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Conventions

Throughout, k denotes a regular uncountable cardinal, and A
denotes an uncountable cardinal.
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Conventions

Throughout, k denotes a regular uncountable cardinal, and A
denotes an uncountable cardinal.
For a set of ordinals C, write:

» acc(C) :={a < sup(C) | sup(CNa) =a > 0};

» nacc(C) := C\ acc(C).
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Trees

Definition

> Atreeis a poset (T,<) in whichx, :={yeT|y<x}is
well-ordered for all x € T;
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Trees

Definition
> Atreeis a poset (T,<) in whichx, :={yeT|y<x}is
well-ordered for all x € T:
> The height of x € T is ht(x) := otp(x, <);
» The height of T is sup{ht(x) | x € T},
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Trees

Definition
> Atreeis a poset (T,<) inwhich x, :={y e T|y<x}is
well-ordered for all x € T;
The height of x € T is ht(x) := otp(x, <);
The height of T is sup{ht(x) | x € T},
Ts = {x € T | ht(x) = 3} is the §™-level of T.

(T,<) is (< x)—complete if any <-increasing sequence of
length < x admits a bound.

v

v

v

v
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Kk-trees

Definition
A k-tree is a tree (T, <) of height k whose levels are of size < k.
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Kk-trees

Definition
A k-tree is a tree (T, <) of height k whose levels are of size < k.
It is
» Aronszajn if it has no chains of size ;
» Souslin if it has no chains or antichains of size «;
» Special if there exists a function ¥ : T — T such that:
» f(t) <t for all non-minimal nodes t in T;
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Kk-trees

Definition
A k-tree is a tree (T, <) of height k whose levels are of size < k.
It is

» Aronszajn if it has no chains of size ;

> Souslin if it has no chains or antichains of size x;

» Special if there exists a function ¥ : T — T such that:

» f(t) <t for all non-minimal nodes t in T;
» forall t € T, f~1{t} is the union of <k-many antichains.



What are we doing here?

Aronszajn trees and Souslin trees are powerful and useful
combinatorial objects. So we study their existence.
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What are we doing here?

Aronszajn trees and Souslin trees are powerful and useful
combinatorial objects. So we study their existence.

First, let us recall some equiconsistency results.
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Equiconsistency results

Definition
A cardinal k is Mahlo if {a < k | cf(a) = a} is stationary in k.
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Equiconsistency results

Definition
A cardinal k is Mahlo if {a < k | cf(a) = a} is stationary in k.

Fact
The following are equiconsistent:

» There exists a Mahlo cardinal;

> There are no special Ny-Aronszajn trees;
» O, fails;

» Every stationary subset of ES? reflects;
» FRP(w2) holds.
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Equiconsistency results

Definition
k is weakly compact if it is inaccessible and —3k-Aronszajn trees.
Recall (Hanf, 1964)

If k is weakly compact, then {a < k | a is Mahlo} is stationary.
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Equiconsistency results

Definition

k is weakly compact if it is inaccessible and —3k-Aronszajn trees.

Fact
The following are equiconsistent:

> ThereexistsaMahlo-cardinal:
. T " : ) ;
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Equiconsistency results

Definition
k is weakly compact if it is inaccessible and —3k-Aronszajn trees.

Fact
The following are equiconsistent:

» There exists a weakly compact cardinal;

There are no Np-Aronszajn trees;

v
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Definition
k is weakly compact if it is inaccessible and —3k-Aronszajn trees.

Fact
The following are equiconsistent:
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There are no Np-Aronszajn trees;
O(w2) fails;
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Equiconsistency results

Definition
k is weakly compact if it is inaccessible and —3k-Aronszajn trees.

Fact
The following are equiconsistent:

» There exists a weakly compact cardinal;

v

There are no Np-Aronszajn trees;
O(w2) fails;
» Every pair of stationary subsets of E&? reflect simultaneously;

> FRP{wn)-holds:

v
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Equiconsistency results

Definition
k is weakly compact if it is inaccessible and —3k-Aronszajn trees.

Fact
The following are equiconsistent:

» There exists a weakly compact cardinal;

v

There are no Np-Aronszajn trees;
O(wo) fails;
» Every pair of stationary subsets of E&? reflect simultaneously;

v

v

Every stationary subset of [wo]* reflects.

21



Equiconsistency results

Fact
The following are equiconsistent:

» There exists a weakly compact cardinal;

v

There are no Np-Aronszajn trees;
O(wo) fails;
» Every pair of stationary subsets of E%? reflect simultaneously;

v

v

Every stationary subset of [wo]* reflects;

v

For some regular cardinal k > wy, k-ccX Kk-cc=k-cc.
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The Ny-Souslin problem

In the 1970’s, Jensen proved that the existence of an N1-Souslin tree
is independent of GCH.

Open problem
Does GCH entail the existence of an Ny-Souslin tree?
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The Ny-Souslin problem

In the 1970’s, Jensen proved that the existence of an Ri-Souslin tree
is independent of GCH.

Open problem

Does GCH entail the existence of an Ny-Souslin tree?

Theorem (Gregory, 1976)

If GCH holds, and there exist no Ny-Souslin trees, then X, is a
Mahlo cardinal in L.

Given the above-mentioned equiconsistency results, the general
belief is that Gregory's lower bound should be increased from
Mahlo to a weakly compact. Also, add to it the following:
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The Ny-Souslin problem

In the 1970’s, Jensen proved that the existence of an Ri-Souslin tree
is independent of GCH.

Open problem

Does GCH entail the existence of an Ny-Souslin tree?

Theorem (Gregory, 1976)

If GCH holds, and there exist no Ny-Souslin trees, then X, is a
Mahlo cardinal in L.

Theorem (Jensen, 1972)

If V = L, then for every regular uncountable cardinal xk, TFAE:
> K is not weakly compact;
> There exists a k-Aronszajn tree;

» There exists a k-Souslin tree.

9/21



The Ny-Souslin problem

From the Kanamori-Magidor 1978 survey article (p. 261):

The consistency problem for SH _when K > W, seems to be much more difficult,
" —

especially if we want to retain the GCH. To bring matters into focus, we make some
remarks which recall and amplify §21. First of all, Jensen[1972] had actually estab-

lished that in L, weak compactness for « is equivalent to SH , for regular «k .
3

We are interested in SHK for small k , and the Mitchell-Silver model cited in §21

certainly satisfied SHuJ , as there were not even any mz—Aronszajn trees in that
2

model. However, 2% = w held in that model, and in fact a classical result of

2
Specker[1951] as cited in §5 necessitates something like this: if 2% = wy then
there is an w,-Aronszajn tree. No such result seems available for w,-Souslin trees,

so the focal problem in this area is to get SH, _and the GCH to hold.
2

This problem has been extensively investigated by Gregory[1976] who established

. . w
in particular that: If 2% =4 , 21 =4 , and F.z hold, then SH _is false,
2 2

1

i.e. there is an y,-Souslin tree. Hence, if we want SHw and the GCH to hold, we
- 2

need to guarantee the failure of Y . as pointed out in §21, this necessitates at
Wz

least the consistency strength of the existence of a Mahlo cardinal, and very likely,

of a weakly compact cardinal.
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The N,-Souslin problem

In the 1970’s, Jensen proved that the existence of an N1-Souslin tree
is independent of GCH.

Open problem
Does GCH entail the existence of an Ny-Souslin tree?
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If GCH holds, and there exist no No-Souslin trees, then RNs is a
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The Ny-Souslin problem

In the 1970’s, Jensen proved that the existence of an N1-Souslin tree
is independent of GCH.

Open problem

Does GCH entail the existence of an Ny-Souslin tree?

Theorem (Gregory, 1976)

If GCH holds, and there exist no No-Souslin trees, then RNs is a
Mahlo cardinal in L.

Theorem (2016)

If GCH holds, and there exist no Ny-Souslin trees, then X5 is a
weakly compact cardinal in L.
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This is optimal

Whether GCH entails the existence of an N»>-Souslin tree remains
open, however,
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This is optimal

Whether GCH entails the existence of an N»>-Souslin tree remains
open, however, the trees we get here are of a particular kind:

Theorem (2016)

If GCH holds and X5 is not weakly compact in L, then there exists
an No-Souslin tree with no Ni-Aronszajn subtrees.
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This is optimal

Whether GCH entails the existence of an N»>-Souslin tree remains
open, however, the trees we get here are of a particular kind:

Theorem (2016)

If GCH holds and X5 is not weakly compact in L, then there exists
an No-Souslin tree with no Ni-Aronszajn subtrees.

Theorem (Todorcevic, 1981)

After Lévy-collapsing a weakly compact cardinal to Ny over a
model of GCH: GCH holds, and every Ny-Aronszajn tree contains
an Ni-Aronszajn subtree.
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Stating the results

For almost two years now, Ari Brodsky and myself been studying a
parameterized proxy principle, denoted P(k, u, R,0,S,v,0,€), and
its effect on the existence of different types of x-Souslin trees.
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simple statements:
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Stating the results

Simpler instances of the principle were isolated, yielding the following
simple statements:

Theorem (Brodsky-Rinot, 2015)
X~ (k) + &(k) entails a club-regressive k-Souslin tree.

Remark
A club-regressive k-tree contains no v-Aronszajn subtrees nor
v-Cantor subrtrees for every regular cardinal v < k.
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Stating the results

Simpler instances of the principle were isolated, yielding the following
simple statements:
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Theorem (Brodsky-Rinot, 2015)

M'(EL, ) + O(k) entails a x-complete r-Souslin tree, provided that
K is x-inaccessible.

Remark

All previous <{»-based constructions of k-Souslin trees involved

sealing antichains at levels o € S for some stationary S that does
not reflect.
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Stating the results

Simpler instances of the principle were isolated, yielding the following
simple statements:

Theorem (Brodsky-Rinot, 2015)
X~ (k) + (k) entails a club-regressive k-Souslin tree.

Theorem (Brodsky-Rinot, 2015)

M'(EL, ) + O(k) entails a x-complete r-Souslin tree, provided that
K is x-inaccessible.

Remark

All previous <{>-based constructions of k-Souslin trees involved
sealing antichains at levels o € S for some stationary S that does
not reflect.

In contrast, Lambie-Hanson proved that X(RX,11) + O(Nyt1) is
consistent with the reflection of all stationary subsets of N,,;1.
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Stating the results

Theorem (Brodsky-Rinot, 2015)
X~ (k) + &(k) entails a club-regressive k-Souslin tree.
Theorem (Brodsky-Rinot, 2015)
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Theorem (2016)
O(XT) + GCH entails X~ (AT);
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Stating the results

Theorem (Brodsky-Rinot, 2015)

X~ (k) + (k) entails a club-regressive k-Souslin tree.

Theorem (Brodsky-Rinot, 2015)

M'(EL, ) + O(k) entails a x-complete r-Souslin tree, provided that
K is x-inaccessible.

Theorem (2016)

O(AT) + GCH entails X~ (AT);
O(AY) + GCH entails )/ (EZy))-

Corollary

O(AT) + GCH entails a club-regressive A*-Souslin tree;
O(A1) + GCH entails a cf(\)-complete A*-Souslin tree.
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Elements of the proofs
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C-sequences

A C-sequence is a sequence (C, | a < k) such that:

» For every limit a < k, Cy is a club in a.
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Square principles

A coherent C-sequence is a sequence (C, | a < k) such that:

» For every limit a < k, Cy is a club in ¢;
» if @ € acc(Cy), then G5 = G,y N a.
Easiest way? Take a club D in k, and put:

C DnNa, if sup(DNa)=q;
“ la\sup(DNa), if sup(DNa)< o
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Square principles

A coherent C-sequence is a sequence (C, | a < k) such that:

» For every limit a < k, Cy is a club in ¢;
» if @ € acc(Cy), then G5 = G,y N a.
Easiest way? Take a club D in k, and put:

C DnNa, if sup(DNa)=q;
“ la\sup(DNa), if sup(DNa)< o

Definition (Todorcevic, 1987)

[J(k) asserts the existence of a coherent C-sequence (C, | o < k)
such that for every club D C &, there exists some a € acc(D)
satisfying C,, # DN a.
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Square principles (cont.)

Definition (Brodsky-Rinot, 2015)

For a stationary S C k, X (S) asserts the existence of a coherent
C-sequence (C, | a < k) such that for every cofinal A C k, there
exists some limit « € S satisfying sup(nacc(C,) N A) = a.
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Square principles (cont.)

Definition (Brodsky-Rinot, 2015)

For a stationary S C x, X7 (S) asserts the existence of a coherent
C-sequence (C, | a < k) such that for every cofinal A C &, there
exists some limit « € S satisfying sup(nacc(C,) N A) = a.

Observation: X~ (k) = O(k)

Given a club D C &, put A := acc(D).

Pick a limit @ < & such that sup(nacc(C,) N A) = a. In particular,
a € acc(D), and sup(nacc(Cy) Nace(D)) = a so that G, # DNa.
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Square principles (cont.)

Definition (Brodsky-Rinot, 2015)

For a stationary S C x, X7 (S) asserts the existence of a coherent
C-sequence (C, | a < k) such that for every cofinal A C &, there
exists some limit o € S satisfying sup(nacc(C,) N A) = .

Observation: X~ (k) = O(k)

Given a club D C &, put A := acc(D).

Pick a limit @ < & such that sup(nacc(C,) N A) = a. In particular,
a € acc(D), and sup(nacc(Cy) Nace(D)) = a so that G, # DNa.

Remark
The standard way to force (J(k) is via the poset of all coherent
C-sequences of successor length <  (ordered by end-extension).
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Square principles (cont.)

Definition (Brodsky-Rinot, 2015)

For a stationary S C x, X7 (S) asserts the existence of a coherent
C-sequence (C, | a < k) such that for every cofinal A C &, there
exists some limit o € S satisfying sup(nacc(C,) N A) = .

Observation: X~ (k) = O(k)

Given a club D C &, put A := acc(D).

Pick a limit @ < & such that sup(nacc(C,) N A) = a. In particular,
a € acc(D), and sup(nacc(Cy) Nace(D)) = a so that G, # DNa.

Remark

The standard way to force (J(k) is via the poset of all coherent
C-sequences of successor length <  (ordered by end-extension).
The generic for this poset is in fact a X~ (x)-sequence!
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Square principles (cont.)

Definition (Brodsky-Rinot, 2015)

For a stationary S C x, X7 (S) asserts the existence of a coherent
C-sequence (C, | a < k) such that for every cofinal A C &, there
exists some limit « € S satisfying sup(nacc(C,) N A) = a.

Observation: X~ (k) = O(k)

Given a club D C &, put A := acc(D).

Pick a limit @ < & such that sup(nacc(C,) N A) = a. In particular,
a € acc(D), and sup(nacc(Cy) Nace(D)) = a so that G, # DNa.

Question
Does O(k) = X~ (k)?
(V = L entails an affirmative answer)
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J[K]: A new normal ideal over x

S € P(k) is in J[K] iff there exists a club C C k and a sequence of
functions (f; : kK — Kk | i < k) satisfying the following. For every

a € SN C, every regressive function f : o — «, and every cofinal
subset B C «, there exists some i < « such that

sup{s € B | fi(f) = f(B)} = a.
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J[K]: A new normal ideal over x

S € P(k) is in J[K] iff there exists a club C C k and a sequence of
functions (f; : kK — Kk | i < k) satisfying the following. For every

a € SN C, every regressive function f : o — «, and every cofinal
subset B C «, there exists some i < « such that

sup{s € B | fi(B) = f(B)} = a.

Theorem
If $(k) holds and S € J[k] is stationary, then [J(k) entails X~ (S).

A comparison with the nonstationary ideal

1. J[wi] = NS[wi1];
2. It is consistent that J[wz] = NS[wo];
3. If K is inaccessible, then J[x] = NS[x];
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J[k]: A new normal ideal over k

S € P(k) is in J[K] iff there exists a club C C k and a sequence of
functions (f; : kK — Kk | i < k) satisfying the following. For every

a € SN C, every regressive function f : o — «, and every cofinal
subset B C «, there exists some i < « such that

sup{s € B | fi(B) = f(B)} = a.

Theorem
If $(k) holds and S € J[k] is stationary, then ((k) entails X~ (S).

A comparison with the nonstationary ideal

1. J[wi] = NS[wi1];

2. It is consistent that J[wz] = NS[wo];
3.

4. If A >3, then J[AT] # NS[AT].

If k is inaccessible, then J[r] = NS[k];
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J[K]: A new normal ideal over x

S € P(k) is in J[K] iff there exists a club C C k and a sequence of
functions (f; : kK — Kk | i < k) satisfying the following. For every

a € SN C, every regressive function f : o — «, and every cofinal
subset B C «, there exists some i < « such that

sup{s € B | fi(f) = f(B)} = a.

Theorem
If $(k) holds and S € J[k] is stationary, then [J(k) entails X~ (S).

Corollary

For all A > 1, satisfying 2* = \*:
O(AT) entails the existence of a club-regressive \™-Souslin tree.
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J[K]: A new normal ideal over x
S € P(k) is in J[K] iff there exists a club C C k and a sequence of
functions (f; : kK — Kk | i < k) satisfying the following. For every
a € SN C, every regressive function f : o — «, and every cofinal
subset B C «, there exists some i < « such that

sup{s € B | fi(f) = f(B)} = a.

Theorem
If $(k) holds and S € J[k] is stationary, then [J(k) entails X~ (S).

Theorem
Assuming GCH, for every infinite cardinals 6 < \ with cf(6) = 6
and cf(0) # cf()\), JI\T| contains a stationary subset of Ee’w.
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functions (f; : kK — Kk | i < k) satisfying the following. For every
a € SN C, every regressive function f : o — «, and every cofinal
subset B C «, there exists some i < « such that

sup{s € B | fi(f) = f(B)} = a.

Theorem
If $(k) holds and S € J[k] is stationary, then [J(k) entails X~ (S).

Theorem
Assuming GCH, for every infinite cardinals 6 < \ with cf(6) = 6
and cf(0) # cf()\), JI\T| contains a stationary subset of Ee’w.

Corollary

Assuming GCH, for every infinite cardinals 6 < A\ with cf(0) =0
and cf(0) # cf(\), ®~(E}") holds.
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A slightly weaker principle

XV'(S) is obtained from X~ (S) by replacing the coherence
requirement with coherence modulo bounded.
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A slightly weaker principle

XV'(S) is obtained from X~ (S) by replacing the coherence
requirement with coherence modulo bounded.

Theorem
For k > wy, ¥/ (k) 4+ (k) entails X'(S) for all stationary S C k.

Corollary
O(A1) + GCH entails M(Ec)\fz\)) for every uncountable cardinal \,
and hence the existence of a cf(\)-complete A\*-Souslin tree.

Proof.

Pick a regular cardinal § < X\ with  # cf()\). Then J[A*] contains
a stationary subset S of £)". So, ®~(E}") holds, let alone

X~ (A1) and X'(A1). By GCH and a theorem of Gregory/Shelah,
&(AT) holds. Consequently, &’(EC);E\)) holds.

Altogether, there exists a cf(\)-complete A™-Souslin tree. O
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Another scenario

s
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The A™-Souslin problem for X singular

Open problem

Suppose that A is a singular cardinal.
Does GCH +013 entail the existence of a AT-Souslin tree?
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The A™-Souslin problem for X singular

Open problem

Suppose that A is a singular cardinal.
Does GCH +013 entail the existence of a AT-Souslin tree?

Solutions to problems concerning the combinatorics of successor of
singulars often goes through Prikry/Magidor/Radin forcing.
However, we have identified the following obstruction:

Theorem (Brodsky-Rinot, 2016)

Suppose that \ is a strongly inaccessible cardinal, and P is a A\*-cc
notion of forcing of size < 2\ = AT that makes X into a singular
cardinal. Then P introduces a A\*-Souslin tree.

(Moreover, V¥ |= K*(A\T) + $(AT).)
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Thank you!

20/21



Regressive trees

Let (T, <) denote a k-tree.

» A function p: T — T is said to be regressive if p(x) < x for
every nonminimal node x € T;

» Two nonminimal nodes x,y € T are said to be p-compatible
if p(x) <y and p(x) <y;

» The tree is said to be regressive if there exists a regressive
function p: T — T such that for all « € acc(k): x,y € T,
are p-compatible iff x = y.

» The tree is club-regressive, if, in addition, for every a € EZ |
there exists a club subset e, C as.it. x,y € T [ (e U{a})
are p-compatible iff x and y are compatible.
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