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Conventions

Throughout, κ denotes a regular uncountable cardinal, and λ
denotes an uncountable cardinal.

For a set of ordinals C , write:

I acc(C ) := {α < sup(C ) | sup(C ∩ α) = α > 0};
I nacc(C ) := C \ acc(C ).
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Trees

Definition

I A tree is a poset (T ,C) in which x↓ := {y ∈ T | y C x} is
well-ordered for all x ∈ T ;

I The height of x ∈ T is ht(x) := otp(x↓,C);

I The height of T is sup{ht(x) | x ∈ T};
I Tδ = {x ∈ T | ht(x) = δ} is the δth-level of T .

I (T ,C) is (< χ)−complete if any C-increasing sequence of
length < χ admits a bound.
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κ-trees

Definition
A κ-tree is a tree (T ,C) of height κ whose levels are of size < κ.

It is

I Aronszajn if it has no chains of size κ;

I Souslin if it has no chains or antichains of size κ;
I Special if there exists a function f : T → T such that:

I f (t)C t for all non-minimal nodes t in T ;
I for all t ∈ T , f −1{t} is the union of <κ-many antichains.
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What are we doing here?

Aronszajn trees and Souslin trees are powerful and useful
combinatorial objects. So we study their existence.

First, let us recall some equiconsistency results.
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Equiconsistency results

Definition
A cardinal κ is Mahlo if {α < κ | cf(α) = α} is stationary in κ.
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Fact
The following are equiconsistent:

I There exists a Mahlo cardinal;

I There are no special ℵ2-Aronszajn trees;

I �ω1 fails;

I Every stationary subset of Eω2
ω reflects;

I FRP(ω2) holds.

7 / 21



Equiconsistency results

Definition
κ is weakly compact if it is inaccessible and ¬∃κ-Aronszajn trees.

Recall (Hanf, 1964)
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Equiconsistency results

Fact
The following are equiconsistent:

I There exists a weakly compact cardinal;

I There are no ℵ2-Aronszajn trees;

I �(ω2) fails;

I Every pair of stationary subsets of Eω2
ω reflect simultaneously;

I Every stationary subset of [ω2]ω reflects;

I For some regular cardinal κ ≥ ω2, κ-cc×κ-cc=κ-cc.
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The ℵ2-Souslin problem
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The ℵ2-Souslin problem

In the 1970’s, Jensen proved that the existence of an ℵ1-Souslin tree
is independent of GCH.

Open problem

Does GCH entail the existence of an ℵ2-Souslin tree?
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Does GCH entail the existence of an ℵ2-Souslin tree?

Theorem (Gregory, 1976)

If GCH holds, and there exist no ℵ2-Souslin trees, then ℵ2 is a
Mahlo cardinal in L.

Given the above-mentioned equiconsistency results, the general
belief is that Gregory’s lower bound should be increased from
Mahlo to a weakly compact. Also, add to it the following:
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The ℵ2-Souslin problem

In the 1970’s, Jensen proved that the existence of an ℵ1-Souslin tree
is independent of GCH.

Open problem

Does GCH entail the existence of an ℵ2-Souslin tree?

Theorem (Gregory, 1976)

If GCH holds, and there exist no ℵ2-Souslin trees, then ℵ2 is a
Mahlo cardinal in L.

Theorem (Jensen, 1972)

If V = L, then for every regular uncountable cardinal κ, TFAE:

I κ is not weakly compact;

I There exists a κ-Aronszajn tree;

I There exists a κ-Souslin tree.
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The ℵ2-Souslin problem

From the Kanamori-Magidor 1978 survey article (p. 261):
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In the 1970’s, Jensen proved that the existence of an ℵ1-Souslin tree
is independent of GCH.

Open problem

Does GCH entail the existence of an ℵ2-Souslin tree?

Theorem (Gregory, 1976)

If GCH holds, and there exist no ℵ2-Souslin trees, then ℵ2 is a
Mahlo cardinal in L.

Theorem (2016)

If GCH holds, and there exist no ℵ2-Souslin trees, then ℵ2 is a
weakly compact cardinal in L.
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This is optimal

Whether GCH entails the existence of an ℵ2-Souslin tree remains
open, however,

the trees we get here are of a particular kind:

Theorem (2016)

If GCH holds and ℵ2 is not weakly compact in L, then there exists
an ℵ2-Souslin tree with no ℵ1-Aronszajn subtrees.

Theorem (Todorcevic, 1981)

After Lévy-collapsing a weakly compact cardinal to ℵ2 over a
model of GCH: GCH holds, and every ℵ2-Aronszajn tree contains
an ℵ1-Aronszajn subtree.
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Stating the results
For almost two years now, Ari Brodsky and myself been studying a
parameterized proxy principle, denoted P(κ, µ,R, θ,S, ν, σ, E), and
its effect on the existence of different types of κ-Souslin trees.
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simple statements:
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Theorem (Brodsky-Rinot, 2015)
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Remark
A club-regressive κ-tree contains no ν-Aronszajn subtrees nor
ν-Cantor subrtrees for every regular cardinal ν < κ.
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�′(Eκ≥χ) +♦(κ) entails a χ-complete κ-Souslin tree, provided that
κ is χ-inaccessible.

Remark
All previous ♦-based constructions of κ-Souslin trees involved
sealing antichains at levels α ∈ S for some stationary S that does
not reflect.

In contrast, Lambie-Hanson proved that �(ℵω+1) +♦(ℵω+1) is
consistent with the reflection of all stationary subsets of ℵω+1.
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�−(κ) +♦(κ) entails a club-regressive κ-Souslin tree.

Theorem (Brodsky-Rinot, 2015)
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κ is χ-inaccessible.

Theorem (2016)

�(λ+) + GCH entails �−(λ+);
�(λ+) + GCH entails �′(Eλ

+

cf(λ)).

Corollary

�(λ+) + GCH entails a club-regressive λ+-Souslin tree;
�(λ+) + GCH entails a cf(λ)-complete λ+-Souslin tree.
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Elements of the proofs
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C -sequences

A C -sequence is a sequence 〈Cα | α < κ〉 such that:

I For every limit α < κ, Cα is a club in α.
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Square principles

A coherent C -sequence is a sequence 〈Cα | α < κ〉 such that:

I For every limit α < κ, Cα is a club in α;

I if ᾱ ∈ acc(Cα), then Cᾱ = Cα ∩ ᾱ.

Easiest way? Take a club D in κ, and put:

Cα :=

{
D ∩ α, if sup(D ∩ α) = α;

α \ sup(D ∩ α), if sup(D ∩ α) < α.
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I if ᾱ ∈ acc(Cα), then Cᾱ = Cα ∩ ᾱ.

Easiest way? Take a club D in κ, and put:

Cα :=

{
D ∩ α, if sup(D ∩ α) = α;

α \ sup(D ∩ α), if sup(D ∩ α) < α.

Definition (Todorcevic, 1987)

�(κ) asserts the existence of a coherent C -sequence 〈Cα | α < κ〉
such that for every club D ⊆ κ, there exists some α ∈ acc(D)
satisfying Cα 6= D ∩ α.
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Square principles (cont.)

Definition (Brodsky-Rinot, 2015)

For a stationary S ⊆ κ, �−(S) asserts the existence of a coherent
C -sequence 〈Cα | α < κ〉 such that for every cofinal A ⊆ κ, there
exists some limit α ∈ S satisfying sup(nacc(Cα) ∩ A) = α.
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Observation: �−(κ) =⇒ �(κ)
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α ∈ acc(D), and sup(nacc(Cα)∩ acc(D)) = α so that Cα 6= D ∩α.

Remark
The standard way to force �(κ) is via the poset of all coherent
C -sequences of successor length < κ (ordered by end-extension).
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Square principles (cont.)

Definition (Brodsky-Rinot, 2015)

For a stationary S ⊆ κ, �−(S) asserts the existence of a coherent
C -sequence 〈Cα | α < κ〉 such that for every cofinal A ⊆ κ, there
exists some limit α ∈ S satisfying sup(nacc(Cα) ∩ A) = α.

Observation: �−(κ) =⇒ �(κ)

Given a club D ⊆ κ, put A := acc(D).
Pick a limit α < κ such that sup(nacc(Cα) ∩ A) = α. In particular,
α ∈ acc(D), and sup(nacc(Cα)∩ acc(D)) = α so that Cα 6= D ∩α.

Remark
The standard way to force �(κ) is via the poset of all coherent
C -sequences of successor length < κ (ordered by end-extension).
The generic for this poset is in fact a �−(κ)-sequence!
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Square principles (cont.)

Definition (Brodsky-Rinot, 2015)

For a stationary S ⊆ κ, �−(S) asserts the existence of a coherent
C -sequence 〈Cα | α < κ〉 such that for every cofinal A ⊆ κ, there
exists some limit α ∈ S satisfying sup(nacc(Cα) ∩ A) = α.

Observation: �−(κ) =⇒ �(κ)

Given a club D ⊆ κ, put A := acc(D).
Pick a limit α < κ such that sup(nacc(Cα) ∩ A) = α. In particular,
α ∈ acc(D), and sup(nacc(Cα)∩ acc(D)) = α so that Cα 6= D ∩α.

Question
Does �(κ) =⇒ �−(κ)?
(V = L entails an affirmative answer)
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J[κ]: A new normal ideal over κ
S ∈ P(κ) is in J[κ] iff there exists a club C ⊆ κ and a sequence of
functions 〈fi : κ→ κ | i < κ〉 satisfying the following. For every
α ∈ S ∩ C , every regressive function f : α→ α, and every cofinal
subset B ⊆ α, there exists some i < α such that

sup{β ∈ B | fi (β) = f (β)} = α.

Theorem
If ♦(κ) holds and S ∈ J[κ] is stationary, then �(κ) entails �−(S).
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4. If λ ≥ iω, then J[λ+] 6= NS [λ+].
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and cf(θ) 6= cf(λ), J[λ+] contains a stationary subset of Eλ
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Corollary

Assuming GCH, for every infinite cardinals θ < λ with cf(θ) = θ
and cf(θ) 6= cf(λ), �−(Eλ

+

θ ) holds.
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A slightly weaker principle

�′(S) is obtained from �−(S) by replacing the coherence
requirement with coherence modulo bounded.

Theorem
For κ ≥ ω2, �′(κ) +♦(κ) entails �′(S) for all stationary S ⊆ κ.

Corollary

�(λ+) + GCH entails �′(Eλ
+

cf(λ)) for every uncountable cardinal λ,

and hence the existence of a cf(λ)-complete λ+-Souslin tree.

Proof.
Pick a regular cardinal θ < λ with θ 6= cf(λ). Then J[λ+] contains
a stationary subset S of Eλ

+

θ . So, �−(Eλ
+

θ ) holds, let alone
�−(λ+) and �′(λ+). By GCH and a theorem of Gregory/Shelah,
♦(λ+) holds. Consequently, �′(Eλ

+

cf(λ)) holds.

Altogether, there exists a cf(λ)-complete λ+-Souslin tree.
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Another scenario
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The λ+-Souslin problem for λ singular

Open problem

Suppose that λ is a singular cardinal.
Does GCH +�∗λ entail the existence of a λ+-Souslin tree?

Solutions to problems concerning the combinatorics of successor of
singulars often goes through Prikry/Magidor/Radin forcing.
However, we have identified the following obstruction:

Theorem (Brodsky-Rinot, 2016)

Suppose that λ is a strongly inaccessible cardinal, and P is a λ+-cc
notion of forcing of size ≤ 2λ = λ+ that makes λ into a singular
cardinal. Then P introduces a λ+-Souslin tree.
(Moreover, V P |= �∗(λ+) +♦(λ+).)
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Thank you!
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Regressive trees

Let (T ,C) denote a κ-tree.

I A function ρ : T → T is said to be regressive if ρ(x)C x for
every nonminimal node x ∈ T ;

I Two nonminimal nodes x , y ∈ T are said to be ρ-compatible
if ρ(x)C y and ρ(x)C y ;

I The tree is said to be regressive if there exists a regressive
function ρ : T → T such that for all α ∈ acc(κ): x , y ∈ Tα
are ρ-compatible iff x = y .

I The tree is club-regressive, if, in addition, for every α ∈ Eκ>ω
there exists a club subset eα ⊆ α s.t. x , y ∈ T � (eα ∪ {α})
are ρ-compatible iff x and y are compatible.
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