of the form A ∪ {∞}, where |κ \ A| < κ. Then X is discretly
generated with tightness equal to κ.
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Discretely generated examples

I It was shown that box products of monotonically normal
spaces (Tkachuk and Wilson, 2012) and countable products
of monotonically normal spaces (Alas and Wilson, 2013) are
discretely generated.

Example: linearly ordered spaces

I A regular, maximal (countable) space is not discretely
generated at any point.

Maximal = topology is maximal among crowded topologies

Discrete subspaces of maximal spaces are closed.



Discretely generated examples

I It was shown that box products of monotonically normal
spaces (Tkachuk and Wilson, 2012) and countable products
of monotonically normal spaces (Alas and Wilson, 2013) are
discretely generated.

Example: linearly ordered spaces

I A regular, maximal (countable) space is not discretely
generated at any point.

Maximal = topology is maximal among crowded topologies

Discrete subspaces of maximal spaces are closed.



Discretely generated examples

I It was shown that box products of monotonically normal
spaces (Tkachuk and Wilson, 2012) and countable products
of monotonically normal spaces (Alas and Wilson, 2013) are
discretely generated.

Example: linearly ordered spaces

I A regular, maximal (countable) space is not discretely
generated at any point.

Maximal = topology is maximal among crowded topologies

Discrete subspaces of maximal spaces are closed.



Discretely generated examples

I It was shown that box products of monotonically normal
spaces (Tkachuk and Wilson, 2012) and countable products
of monotonically normal spaces (Alas and Wilson, 2013) are
discretely generated.

Example: linearly ordered spaces

I A regular, maximal (countable) space is not discretely
generated at any point.

Maximal = topology is maximal among crowded topologies

Discrete subspaces of maximal spaces are closed.



Discretely generated examples

I It was shown that box products of monotonically normal
spaces (Tkachuk and Wilson, 2012) and countable products
of monotonically normal spaces (Alas and Wilson, 2013) are
discretely generated.

Example: linearly ordered spaces

I A regular, maximal (countable) space is not discretely
generated at any point.

Maximal = topology is maximal among crowded topologies

Discrete subspaces of maximal spaces are closed.



Discretely generated examples

I It was shown that box products of monotonically normal
spaces (Tkachuk and Wilson, 2012) and countable products
of monotonically normal spaces (Alas and Wilson, 2013) are
discretely generated.

Example: linearly ordered spaces

I A regular, maximal (countable) space is not discretely
generated at any point.

Maximal = topology is maximal among crowded topologies

Discrete subspaces of maximal spaces are closed.



Compact spaces

A compact space X is weakly discretely generated:

if A ⊂ X is not
closed, then there is D ⊂ A discrete, such that D \ A 6= ∅. (this
follows from a result by Tkachuk, 1988)

But some are not discretely generated: take R ∪ {p} ⊂ βR, where
p is a remote point.

p is a remote point of βX ≡ p /∈ N for any N nowhere dense in X .

Question
(Alas, Junqueria and Wilson, 2014) Is there a locally compact and
discretely generated space with its one-point compactification
NOT discretely generated?
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First countable examples

Theorem
There is a first countable locally compact space with its one-point
compactification not discretely generated if either:

(1) CH holds (Alas, Junqueira, Wilson, 2014) or

(2) there is a Souslin tree. (Aurichi 2009)

How can we modify the CH example to obtain one under MA?
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Example under MA

Theorem
(HG, 2014) If p = cof(M), there is a compact space that is
discretely generated at all points except one.

There is a closed set F remote from ω × ω2 with a base linearly
ordered of type p. Consider the quotient space

X = (ω × ω2) ∪ [0, p) ∪ {F}

of β(ω × ω2). Then

I X is dg at ω × ω2 by first countability,

I X is dg at [0, p) because local character is < p and because it
is linearly ordered, but

I X is NOT discretely generated at {F}.
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(Dow-HG, 2015) PFA implies that every locally compact, discretely
generated space of countable tightness has its one point
compactification discretely generated.

Notice that the p = cof(M) example exists under PFA.
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The harder part

Let X be locally compact, discretely generated and countably
tight.

Let A ⊂ X be non-compact (so that ∞ ∈ A). Passing to a
subspace, we me assume that A is dense in X . It is possible to
reduce this situation to one of the two following cases:

Case 1 A is countable.

Case 2 No countable subset of A has ∞ in its closure and ∞ has
character ω1 (in X ∪ {∞}).
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Case 1: A is countable.

There is a partition A =
⋃
{An : n < ω}, where each An is

compact and has dense interior.

Ai Ai Ai Ai Ai
Y

∞

Y = X \
⋃
{An : n < ω}

Non-trivial case: ∞ ∈ Y .

If there is a countable, discrete and non-compact set D ⊂ Y , we
are done: by our hypothesis there is a countable discrete set with
D in its closure.
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Free ω1-sequence

A sequence {xα : α < ω1} ⊂ K is a free ω1-sequence if for every
β < ω1,

{xα : α < β} ∩ {xα : β ≤ α < ω1} = ∅

Lemma
Let K be a compact space and p ∈ K such that K \ {p} is
countably tight, p is not isolated and p is not in the closure of
any countable discrete subset of K . Then there is a free
ω1-sequence in K such that p is its only complete accumulation
point.



Free ω1-sequence

A sequence {xα : α < ω1} ⊂ K is a free ω1-sequence if for every
β < ω1,

{xα : α < β} ∩ {xα : β ≤ α < ω1} = ∅

Lemma
Let K be a compact space and p ∈ K such that K \ {p} is
countably tight, p is not isolated and p is not in the closure of
any countable discrete subset of K . Then there is a free
ω1-sequence in K such that p is its only complete accumulation
point.



Case 1: A is countable.

So assume that no countable subset of Y has ∞ in its closure.

Let
{xα : α < ω1} ⊂ Y be a free ω1-sequence.

Fix an enumeration An = {a(n,m) : m < ω}. For each α < ω1, let
Eα ∈ [ω]ω and fα : Eα → ω be such that {a(n, fα(n)) : n ∈ Eα}
converges to xα. By MA(ctble)ω1 , there is f : ω → ω such that fα
is equal to f infinitely often, for all α.

Then {a(n, fα(n)) : n ∈ Eα} converges to ∞.
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Case 2: No countable subset of A has ∞ in its closure and
∞ has character ω1.

(We will assume first countability to simplify this proof)

There is a point-countable π-base B of X such that each of its
members has compact closure. (Shapirovskii, Todorčević)

Let P be the set of all p = 〈Hp,Np〉 such that the following holds:

(i) Hp is a finite set of pairs 〈a,B〉 where a ∈ A ∩ B and B ∈ B,

(ii) if 〈a0,B0〉 6= 〈a1,B1〉 are in Hp then ai /∈ B1−i for i ∈ 2,

(iii) Np is a finite ∈-chain of countable elementary submodels of
(H(κ),∈),

(iv) if 〈a0,B0〉 6= 〈a1,B1〉 are in Hp then there is N ∈ Np and
j ∈ 2 such that ai ∈ N iff Bi ∈ N iff i = j ,

(v) if N ∈ Np and 〈a,B〉 ∈ Hp \ N then for every a′ ∈ A ∩ N and
every B ′ ∈ B with a′ ∈ B ′ it follows that a /∈ B ′.

q ≤ p if Hp ⊂ Hq and Np ⊂ Nq
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Let P be the set of all p = 〈Hp,Np〉 such that the following holds:

(i) Hp is a finite set of pairs 〈a,B〉 where a ∈ A ∩ B and B ∈ B,

(ii) if 〈a0,B0〉 6= 〈a1,B1〉 are in Hp then ai /∈ B1−i for i ∈ 2,

(iii) Np is a finite ∈-chain of countable elementary submodels of
(H(κ),∈),

(iv) if 〈a0,B0〉 6= 〈a1,B1〉 are in Hp then there is N ∈ Np and
j ∈ 2 such that ai ∈ N iff Bi ∈ N iff i = j ,

(v) if N ∈ Np and 〈a,B〉 ∈ Hp \ N then for every a′ ∈ A ∩ N and
every B ′ ∈ B with a′ ∈ B ′ it follows that a /∈ B ′.

q ≤ p if Hp ⊂ Hq and Np ⊂ Nq



Case 2: No countable subset of A has ∞ in its closure and
∞ has character ω1.

(We will assume first countability to simplify this proof)

There is a point-countable π-base B of X such that each of its
members has compact closure. (Shapirovskii, Todorčević)
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Case 2: No countable subset of A has ∞ in its closure and
∞ has character ω1.

P is proper (we will not prove this).

Given a generic filter G ,

D = {a : ∃p ∈ G ∃B ∈ B (〈a,B〉 ∈ G )}

is discrete by property (ii):

(ii) if 〈a0,B0〉 6= 〈a1,B1〉 are in Hp then ai /∈ B1−i for
i ∈ 2

Let {Uα : α < ω1} be a base at ∞. Then, given α < ω1, the set

Dα = {p ∈ P : ∃〈a,B〉 ∈ Hp (a ∈ Uα)}

is dense.
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Proof that Dα is dense

Let p ∈ P,

Hp = {〈ai ,Bi 〉 : i < k}. Consider p ∈ M ≺ H(κ).

(a) V = Uα \ (
⋃
{Bi : i < k}) is an open neighborhood of ∞ so

it’s not separable.

(b) C = {B ∈ B : ∃ a ∈ M ∩ A (a ∈ B)} is countable.

Thus, there is Bk ∈ B \ C contained in V (|B| > ω). Finally,
choose ak ∈ Bk ∩ A.

Define q such that Hq = Hp ∪ {〈ak ,Bk〉} and Nq = Np ∪ {M}.

Condition (b) was needed for

(v) if N ∈ Np and 〈a,B〉 ∈ Hp \ N then for every
a′ ∈ A ∩ N and every B ′ ∈ B with a′ ∈ B ′ it follows that
a /∈ B ′.

,
which we need for properness. Then q ∈ P ∩ Dα and q ≤ p.
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