A non-commutative Mrówka's Ψ-space

Piotr Koszmider

Institute of Mathematics of the Polish Academy of Sciences, Warsaw

Joint research with Saeed Ghasemi (IM PAN, Warsaw)

Ψ -spaces

Definition

Let ${\mathcal A}$ be an almost disjoint family of subsets of ${\mathbb N}.$

Definition

Let A be an almost disjoint family of subsets of \mathbb{N} . We consider

$$\Psi_{\mathcal{A}} = \mathbb{N} \cup \{\textbf{\textit{x}}_{\textit{A}}: \textit{A} \in \mathcal{A}\}$$

with the following topology:

Definition

Let A be an almost disjoint family of subsets of $\mathbb{N}.$ We consider

$$\Psi_{\mathcal{A}} = \mathbb{N} \cup \{x_{A} : A \in \mathcal{A}\}$$

with the following topology:

ullet elements of $\mathbb N$ are isolated

Definition

Let $\mathcal A$ be an almost disjoint family of subsets of $\mathbb N.$ We consider

$$\Psi_{\mathcal{A}} = \mathbb{N} \cup \{x_{\mathcal{A}} : \mathcal{A} \in \mathcal{A}\}$$

with the following topology:

- elements of N are isolated
- for every $A \in \mathcal{A}$ all neighbourhoods of x_A are of the form

$$U_F(x_A)=(A\setminus F)\cup\{x_A\}.$$

3/8

Definition

Let $\mathcal A$ be an almost disjoint family of subsets of $\mathbb N.$ We consider

$$\Psi_{\mathcal{A}} = \mathbb{N} \cup \{x_{\mathcal{A}} : \mathcal{A} \in \mathcal{A}\}$$

with the following topology:

- elements of N are isolated
- for every $A \in \mathcal{A}$ all neighbourhoods of x_A are of the form

$$U_F(x_A)=(A\setminus F)\cup\{x_A\}.$$

3/8

Theorem (Mrówka, 1977)

There is an infinite almost disjoint family $\mathcal{A}\subseteq\wp(\mathbb{N})$

Theorem (Mrówka, 1977)

There is an infinite almost disjoint family $A \subseteq \wp(\mathbb{N})$ such $\beta(\Psi_A) = \alpha(\Psi_A)$.

Theorem (Mrówka, 1977)

There is an infinite almost disjoint family $A \subseteq \wp(\mathbb{N})$ such $\beta(\Psi_A) = \alpha(\Psi_A)$.

Theorem (Mrówka, 1977 - an algebraic version)

There an algebra $\mathcal{B} \subseteq \ell_{\infty}$ which satisfies the following short exact sequence

$$0 \to \textit{\textbf{c}}_0 \xrightarrow{\sigma} \mathcal{B} \to \textit{\textbf{c}}_0(\mathfrak{c}) \to 0$$

Theorem (Mrówka, 1977)

There is an infinite almost disjoint family $A \subseteq \wp(\mathbb{N})$ such $\beta(\Psi_A) = \alpha(\Psi_A)$.

Theorem (Mrówka, 1977 - an algebraic version)

There an algebra $\mathcal{B} \subseteq \ell_{\infty}$ which satisfies the following short exact sequence

$$0 \to \textit{\textbf{c}}_0 \xrightarrow{\sigma} \mathcal{B} \to \textit{\textbf{c}}_0(\mathfrak{c}) \to 0$$

Theorem (Mrówka, 1977)

There is an infinite almost disjoint family $A \subseteq \wp(\mathbb{N})$ such $\beta(\Psi_A) = \alpha(\Psi_A)$.

Theorem (Mrówka, 1977 - an algebraic version)

There an algebra $\mathcal{B} \subseteq \ell_{\infty}$ which satisfies the following short exact sequence

$$0 o c_0 \stackrel{\sigma}{ o} \mathcal{B} o c_0(\mathfrak{c}) o 0$$

and

ullet $\sigma[c_0]$ is an essential ideal of ${\cal B}$

Theorem (Mrówka, 1977)

There is an infinite almost disjoint family $A \subseteq \wp(\mathbb{N})$ such $\beta(\Psi_A) = \alpha(\Psi_A)$.

Theorem (Mrówka, 1977 - an algebraic version)

There an algebra $\mathcal{B} \subseteq \ell_{\infty}$ which satisfies the following short exact sequence

$$0 o c_0 \stackrel{\sigma}{ o} \mathcal{B} o c_0(\mathfrak{c}) o 0$$

- $\sigma[c_0]$ is an essential ideal of \mathcal{B}
 - the unitization of $\mathcal B$ is equal to the multiplier algebra of $\mathcal B$, i.e., $\widetilde{\mathcal B}=\mathcal M(\mathcal B)$.

Theorem (Mrówka, 1977)

There is an infinite almost disjoint family $A \subseteq \wp(\mathbb{N})$ such $\beta(\Psi_A) = \alpha(\Psi_A)$.

Theorem (Mrówka, 1977 - an algebraic version)

There an algebra $\mathcal{B} \subseteq \ell_{\infty}$ which satisfies the following short exact sequence

$$0 \to c_0 \xrightarrow{\sigma} \mathcal{B} \to c_0(\mathfrak{c}) \to 0$$

- $\sigma[c_0]$ is an essential ideal of $\mathcal B$
- ullet the unitization of ${\cal B}$ is equal to the multiplier algebra of ${\cal B}$, i.e., $\widetilde{{\cal B}}={\cal M}({\cal B})$.

Theorem (Mrówka, 1977)

There is an infinite almost disjoint family $A \subseteq \wp(\mathbb{N})$ such $\beta(\Psi_A) = \alpha(\Psi_A)$.

Theorem (Mrówka, 1977 - an algebraic version)

There an algebra $\mathcal{B} \subseteq \ell_{\infty}$ which satisfies the following short exact sequence

$$0 \to c_0 \xrightarrow{\sigma} \mathcal{B} \to c_0(\mathfrak{c}) \to 0$$

- $\sigma[c_0]$ is an essential ideal of $\mathcal B$
- ullet the unitization of ${\cal B}$ is equal to the multiplier algebra of ${\cal B}$, i.e., $\widetilde{{\cal B}}={\cal M}({\cal B})$.

Theorem (Mrówka, 1977)

There is an infinite almost disjoint family $A \subseteq \wp(\mathbb{N})$ such $\beta(\Psi_A) = \alpha(\Psi_A)$.

Theorem (Mrówka, 1977 - an algebraic version)

There an algebra $\mathcal{B} \subseteq \ell_{\infty}$ which satisfies the following short exact sequence

$$0 \to c_0 \xrightarrow{\sigma} \mathcal{B} \to c_0(\mathfrak{c}) \to 0$$

- $\sigma[c_0]$ is an essential ideal of $\mathcal B$
- ullet the unitization of ${\cal B}$ is equal to the multiplier algebra of ${\cal B}$, i.e., $\widetilde{{\cal B}}={\cal M}({\cal B})$.

Theorem (S. Ghasemi, P. K.)

There is a C*-algebra $\mathcal{A}\subseteq\mathcal{B}(\ell_2)$ satisfying the following short exact sequence

$$0 \to \mathcal{K}(\ell_2) \xrightarrow{\sigma} \mathcal{A} \to \mathcal{K}(\ell_2(\mathfrak{c})) \to 0,$$

Theorem (S. Ghasemi, P. K.)

There is a C*-algebra $\mathcal{A}\subseteq\mathcal{B}(\ell_2)$ satisfying the following short exact sequence

$$0 \to \mathcal{K}(\ell_2) \xrightarrow{\sigma} \mathcal{A} \to \mathcal{K}(\ell_2(\mathfrak{c})) \to 0,$$

Theorem (S. Ghasemi, P. K.)

There is a C*-algebra $\mathcal{A}\subseteq\mathcal{B}(\ell_2)$ satisfying the following short exact sequence

$$0 \to \mathcal{K}(\ell_2) \xrightarrow{\sigma} \mathcal{A} \to \mathcal{K}(\ell_2(\mathfrak{c})) \to 0,$$

such that

• $\sigma[\mathcal{K}(\ell_2)]$ is an essential ideal of \mathcal{A}

Theorem (S. Ghasemi, P. K.)

There is a C^* -algebra $\mathcal{A}\subseteq\mathcal{B}(\ell_2)$ satisfying the following short exact sequence

$$0 \to \mathcal{K}(\ell_2) \xrightarrow{\sigma} \mathcal{A} \to \mathcal{K}(\ell_2(\mathfrak{c})) \to 0,$$

- $\sigma[\mathcal{K}(\ell_2)]$ is an essential ideal of \mathcal{A}
- $\bullet \ \ \text{the algebra of multipliers} \ \mathcal{M}(\mathcal{A}) \ \text{of} \ \mathcal{A} \ \text{is equal to the unitization of} \ \mathcal{A},$

Theorem (S. Ghasemi, P. K.)

There is a C^* -algebra $\mathcal{A}\subseteq\mathcal{B}(\ell_2)$ satisfying the following short exact sequence

$$0 \to \mathcal{K}(\ell_2) \xrightarrow{\sigma} \mathcal{A} \to \mathcal{K}(\ell_2(\mathfrak{c})) \to 0,$$

- $\sigma[\mathcal{K}(\ell_2)]$ is an essential ideal of \mathcal{A}
- the algebra of multipliers $\mathcal{M}(A)$ of A is equal to the unitization of A,

Theorem (S. Ghasemi, P. K.)

There is a C^* -algebra $\mathcal{A}\subseteq\mathcal{B}(\ell_2)$ satisfying the following short exact sequence

$$0 \to \mathcal{K}(\ell_2) \xrightarrow{\sigma} \mathcal{A} \to \mathcal{K}(\ell_2(\mathfrak{c})) \to 0,$$

- $\sigma[\mathcal{K}(\ell_2)]$ is an essential ideal of \mathcal{A}
- the algebra of multipliers $\mathcal{M}(A)$ of A is equal to the unitization of A,

Fact

A C*-algebra \mathcal{A} is isomorphic to the algebra $\mathcal{K}(\ell_2(\kappa))$ if and only if

Fact

A C^* -algebra \mathcal{A} is isomorphic to the algebra $\mathcal{K}(\ell_2(\kappa))$ if and only ifit is generated by "matrix units", that is nonzero elements $(\mathbf{a}_{\beta,\alpha}:\alpha,\beta\in\kappa)$ satisfying for each $\alpha,\beta,\xi,\eta<\kappa$:

Fact

A C^* -algebra \mathcal{A} is isomorphic to the algebra $\mathcal{K}(\ell_2(\kappa))$ if and only ifit is generated by "matrix units", that is nonzero elements $(\mathbf{a}_{\beta,\alpha}:\alpha,\beta\in\kappa)$ satisfying for each $\alpha,\beta,\xi,\eta<\kappa$:

Fact

A C^* -algebra \mathcal{A} is isomorphic to the algebra $\mathcal{K}(\ell_2(\kappa))$ if and only ifit is generated by "matrix units", that is nonzero elements $(\mathbf{a}_{\beta,\alpha}:\alpha,\beta\in\kappa)$ satisfying for each $\alpha,\beta,\xi,\eta<\kappa$:

- $\bullet \ a_{\eta,\xi}a_{\beta,\alpha}=\delta_{\xi,\beta}a_{\eta,\alpha}.$

Fact

A C*-algebra $\mathcal A$ is isomorphic to the algebra $\mathcal K(\ell_2(\kappa))$ if and only ifit is generated by "matrix units", that is nonzero elements $(\mathbf a_{\beta,\alpha}:\alpha,\beta\in\kappa)$ satisfying for each $\alpha,\beta,\xi,\eta<\kappa$:

- $\bullet \ a_{\eta,\xi}a_{\beta,\alpha}=\delta_{\xi,\beta}a_{\eta,\alpha}.$

Definition

A sequence $(a_{\beta,\alpha}:\alpha,\beta\in\kappa)$ of noncompact elements of $\mathcal{B}(\ell_2)$ is called a "system of almost matrix units" if it satisfies for each $\alpha,\beta,\xi,\eta<\kappa$:

- \bullet $(a_{\beta,\alpha})^* = a_{\alpha,\beta}$
- \bullet $a_{\eta,\xi}a_{\beta,\alpha}=^*\delta_{\xi,\beta}a_{\eta,\alpha}$,

where a = b means $a - b \in \mathcal{K}(\ell_2)$.

For each $\xi \in 2^{\mathbb{N}}$ we can associate a set $A_{\xi} = \{ s \in 2^{<\mathbb{N}} : s \subseteq \xi \}$.

7/8

For each $\xi \in \mathbf{2}^{\mathbb{N}}$ we can associate a set $A_{\xi} = \{ s \in \mathbf{2}^{<\mathbb{N}} : s \subseteq \xi \}$.

Fact

Let $X \subseteq \mathbb{N}$. Then for each $\lambda \in \{0,1\}$ the sets $\{\xi \in 2^{\mathbb{N}} : A_{\xi} \cap X =^* \lambda A_{\xi}\}$ are Borel.

For each $\xi \in \mathbf{2}^{\mathbb{N}}$ we can associate a set $A_{\xi} = \{s \in \mathbf{2}^{<\mathbb{N}} : s \subseteq \xi\}$.

Fact

Let $X \subseteq \mathbb{N}$. Then for each $\lambda \in \{0,1\}$ the sets $\{\xi \in 2^{\mathbb{N}} : A_{\xi} \cap X =^* \lambda A_{\xi}\}$ are Borel.

For each pair $(\xi,\eta)\in 2^{\mathbb{N}}\times 2^{\mathbb{N}}$ we associate an operator on $\ell_2(2^{<\mathbb{N}})$

$$\mathcal{T}_{\eta,\xi}(s) = egin{cases} e_{\eta|k} & ext{if } s = e_{\xi|k} ext{ for some } k \in \mathbb{N} \ 0 & ext{otherwise} \end{cases}$$

For each $\xi \in \mathbf{2}^{\mathbb{N}}$ we can associate a set $A_{\xi} = \{s \in \mathbf{2}^{<\mathbb{N}} : s \subseteq \xi\}$.

Fact

Let $X \subseteq \mathbb{N}$. Then for each $\lambda \in \{0,1\}$ the sets $\{\xi \in 2^{\mathbb{N}} : A_{\xi} \cap X =^* \lambda A_{\xi}\}$ are Borel.

For each pair $(\xi,\eta)\in 2^{\mathbb{N}}\times 2^{\mathbb{N}}$ we associate an operator on $\ell_2(2^{<\mathbb{N}})$

$$\mathcal{T}_{\eta,\xi}(s) = egin{cases} e_{\eta|k} & ext{if } s = e_{\xi|k} ext{ for some } k \in \mathbb{N} \ 0 & ext{otherwise} \end{cases}$$

Lemma

Let $R \in \mathcal{B}(\mathcal{H})$ and U be a Borel subset of \mathbb{C} , then the set

$$B_U^R = \{(\eta, \xi) \in \mathbf{2}^{\mathbb{N}} \times \mathbf{2}^{\mathbb{N}} : T_{\eta, \eta} R T_{\xi, \xi} =^* \lambda T_{\eta, \xi}, \ \lambda \in U\}$$

is Borel in $2^{\mathbb{N}} \times 2^{\mathbb{N}}$. In particular, if B_U^R is either countable or of size of the continuum.

Fact

Let A be MAD and $X \subseteq \mathbb{N}$ infinite. Then

$${A \cap X : A \in A}$$

is MAD in $\wp(X)$.

Fact

Let A be MAD and $X \subseteq \mathbb{N}$ infinite. Then

$${A \cap X : A \in A}$$

is MAD in $\wp(X)$.

If P, Q are projections, then PQ is not a projection unless P and Q commute.