Probabilistic Computability and Randomness in the Weihrauch Lattice

Vasco Brattka
Universität der Bundeswehr München, Germany
University of Cape Town, South Africa

Algorithmic Randomness Interacts with Analysis and Ergodic Theory
Oaxaca, Mexico, 4–9 December 2016
Outline

1. The Weihrauch Lattice
2. Vitali Covering Theorem
3. Las Vegas and Monte Carlo Computability
The Weihrauch Lattice
Weihrauch Reducibility

Consider $f : \subseteq X \Rightarrow Y$ and $g : \subseteq Z \Rightarrow W$.

- f is Weihrauch reducible to g, $f \leq_W g$, if there are computable $H : \subseteq X \times W \Rightarrow Y$, $K : \subseteq X \Rightarrow Z$ such that $H(\text{id}_X, gK) \sqsubseteq f$.
- f is strongly Weihrauch reducible to g, $f \leq_{sW} g$, if there are computable $H : \subseteq W \Rightarrow Y$, $K : \subseteq X \Rightarrow Z$ such that $HgK \sqsubseteq f$.
- Equivalences $f \equiv_W g$ and $f \equiv_{sW} g$ are defined as usual.
Consider $f : \subseteq X \Rightarrow Y$ and $g : \subseteq Z \Rightarrow W$.

f is **Weihrauch reducible** to g, $f \leq_W g$, if there are computable $H : \subseteq X \times W \Rightarrow Y$, $K : \subseteq X \Rightarrow Z$ such that $H(id_X, gK) \sqsubseteq f$.

f is **strongly Weihrauch reducible** to g, $f \leq_{sW} g$, if there are computable $H : \subseteq W \Rightarrow Y$, $K : \subseteq X \Rightarrow Z$ such that $HgK \sqsubseteq f$.

Equivalences $f \equiv_W g$ and $f \equiv_{sW} g$ are defined as usual.
Weihrauch Reducibility

Consider $f : \subseteq X \Rightarrow Y$ and $g : \subseteq Z \Rightarrow W$.

- f is Weihrauch reducible to g, $f \leq_W g$, if there are computable $H : \subseteq X \times W \Rightarrow Y$, $K : \subseteq X \Rightarrow Z$ such that $H(\text{id}_X, gK) \sqsubseteq f$.
- f is strongly Weihrauch reducible to g, $f \leq_{sW} g$, if there are computable $H : \subseteq W \Rightarrow Y$, $K : \subseteq X \Rightarrow Z$ such that $HgK \sqsubseteq f$.
- Equivalences $f \equiv_W g$ and $f \equiv_{sW} g$ are defined as usual.
Consider $f : \subseteq X \Rightarrow Y$ and $g : \subseteq Z \Rightarrow W$.

$\exists f$ is Weihrauch reducible to g, $f \leq_{W} g$, if there are computable $H : \subseteq X \times W \Rightarrow Y$, $K : \subseteq X \Rightarrow Z$ such that $H(id_X, gK) \sqsubseteq f$.

$\exists f$ is strongly Weihrauch reducible to g, $f \leq_{sW} g$, if there are computable $H : \subseteq W \Rightarrow Y$, $K : \subseteq X \Rightarrow Z$ such that $HgK \sqsubseteq f$.

Equivalences $f \equiv_{W} g$ and $f \equiv_{sW} g$ are defined as usual.
Examples of Mathematical Problems

▶ The **Limit Problem** is the mathematical problem

\[\lim : \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}, \langle p_0, p_1, \ldots \rangle \mapsto \lim_{i \rightarrow \infty} p_i \]

with \(\text{dom}(\lim) := \{ \langle p_0, p_1, \ldots \rangle : (p_i)_i \text{ is convergent} \} \).

▶ **Martin-Löf Randomness** is the mathematical problem

\[\text{MLR} : 2^\mathbb{N} \Rightarrow 2^\mathbb{N} \text{ with} \]

\[\text{MLR}(x) := \{ y \in 2^\mathbb{N} : y \text{ is Martin-Löf random relative to } x \} \].

▶ **Weak Weak König's Lemma** is the mathematical problem

\[\text{WWKL} : \subseteq \text{Tr} \Rightarrow 2^\mathbb{N}, T \mapsto [T] \]

with \(\text{dom}(\text{WWKL}) := \{ T \in \text{Tr} : \mu([T]) > 0 \} \).

▶ The **Intermediate Value Theorem** is the problem

\[\text{IVT} : \subseteq \text{Con}[0, 1] \Rightarrow [0, 1], f \mapsto f^{-1}\{0\} \]

with \(\text{dom}(\text{IVT}) := \{ f : f(0) \cdot f(1) < 0 \} \).

▶ The **Choice Problem** \(C_X : \subseteq A(X) \Rightarrow X, A \mapsto A \).

\(\text{PC}_X \) is \(C_X \) restricted to sets \(A \) with \(\mu(A) > 0 \).
Examples of Mathematical Problems

- **The Limit Problem** is the mathematical problem
 \[
 \lim : \subseteq \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}^\mathbb{N}, \langle p_0, p_1, \ldots \rangle \mapsto \lim_{i \to \infty} p_i
 \]
 with \(\text{dom}(\lim) := \{\langle p_0, p_1, \ldots \rangle : (p_i)_i \text{ is convergent}\} \).

- **Martin-Löf Randomness** is the mathematical problem
 \(\text{MLR} : 2^\mathbb{N} \Rightarrow 2^\mathbb{N} \) with
 \[
 \text{MLR}(x) := \{y \in 2^\mathbb{N} : y \text{ is Martin-Löf random relative to } x\}.\]

- **Weak Weak König's Lemma** is the mathematical problem
 \(\text{WWKL} : \subseteq \text{Tr} \Rightarrow 2^\mathbb{N}, \tau \mapsto [\tau] \)
 with \(\text{dom}(\text{WWKL}) := \{\tau \in \text{Tr} : \mu([\tau]) > 0\} \).

- **The Intermediate Value Theorem** is the problem
 \(\text{IVT} : \subseteq \text{Con}[0, 1] \Rightarrow [0, 1], f \mapsto f^{-1}\{0\} \)
 with \(\text{dom}(\text{IVT}) := \{f : f(0) \cdot f(1) < 0\} \).

- **The Choice Problem** \(\text{C}_X : \subseteq \mathcal{A}X \Rightarrow X, A \mapsto A \).
 \(\text{PC}_X \) is \(\text{C}_X \) restricted to sets \(A \) with \(\mu(A) > 0 \).
Examples of Mathematical Problems

- The **Limit Problem** is the mathematical problem
 \[\lim : \subseteq \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}, \langle p_0, p_1, \ldots \rangle \mapsto \lim_{i \to \infty} p_i \]
 with \(\text{dom}(\lim) := \{ \langle p_0, p_1, \ldots \rangle : (p_i)_i \text{ is convergent} \} \).

- **Martin-Löf Randomness** is the mathematical problem
 \(\text{MLR} : 2^\mathbb{N} \equiv 2^\mathbb{N} \) with
 \[\text{MLR}(x) := \{ y \in 2^\mathbb{N} : y \text{ is Martin-Löf random relative to } x \} \].

- **Weak Weak König’s Lemma** is the mathematical problem
 \(\text{WWKL} : \subseteq \text{Tr} \equiv 2^\mathbb{N}, T \mapsto [T] \)
 with \(\text{dom}(\text{WWKL}) := \{ T \in \text{Tr} : \mu([T]) > 0 \} \).

- The **Intermediate Value Theorem** is the problem
 \(\text{IVT} : \subseteq \text{Con}[0, 1] \equiv [0, 1], f \mapsto f^{-1}\{0\} \)
 with \(\text{dom}(\text{IVT}) := \{ f : f(0) \cdot f(1) < 0 \} \).

- The **Choice Problem** \(C_X : \subseteq A_+(X) \equiv X, A \mapsto A \).
 \(\text{PC}_X \) is \(C_X \) restricted to sets \(A \) with \(\mu(A) > 0 \).
Examples of Mathematical Problems

- **The Limit Problem** is the mathematical problem
 \[
 \lim : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}, \langle p_0, p_1, \ldots \rangle \mapsto \lim_{i \to \infty} p_i
 \]
 with \(\text{dom}(\lim) := \{ \langle p_0, p_1, \ldots \rangle : (p_i)_i \text{ is convergent} \} \).

- **Martin-Löf Randomness** is the mathematical problem
 \[\text{MLR} : 2^{\mathbb{N}} \Rightarrow 2^{\mathbb{N}} \]
 with
 \[\text{MLR}(x) := \{ y \in 2^{\mathbb{N}} : y \text{ is Martin-Löf random relative to } x \} \).

- **Weak Weak König’s Lemma** is the mathematical problem
 \[\text{WWKL} : \subseteq \text{Tr} \Rightarrow 2^{\mathbb{N}}, T \mapsto [T] \]
 with \(\text{dom}(\text{WWKL}) := \{ T \in \text{Tr} : \mu([T]) > 0 \} \).

- **The Intermediate Value Theorem** is the problem
 \[\text{IVT} : \subseteq \text{Con}[0, 1] \Rightarrow [0, 1], f \mapsto f^{-1}\{0\} \]
 with \(\text{dom}(\text{IVT}) := \{ f : f(0) \cdot f(1) < 0 \} \).

- **The Choice Problem** \(C_X \subseteq A \rightarrow (X) \Rightarrow X, A \mapsto A \).
 \(\text{PC}_X \) is \(C_X \) restricted to sets \(A \) with \(\mu(A) > 0 \).
Examples of Mathematical Problems

- **The Limit Problem** is the mathematical problem
 \[
 \lim : \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}, \langle p_0, p_1, \ldots \rangle \mapsto \lim_{i \to \infty} p_i
 \]
 with \(\text{dom}(\lim) := \{ \langle p_0, p_1, \ldots \rangle : (p_i)_i \text{ is convergent} \} \).

- **Martin-Löf Randomness** is the mathematical problem
 \[
 \text{MLR} : 2^\mathbb{N} \Rightarrow 2^\mathbb{N}
 \]
 with
 \[
 \text{MLR}(x) := \{ y \in 2^\mathbb{N} : y \text{ is Martin-Löf random relative to } x \}.
 \]

- **Weak Weak König’s Lemma** is the mathematical problem
 \[
 \text{WWKL} : \mathbb{N}^\mathbb{N} \Rightarrow 2^\mathbb{N}, T \mapsto [T]
 \]
 with \(\text{dom}(\text{WWKL}) := \{ T \in \mathbb{N}^\mathbb{N} : \mu([T]) > 0 \} \).

- **The Intermediate Value Theorem** is the problem
 \[
 \text{IVT} : \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N}, f \mapsto f^{-1}\{0\}
 \]
 with \(\text{dom}(\text{IVT}) := \{ f : f(0) \cdot f(1) < 0 \} \).

- **The Choice Problem** \(C_X : \mathbb{N}^\mathbb{N} \Rightarrow [X, A \mapsto A] \)
 \(\text{PC}_X \) is \(C_X \) restricted to sets \(A \) with \(\mu(A) > 0 \).
Algebraic Operations

Definition

For \(f : \subseteq X \Rightarrow Y \) and \(g : \subseteq W \Rightarrow Z \) we define:

- \(f \times g : \subseteq X \times W \Rightarrow Y \times Z, \ (x, w) \mapsto f(x) \times g(w) \) (Product)
- \(f \sqcup g : \subseteq X \sqcup W \Rightarrow Y \sqcup Z, \ z \mapsto \begin{cases} f(z) & \text{if } z \in X \\ g(z) & \text{if } z \in W \end{cases} \) (Coproduct)
- \(f \sqcap g : \subseteq X \times W \Rightarrow Y \sqcup Z, \ (x, w) \mapsto f(x) \sqcap g(w) \) (Sum)
- \(f^* : \subseteq X^* \Rightarrow Y^*, f^* = \bigsqcup_{i=0}^{\infty} f^i \) (Star)
- \(\hat{f} : \subseteq X^\mathbb{N} \Rightarrow Y^\mathbb{N}, \ \hat{f} = \bigcup_{i=0}^{\infty} f^i \) (Parallelization)

- Weihrauch reducibility induces a lattice with the coproduct \(\sqcup \) as supremum and the sum \(\sqcap \) as infimum.
- Parallelization and star operation are closure operators in the Weihrauch lattice.
Algebraic Operations

Definition

For \(f : \subseteq X \rightrightarrows Y \) and \(g : \subseteq W \rightrightarrows Z \) we define:

- \(f \times g : \subseteq X \times W \rightrightarrows Y \times Z \), \((x, w) \mapsto f(x) \times g(w) \) (Product)
- \(f \sqcup g : \subseteq X \sqcup W \rightrightarrows Y \sqcup Z \), \(z \mapsto \begin{cases} f(z) & \text{if } z \in X \\ g(z) & \text{if } z \in W \end{cases} \) (Coproduct)
- \(f \sqcap g : \subseteq X \times W \rightrightarrows Y \sqcup Z \), \((x, w) \mapsto f(x) \sqcap g(w) \) (Sum)
- \(f^* : \subseteq X^* \rightrightarrows Y^* \), \(f^* = \bigsqcup_{i=0}^{\infty} f^i \) (Star)
- \(\hat{f} : \subseteq X^\mathbb{N} \rightrightarrows Y^\mathbb{N} \), \(\hat{f} = \bigsqcup_{i=0}^{\infty} f \) (Parallelization)

- Weihrauch reducibility induces a lattice with the coproduct \(\sqcup \) as supremum and the sum \(\sqcap \) as infimum.
- Parallelization and star operation are closure operators in the Weihrauch lattice.
Basic Complexity Classes and Reverse Mathematics

\[\begin{align*}
C_{NN} & \equiv_{sW} \hat{C}_N \\
\lim & \equiv_{sW} \hat{C}_N \\
C_R & \equiv_{sW} C_N \times C_{2N} \\
WKL & \equiv_{sW} C_{2N} \equiv_{sW} \hat{C}_2 \\
WWKL & \equiv_{sW} PC_{2N} \\
K_N & \equiv_{sW} C_2^* \\
C_1 & \\
\text{ATR}_0 & \\
\text{ACA}_0 & \\
\text{WWKL}_0 + I\Sigma^0_1 & \\
\text{WKL}_0 & \\
\text{WWKL}_0 & \\
I\Sigma^0_1 & \\
\text{BS}_1^0 & \\
\text{RCA}_0 &
\end{align*} \]
Quantitative Versions of WWKL

Definition (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)

By ε-WWKL $\subseteq \text{Tr} \Rightarrow 2^{\mathbb{N}}$ we denote the restriction of WKL to $\text{dom}(\varepsilon$-WWKL) := $\{T : \mu([T]) > \varepsilon\}$ for $\varepsilon \in \mathbb{R}$.

Theorem (DDHMS 2016 and B., Gherardi and Hölzl 2015)

ε-WWKL $\leq_{W} \delta$-WWKL $\iff \varepsilon \geq \delta$ for all $\varepsilon, \delta \in [0, 1]$.

Proof. (Idea) \Rightarrow Assume $\varepsilon < \delta$. Then there are positive integers a, b with $\varepsilon < \frac{a}{b} \leq \delta$. We consider

- $C_{a,b}$ which is C_{b} restricted to sets $A \subseteq \{0, ..., b - 1\}$ with $|A| \geq a$.

Then $C_{a,b} \leq_{W} \varepsilon$-WWKL and $C_{a,b} \not\leq_{W} \delta$-WWKL. Hence ε-WWKL $\not\leq_{W} \delta$-WWKL.

The separation is purely topological, i.e., Weihrauch reducibility can be replaced by its continuous counterpart.
Quantitative Versions of WWKL

Definition (Dorais, Dzhafarov, Hirst, Miletì and Shafer 2016)

By ε-WWKL := $\subseteq \text{Tr} \Rightarrow 2^\mathbb{N}$ we denote the restriction of WKL to
$\text{dom}(\varepsilon$-WWKL) := \{ $T : \mu([T]) > \varepsilon$ \} for $\varepsilon \in \mathbb{R}$.

Theorem (DDHMS 2016 and B., Gherardi and Hölzl 2015)

ε-WWKL $\leq_W \delta$-WWKL $\iff \varepsilon \geq \delta$ for all $\varepsilon, \delta \in [0, 1]$.

Proof. (Idea) \implies Assume $\varepsilon < \delta$. Then there are positive integers a, b with $\varepsilon < \frac{a}{b} \leq \delta$. We consider

\blacktriangleright $C_{a,b}$ which is C_b restricted to sets $A \subseteq \{0, \ldots, b - 1\}$ with $|A| \geq a$.

Then $C_{a,b} \leq_W \varepsilon$-WWKL and $C_{a,b} \not\leq_W \delta$-WWKL. Hence ε-WWKL $\not\leq_W \delta$-WWKL.

The separation is purely topological, i.e., Weihrauch reducibility can be replaced by its continuous counterpart.
Quantitative Versions of WWKL

Definition (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)

By ε-WWKL $\subseteq \text{Tr} \Rightarrow 2^\mathbb{N}$ we denote the restriction of WKL to
$\text{dom}(\varepsilon$-WWKL) := $\{ T : \mu([T]) > \varepsilon \}$ for $\varepsilon \in \mathbb{R}$.

Theorem (DDHMS 2016 and B., Gherardi and Hölzl 2015)

ε-WWKL $\leq_W \delta$-WWKL $\iff \varepsilon \geq \delta$ for all $\varepsilon, \delta \in [0, 1]$.

Proof. (Idea) \Rightarrow Assume $\varepsilon < \delta$. Then there are positive integers a, b with $\varepsilon < \frac{a}{b} \leq \delta$. We consider
- $C_{a,b}$ which is C_b restricted to sets $A \subseteq \{0, \ldots, b − 1\}$ with $|A| \geq a$.

Then $C_{a,b} \leq_W \varepsilon$-WWKL and $C_{a,b} \not\leq_W \delta$-WWKL. Hence
ε-WWKL $\not\leq_W \delta$-WWKL

The separation is purely topological, i.e., Weihrauch reducibility can be replaced by its continuous counterpart.
Quantitative Versions of WWKL

Definition (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)

By ε-WWKL $\subseteq \text{Tr} \Rightarrow 2^\mathbb{N}$ we denote the restriction of WKL to
$\text{dom}(\varepsilon\text{-WWKL}) := \{ T : \mu([T]) > \varepsilon \}$ for $\varepsilon \in \mathbb{R}$.

Theorem (DDHMS 2016 and B., Gherardi and Hölzl 2015)

ε-WWKL $\leq_W \delta$-WWKL $\iff \varepsilon \geq \delta$ for all $\varepsilon, \delta \in [0, 1]$.

Proof. (Idea) “\Rightarrow” Assume $\varepsilon < \delta$. Then there are positive integers a, b with $\varepsilon < \frac{a}{b} \leq \delta$. We consider

$\quad \triangleright \; C_{a,b}$ which is C_b restricted to sets $A \subseteq \{0, \ldots, b - 1\}$ with $|A| \geq a$.

Then $C_{a,b} \leq_W \varepsilon$-WWKL and $C_{a,b} \not\leq_W \delta$-WWKL. Hence ε-WWKL $\not\leq_W \delta$-WWKL

The separation is purely topological, i.e., Weihrauch reducibility can be replaced by its continuous counterpart.
Weak Weak Kőnig’s Lemma - The Uniform Scenario

\[\lim \]
\[C_R \equiv_{sW} WKL \times C_N \]
\[C_{2N} \equiv_{sW} WKL \]
\[PC_R \equiv_{sW} WWKL \times C_N \rightarrow C_N \ast MLR \]
\[PC_{2N} \equiv_{sW} WWKL \]
\[\ast- WWKL \]
\[\vdots \]
\[\frac{1}{k+1}- WWKL \]
\[\frac{1}{k}- WWKL \]
\[\vdots \]
\[(1 - \ast)- WWKL \]
\[MLR \equiv_W (C_N \rightarrow WWKL) \]
The Weihrauch lattice is not complete and infinite suprema and infima do not always exist. There are some known existent ones.

Definition

For two mathematical problem \(f, g \) we define

\[
\begin{align*}
\triangleright f \ast g & := \max \{ f_0 \circ g_0 : f_0 \leq_W f, \ g_0 \leq_W g \} \quad \text{compos. product} \\
\triangleright g \rightarrow f & := \min \{ h : f \leq_W g \ast h \} \quad \text{implication}
\end{align*}
\]

Theorem (B. and Pauly 2016)

The compositional product \(f \ast g \) and the implication \(g \rightarrow f \) exist for all problems \(f, g \).
The Weihrauch lattice is not complete and infinite suprema and infima do not always exist. There are some known existent ones.

Definition

For two mathematical problem f, g we define

- $f \ast g := \max\{f_0 \circ g_0 : f_0 \leq_W f, g_0 \leq_W g\}$ \textit{compos. product}
- $g \rightarrow f := \min\{h : f \leq_W g \ast h\}$ \textit{implication}

Theorem (B. and Pauly 2016)

*The compositional product $f \ast g$ and the implication $g \rightarrow f$ exist for all problems f, g.***
Proposition (B. and Pauly 2016)

\[\text{MLR} \equiv_W (C_N \rightarrow \text{WWKL}). \]

Proof. \((C_N \rightarrow \text{WWKL}) \leq_W \text{MLR}: \) It suffices to prove \(\text{WWKL} \leq_W C_N \ast \text{MLR},\) which follows from Kučera’s Lemma.

\(\text{MLR} \leq_W (C_N \rightarrow \text{WWKL}): \) Given some \(h\) with \(\text{WWKL} \leq_W C_N \ast h\) we need to prove that \(\text{MLR} \leq_W h.\) Given some universal Martin-Löf test \((U_i);\), we use \(A_0 := 2^\mathbb{N} \setminus U_0\) and the fact that Martin-Löf randoms are stable under finite changes. □

Proposition (B., Gherardi and Hölzl 2015)

\[\text{MLR} \ast \text{MLR} \leq_W \text{MLR} \]

Proof. This is a consequence of van Lambalgen’s Theorem. □

Corollary

The class of functions \(f \leq_W \text{MLR}\) is closed under composition.
Martin-Löf Randomness

Proposition (B. and Pauly 2016)

\[\text{MLR} \equiv W(C_N \rightarrow \text{WWKL}). \]

Proof. \((C_N \rightarrow \text{WWKL}) \leq_W \text{MLR}: \) It suffices to prove \(\text{WWKL} \leq_W C_N \ast \text{MLR}, \) which follows from Kučera’s Lemma.

\[\text{MLR} \leq_W (C_N \rightarrow \text{WWKL}): \] Given some \(h \) with \(\text{WWKL} \leq_W C_N \ast h\) we need to prove that \(\text{MLR} \leq_W h. \) Given some universal Martin-Löf test \((U_i)_i, \) we use \(A_0 := 2^\mathbb{N} \setminus U_0\) and the fact that Martin-Löf randoms are stable under finite changes.

Proposition (B., Gherardi and Höhlzl 2015)

\[\text{MLR} \ast \text{MLR} \leq_W \text{MLR} \]

Proof. This is a consequence of van Lambalgen’s Theorem.

Corollary

The class of functions \(f \leq_W \text{MLR}\) is closed under composition.
Proposition (B. and Pauly 2016)

\[\text{MLR} \equiv_W (C_N \rightarrow \text{WWKL}). \]

Proof. \((C_N \rightarrow \text{WWKL}) \leq_W \text{MLR}: \) It suffices to prove \(\text{WWKL} \leq_W C_N \ast \text{MLR}, \) which follows from Kučera’s Lemma.

\(\text{MLR} \leq_W (C_N \rightarrow \text{WWKL}): \) Given some \(h\) with \(\text{WWKL} \leq_W C_N \ast h\) we need to prove that \(\text{MLR} \leq_W h. \) Given some universal Martin-Löf test \((U_i)_i, \) we use \(A_0 := 2^\mathbb{N} \setminus U_0\) and the fact that Martin-Löf randoms are stable under finite changes. □

Proposition (B., Gherardi and Hölzl 2015)

\[\text{MLR} \ast \text{MLR} \leq_W \text{MLR} \]

Proof. This is a consequence of van Lambalgen’s Theorem. □

Corollary

The class of functions \(f \leq_W \text{MLR} \) is closed under composition.
Proposition (B. and Pauly 2016)

\[\text{MLR} \equiv \text{W}(C_N \rightarrow \text{WWKL}). \]

Proof.
\((C_N \rightarrow \text{WWKL}) \leq_{W} \text{MLR}:\) It suffices to prove \(\text{WWKL} \leq_{W} C_N \ast \text{MLR},\) which follows from Kučera’s Lemma.

\(\text{MLR} \leq_{W} (C_N \rightarrow \text{WWKL}):\) Given some \(h\) with \(\text{WWKL} \leq_{W} C_N \ast h\) we need to prove that \(\text{MLR} \leq_{W} h.\) Given some universal Martin-Löf test \((U_i)_i,\) we use \(A_0 := 2^\mathbb{N} \setminus U_0\) and the fact that Martin-Löf randoms are stable under finite changes.

Proposition (B., Gherardi and Hölzl 2015)

\[\text{MLR} \ast \text{MLR} \leq_{W} \text{MLR} \]

Proof. This is a consequence of van Lambalgen’s Theorem.

Corollary

The class of functions \(f \leq_{W} \text{MLR}\) is closed under composition.
Proposition (B. and Pauly 2016)

\[\text{MLR} \equiv_W (C_N \to \text{WWKL}). \]

Proof. \((C_N \to \text{WWKL}) \leq_W \text{MLR}: \) It suffices to prove \(\text{WWKL} \leq_W C_N \ast \text{MLR},\) which follows from Kučera’s Lemma.

\(\text{MLR} \leq_W (C_N \to \text{WWKL}): \) Given some \(h\) with \(\text{WWKL} \leq_W C_N \ast h\) we need to prove that \(\text{MLR} \leq_W h.\) Given some universal Martin-Löf test \((U_i)_i,\) we use \(A_0 := 2^\mathbb{N} \setminus U_0\) and the fact that Martin-Löf randoms are stable under finite changes. \(\square\)

Proposition (B., Gherardi and Hölzlr 2015)

\(\text{MLR} \ast \text{MLR} \leq_W \text{MLR}\)

Proof. This is a consequence of van Lambalgen’s Theorem. \(\square\)

Corollary

The class of functions \(f \leq_W \text{MLR}\) is closed under composition.
Proposition (B. and Pauly 2016)

\[\text{MLR} \equiv W(C_N \to WWKL). \]

Proof. \((C_N \to WWKL) \leq W \text{ MLR}: \) It suffices to prove \(WWKL \leq W C_N \ast \text{MLR},\) which follows from Kučera’s Lemma.

\(\text{MLR} \leq W(C_N \to WWKL): \) Given some \(h\) with \(WWKL \leq W C_N \ast h\) we need to prove that \(\text{MLR} \leq W h.\) Given some universal Martin-Löf test \((U_i)_i,\) we use \(A_0 := 2^\mathbb{N} \setminus U_0\) and the fact that Martin-Löf randoms are stable under finite changes. □

Proposition (B., Gherardi and Hölzl 2015)

\[\text{MLR} \ast \text{MLR} \leq W \text{ MLR} \]

Proof. This is a consequence of van Lambalgen’s Theorem. □

Corollary

The class of functions \(f \leq W \text{ MLR}\) is closed under composition.
Definition

The jump $f' : \subseteq X \rightarrow Y$ of $f : \subseteq X \rightarrow Y$ is the same problem, but with the input representation δ of X replaced by $\delta' := \delta \circ \text{lim}$.

A name of an object $x \in X$ with respect to δ' is a sequence that converges to a name with respect to δ. Examples:

- $\text{id}' =_{sW} \text{lim}, \ WKL' =_{sW} \text{KL} =_{sW} \text{BWT}_R, \ n\text{-RAN} =_{sW} \text{MLR}^{(n-1)}$.

Proposition (B., Hendtlass and Kreuzer 2015)

$\text{PA} =_{W} (C'_N \rightarrow \text{WKL})$ and $\text{COH} =_{W} (\text{lim} \rightarrow \text{WKL}')$.

Proposition (B., Gherardi and Marcone 2012)

$f \leq_{sW} g \implies f' \leq_{sW} g'$.

- $f <_{W} f'$ does not hold in general: $f =_{sW} f'$ for a constant f.
- $f <_{W} g$ is compatible with $f' =_{W} g'$, $f' <_{W} g'$, $g <_{W} f'$, $f'|_{W} g'$.
Definition

The jump $f' : \subseteq X \rightrightarrows Y$ of $f : \subseteq X \rightrightarrows Y$ is the same problem, but with the input representation δ of X replaced by $\delta' := \delta \circ \text{lim.}$

A name of an object $x \in X$ with respect to δ' is a sequence that converges to a name with respect to δ. Examples:

- $\text{id}' \equiv_{\text{SW}} \text{lim, WKL}' \equiv_{\text{SW}} \text{KL} \equiv_{\text{SW}} \text{BWT}_R$, $n\text{-RAN} \equiv_{\text{SW}} \text{MLR}(n-1)$.

Proposition (B., Hendtlass and Kreuzer 2015)

$\text{PA} \equiv_{\text{W}} (C'_N \rightarrow \text{WKL})$ and $\text{COH} \equiv_{\text{W}} (\text{lim} \rightarrow \text{WKL}')$.

Proposition (B., Gherardi and Marcone 2012)

$f \leq_{\text{SW}} g \implies f' \leq_{\text{SW}} g'$.

- $f \prec_{\text{W}} f'$ does not hold in general: $f \equiv_{\text{SW}} f'$ for a constant f.
- $f \prec_{\text{W}} g$ is compatible with $f' \equiv_{\text{W}} g'$, $f' \prec_{\text{W}} g'$, $g' \prec_{\text{W}} f'$, $f'|_{wg'}$.

Definition

The jump $f' : \subseteq X \Rightarrow Y$ of $f : \subseteq X \Rightarrow Y$ is the same problem, but with the input representation δ of X replaced by $\delta' := \delta \circ \lim$.

A name of an object $x \in X$ with respect to δ' is a sequence that converges to a name with respect to δ. Examples:

- $\text{id}' \equiv_{sW} \lim$, $\text{WKL}' \equiv_{sW} \text{KL} \equiv_{sW} \text{BWT}_R$, $n\text{-RAN} \equiv_{sW} \text{MLR}(n-1)$.

Proposition (B., Hendtlass and Kreuzer 2015)

$\text{PA} \equiv_{W}(C'_N \rightarrow \text{WKL})$ and $\text{COH} \equiv_{W}(\lim \rightarrow \text{WKL}')$.

Proposition (B., Gherardi and Marcone 2012)

$f \leq_{sW} g \implies f' \leq_{sW} g'$.

- $f <_{W} f'$ does not hold in general: $f \equiv_{sW} f'$ for a constant f.
- $f <_{W} g$ is compatible with $f' \equiv_{W} g'$, $f' <_{W} g'$, $g' <_{W} f'$, $f'|_{W} g'$.
Jumps

Definition

The jump $f' : \subseteq X \Rightarrow Y$ of $f : \subseteq X \Rightarrow Y$ is the same problem, but with the input representation δ of X replaced by $\delta' := \delta \circ \lim$.

A name of an object $x \in X$ with respect to δ' is a sequence that converges to a name with respect to δ. Examples:

- $id' \equiv_{sW} \lim$, $WKL' \equiv_{sW} KL \equiv_{sW} BW T_R$, $n-RAN \equiv_{sW} MLR^{(n-1)}$.

Proposition (B., Hendtlass and Kreuzer 2015)

$PA \equiv_W (C'_N \to WKL)$ and $COH \equiv_W (\lim \to WKL')$.

Proposition (B., Gherardi and Marcone 2012)

$f \leq_{sW} g \implies f' \leq_{sW} g'$.

- $f <_W f'$ does not hold in general: $f \equiv_{sW} f'$ for a constant f.
- $f <_W g$ is compatible with $f' \equiv_{sW} g'$, $f' <_W g'$, $g' <_W f'$, $f'|_{wg'}$.
Jumps

Definition

The jump $f' : \subseteq X \Rightarrow Y$ of $f : \subseteq X \Rightarrow Y$ is the same problem, but with the input representation δ of X replaced by $\delta' := \delta \circ \lim$.

A name of an object $x \in X$ with respect to δ' is a sequence that converges to a name with respect to δ. Examples:

- $\operatorname{id}' \equiv_{sW} \lim$, $\operatorname{WKL}' \equiv_{sW} \operatorname{KL} \equiv_{sW} \operatorname{BWT}_R$, $n\text{-RAN} \equiv_{sW} \operatorname{MLR}^{(n-1)}$.

Proposition (B., Hendtlass and Kreuzer 2015)

$\operatorname{PA} \equiv_W (C'_N \rightarrow \operatorname{WKL})$ and $\operatorname{COH} \equiv_W (\lim \rightarrow \operatorname{WKL}')$.

Proposition (B., Gherardi and Marcone 2012)

$f \leq_{sW} g \implies f' \leq_{sW} g'$.

- $f <_W f'$ does not hold in general: $f \equiv_{sW} f'$ for a constant f.
- $f <_W g$ is compatible with $f' \equiv_W g'$, $f' <_W g'$, $g' <_W f'$, $f'|_{wg'}$.
Jumps

Definition

The jump $f' : \subseteq X \Rightarrow Y$ of $f : \subseteq X \Rightarrow Y$ is the same problem, but with the input representation δ of X replaced by $\delta' := \delta \circ \text{lim}$.

A name of an object $x \in X$ with respect to δ' is a sequence that converges to a name with respect to δ. Examples:

- $\text{id}' \equiv_{\text{sw}} \text{lim}$, $\text{WKL}' \equiv_{\text{sw}} \text{KL} \equiv_{\text{sw}} \text{BWT}_R$, $n\text{-RAN} \equiv_{\text{sw}} \text{MLR}^{(n-1)}$.

Proposition (B., Hendtlass and Kreuzer 2015)

$\text{PA} \equiv_{\text{w}} (C_N' \rightarrow \text{WKL})$ and $\text{COH} \equiv_{\text{w}} (\text{lim} \rightarrow \text{WKL}')$.

Proposition (B., Gherardi and Marcone 2012)

$f \leq_{\text{sw}} g \implies f' \leq_{\text{sw}} g'$.

- $f <_{\text{w}} f'$ does not hold in general: $f \equiv_{\text{sw}} f'$ for a constant f.
- $f <_{\text{w}} g$ is compatible with $f' \equiv_{\text{w}} g'$, $f' <_{\text{w}} g'$, $g' <_{\text{w}} f'$, $f'|_{\text{w}} g'$.
Jump Inversion

Theorem (B., Hölzil and Kuyper 2016)

1. \(f' \leq_W g' \) relative to \(p \) \(\implies \) \(f \leq_W g \) relative to \(p' \).
2. \(f' \leq_{sW} g' \) relative to \(p \) \(\implies \) \(f \leq_{sW} g \) relative to \(p' \).

If there exist a continuous \(F \) such that the diagram commutes, then \(G \) is continuous. \(\square \)
Theorem (B., Hölzl and Kuyper 2016)

1. \(f' \leq_W g' \) relative to \(p \) \(\implies \) \(f \leq_W g \) relative to \(p' \).
2. \(f' \leq_{sW} g' \) relative to \(p \) \(\implies \) \(f \leq_{sW} g \) relative to \(p' \).

Proof. Jump Control Theorem (B., Hendtlass and Kreuzer 2015):

If there exist a continuous \(F \) such that the diagram commutes, then \(G \) is continuous.
Theorem (B., Hölzl and Kuyper 2016)

1. $f' \leq_W g'$ relative to p \implies $f \leq_W g$ relative to p'.
2. $f' \leq_{sW} g'$ relative to p \implies $f \leq_{sW} g$ relative to p'.

If there exist F computable relative to p such that the diagram commutes, then G is computable relative to p'.

\qed
Weak Weak König’s Lemma - Jumps (work in progress)

\[\lim_{n \to \infty} (C_{2^n}^{(n)}) \equiv_{sW} WKL^{(n)} \times C^{(n)}_N \]

\[C^{(n)}_2 \equiv_{sW} WKL^{(n)} \]

\[PC^{(n)}_R \equiv_{sW} WWKL^{(n)} \times C^{(n)}_N \]

\[PC^{(n)}_{2^n} \equiv_{sW} WWKL^{(n)} \]

\[(*)-WWKL^{(n)} \]

\[\frac{1}{k+1}-WWKL^{(n)} \]

\[\frac{1}{k}-WWKL^{(n)} \]

\[(1-\ast)-WWKL^{(n)} \]

\[\Sigma^0_{n+2} \text{-measurable} \]
Further Notions of Randomness

Theorem (Hölzl and Miyabe 2015)

\[\text{WR} <_W \text{SR} <_W \text{CR} <_W \text{MLR} <_W \text{W2R} <_W 2\text{-RAN}. \]

Proof. The strictness has been proved using hyperimmune degrees, high degrees and minimal degrees.

- **WR**: Kurtz random
- **SR**: Schnorr random
- **CR**: computable random
- **W2R**: weakly 2-random
- **n-RAN**: \(n \)-random

Question

Find other characterizations of randomness notions \(R \) of the form \(R \equiv_W (A \to B) \), e.g., 1-GEN \(\equiv_W (? \to \text{BCT}_0') \).
Further Notions of Randomness

Theorem (Hölzl and Miyabe 2015)

\[\text{WR} <_W \text{SR} <_W \text{CR} <_W \text{MLR} <_W \text{W2R} <_W 2\text{-RAN}. \]

Proof. The strictness has been proved using hyperimmune degrees, high degrees and minimal degrees.

- **WR**: Kurtz random
- **SR**: Schnorr random
- **CR**: computable random
- **W2R**: weakly 2-random
- **n-RAN**: \(n\)-random

Question

Find other characterizations of randomness notions \(R\) of the form \(R \equiv_W (A \to B)\), e.g., 1-GEN \(\equiv_W (? \to \text{BCT}_0')\).
Theorem of Kurtz. Every 2–random computes a 1–generic.

Theorem (B., Hendtlass and Kreuzer 2015)

\[1\text{-GEN} \lesssim_w 2\text{-RAN}.\]

Proof. (Idea) We apply the “fireworks technique” of Rumyantsev and Shen to get a uniform reduction. \(\square\)

Theorem (B., Hendtlass and Kreuzer 2015)

\[\text{BCT}_0' \not\lesssim_w \text{WWKL}^{(n)} \text{ for all } n \in \mathbb{N}.\]

Proof. (Idea) There exists a co-c.e. comeager set \(A \subseteq 2^\mathbb{N}\) such that no point of \(A\) is low for \(\Omega\). \(\text{WWKL}^{(n)}\) has a realizer that maps computable inputs to outputs that are low for \(\Omega\) for \(n \geq 1\). \(\square\)

Corollary

\[\text{BCT}_0' \not\lesssim_w 1\text{-GEN}.\]
Uniform Theorem of Kurtz

Theorem of Kurtz. Every 2–random computes a 1–generic.

Theorem (B., Hendtlass and Kreuzer 2015)

\[\text{1-GEN} \preceq_{\text{W}} \text{2-RAN}. \]

Proof. (Idea) We apply the “fireworks technique” of Rumyantsev and Shen to get a uniform reduction. □

Theorem (B., Hendtlass and Kreuzer 2015)

\[\text{BCT}'_0 \preceq_{\text{W}} \text{WWKL}^{(n)} \text{ for all } n \in \mathbb{N}. \]

Proof. (Idea) There exists a co-c.e. comeager set \(A \subseteq 2^{\mathbb{N}} \) such that no point of \(A \) is low for \(\Omega \). \(\text{WWKL}^{(n)} \) has a realizer that maps computable inputs to outputs that are low for \(\Omega \) for \(n \geq 1 \). □

Corollary

\[\text{BCT}'_0 \preceq_{\text{W}} \text{1-GEN}. \]
Theorem of Kurtz. Every 2–random computes a 1–generic.

Theorem (B., Hendtlass and Kreuzer 2015)

\[1\text{-GEN} \leq_w 2\text{-RAN}. \]

Proof. (Idea) We apply the “fireworks technique” of Rumyantsev and Shen to get a uniform reduction.

Theorem (B., Hendtlass and Kreuzer 2015)

\[\text{BCT}'_0 \not\leq_w \text{WWKL}^{(n)} \text{ for all } n \in \mathbb{N}. \]

Proof. (Idea) There exists a co-c.e. comeager set \(A \subseteq 2^\mathbb{N} \) such that no point of \(A \) is low for \(\Omega \). \(\text{WWKL}^{(n)} \) has a realizer that maps computable inputs to outputs that are low for \(\Omega \) for \(n \geq 1 \).

Corollary

\[\text{BCT}'_0 \not\leq_w 1\text{-GEN}. \]
Theorem of Kurtz. Every 2–random computes a 1–generic.

Theorem (B., Hendtlass and Kreuzer 2015)

\[1\text{-GEN} \leq_W 2\text{-RAN}. \]

Proof. (Idea) We apply the “fireworks technique” of Rumyantsev and Shen to get a uniform reduction. □

Theorem (B., Hendtlass and Kreuzer 2015)

\[\text{BCT}'_0 \not\leq_W \text{WWKL}^{(n)} \text{ for all } n \in \mathbb{N}. \]

Proof. (Idea) There exists a co-c.e. comeager set \(A \subseteq 2^\mathbb{N} \) such that no point of \(A \) is low for \(\Omega \). \(\text{WWKL}^{(n)} \) has a realizer that maps computable inputs to outputs that are low for \(\Omega \) for \(n \geq 1 \). □

Corollary

\[\text{BCT}'_0 \not\leq_W 1\text{-GEN}. \]
Theorem of Kurtz. Every 2–random computes a 1–generic.

Theorem (B., Hendtlass and Kreuzer 2015)

\[1\text{-GEN} \triangleleft_W 2\text{-RAN}. \]

Proof. (Idea) We apply the “fireworks technique” of Rumyantsev and Shen to get a uniform reduction.

Theorem (B., Hendtlass and Kreuzer 2015)

\[B\text{CT}^\prime_0 \nleq_W \text{WWKL}^{(n)} \text{ for all } n \in \mathbb{N}. \]

Proof. (Idea) There exists a co-c.e. comeager set \(A \subseteq 2^\mathbb{N} \) such that no point of \(A \) is low for \(\Omega \). \(\text{WWKL}^{(n)} \) has a realizer that maps computable inputs to outputs that are low for \(\Omega \) for \(n \geq 1 \).

Corollary

\[B\text{CT}^\prime_0 \nleq_W 1\text{-GEN}. \]
Vitali Covering Theorem
A point $x \in \mathbb{R}$ is captured by a sequence $\mathcal{I} = (I_n)_n$ of open intervals, if for every $\varepsilon > 0$ there exists some $n \in \mathbb{N}$ with $\text{diam}(I_n) < \varepsilon$ and $x \in I_n$.

\mathcal{I} is a Vitali cover of $A \subseteq \mathbb{R}$, if every $x \in A$ is captured by \mathcal{I}.

\mathcal{I} eliminates A, if the I_n are pairwise disjoint and $\lambda(A \setminus \bigcup \mathcal{I}) = 0$ (where λ denotes the Lebesgue measure).

Theorem (Vitali Covering Theorem)

*If \mathcal{I} is a Vitali cover of $[0, 1]$, then there exists a subsequence \mathcal{J} of \mathcal{I} that eliminates $[0, 1]$.***
A point \(x \in \mathbb{R} \) is captured by a sequence \(\mathcal{I} = (I_n)_n \) of open intervals, if for every \(\varepsilon > 0 \) there exists some \(n \in \mathbb{N} \) with \(\text{diam}(I_n) < \varepsilon \) and \(x \in I_n \).

\(\mathcal{I} \) is a Vitali cover of \(A \subseteq \mathbb{R} \), if every \(x \in A \) is captured by \(\mathcal{I} \).

\(\mathcal{I} \) eliminates \(A \), if the \(I_n \) are pairwise disjoint and \(\lambda(A \setminus \bigcup \mathcal{I}) = 0 \) (where \(\lambda \) denotes the Lebesgue measure).

Theorem (Vitali Covering Theorem)

If \(\mathcal{I} \) is a Vitali cover of \([0, 1]\), then there exists a subsequence \(\mathcal{J} \) of \(\mathcal{I} \) that eliminates \([0, 1]\).
Theorem (Brown, Giusto and Simpson 2002)

Over \textbf{RCA}_0 the Vitali Covering Theorem is equivalent to Weak Weak Kőnig’s Lemma \textbf{WWKL}_0.

- Weak Weak Kőnig’s Lemma is Weak Kőnig’s Lemma restricted to trees whose set of infinite paths has positive measure.

Theorem (Diener and Hedin 2012)

Using intuitionistic logic (and countable and dependent choice) the Vitali Covering Theorem is equivalent to Weak Weak Kőnig’s Lemma \textbf{WWKL}.
Theorem (Brown, Giusto and Simpson 2002)

*Over RCA_0 the Vitali Covering Theorem is equivalent to Weak Weak König’s Lemma WWKL_0.***

- Weak Weak König’s Lemma is Weak König’s Lemma restricted to trees whose set of infinite paths has positive measure.

Theorem (Diener and Hedin 2012)

*Using intuitionistic logic (and countable and dependent choice) the Vitali Covering Theorem is equivalent to Weak Weak König’s Lemma WWKL.***
Theorem (Brown, Giusto and Simpson 2002)

Over RCA_0 the Vitali Covering Theorem is equivalent to Weak Weak Kőnig’s Lemma WWKL_0.

- Weak Weak Kőnig’s Lemma is Weak Kőnig’s Lemma restricted to trees whose set of infinite paths has positive measure.

Theorem (Diener and Hedin 2012)

Using intuitionistic logic (and countable and dependent choice) the Vitali Covering Theorem is equivalent to Weak Weak Kőnig’s Lemma WWKL.
Vitali Covering Theorem

- \mathcal{I} is called saturated, if \mathcal{I} is a Vitali cover of $\bigcup \mathcal{I} = \bigcup_{n=0}^{\infty} I_n$.

Definition (Contrapositive versions of the Vitali Covering Theorem)

- **VCT$_0$**: Given a Vitali cover \mathcal{I} of $[0, 1]$, find a subsequence \mathcal{J} of \mathcal{I} that eliminates $[0, 1]$.
- **VCT$_1$**: Given a saturated \mathcal{I} that does not admit a subsequence that eliminates $[0, 1]$, find a point that is not covered by \mathcal{I}.
- **VCT$_2$**: Given a sequence \mathcal{I} that does not admit a subsequence that eliminates $[0, 1]$, find a point that is not captured by \mathcal{I}.

- **VCT$_0$** : $(S \land C) \rightarrow E$,
- **VCT$_1$** : $(S \land \neg E) \rightarrow \neg C$,
- **VCT$_2$** : $\neg E \rightarrow (\neg S \lor \neg C)$.
Vitali Covering Theorem

- \mathcal{I} is called **saturated**, if \mathcal{I} is a Vitali cover of $\bigcup \mathcal{I} = \bigcup_{n=0}^{\infty} I_n$.

Definition (Contrapositive versions of the Vitali Covering Theorem)

- **VCT_0**: Given a Vitali cover \mathcal{I} of $[0, 1]$, find a subsequence \mathcal{J} of \mathcal{I} that eliminates $[0, 1]$.
- **VCT_1**: Given a saturated \mathcal{I} that does not admit a subsequence that eliminates $[0, 1]$, find a point that is not covered by \mathcal{I}.
- **VCT_2**: Given a sequence \mathcal{I} that does not admit a subsequence that eliminates $[0, 1]$, find a point that is not captured by \mathcal{I}.

- **VCT_0**: $(S \land C) \rightarrow E$,
- **VCT_1**: $(S \land \neg E) \rightarrow \neg C$,
- **VCT_2**: $\neg E \rightarrow (\neg S \lor \neg C)$.
Vitali Covering Theorem

- \mathcal{I} is called saturated, if \mathcal{I} is a Vitali cover of $\bigcup \mathcal{I} = \bigcup_{n=0}^{\infty} I_n$.

Definition (Contrapositive versions of the Vitali Covering Theorem)

- **VCT_0**: Given a Vitali cover \mathcal{I} of $[0, 1]$, find a subsequence \mathcal{J} of \mathcal{I} that eliminates $[0, 1]$.
- **VCT_1**: Given a saturated \mathcal{I} that does not admit a subsequence that eliminates $[0, 1]$, find a point that is not covered by \mathcal{I}.
- **VCT_2**: Given a sequence \mathcal{I} that does not admit a subsequence that eliminates $[0, 1]$, find a point that is not captured by \mathcal{I}.

Theorem (B., Gherardi, Hölzl and Pauly 2016)

- **VCT_0** is computable,
- **$\text{VCT}_1 \equiv_{sW} \text{WWKL}$**,
- **$\text{VCT}_2 \equiv_{sW} \text{WWKL} \times \mathbb{C}_\mathbb{N}$**.
Vitali Covering Theorem

- **Definition (Contrapositive versions of the Vitali Covering Theorem)**
 - \(\mathcal{I} \) is called **saturated**, if \(\mathcal{I} \) is a Vitali cover of \(\bigcup \mathcal{I} = \bigcup_{n=0}^{\infty} I_n \).

<table>
<thead>
<tr>
<th>Theorem (B., Gherardi, Hölzl and Pauly 2016)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{VCT}_0): Given a Vitali cover (\mathcal{I}) of ([0, 1]), find a subsequence (\mathcal{J}) of (\mathcal{I}) that eliminates ([0, 1]).</td>
</tr>
<tr>
<td>(\mathbf{VCT}_1): Given a saturated (\mathcal{I}) that does not admit a subsequence that eliminates ([0, 1]), find a point that is not covered by (\mathcal{I}).</td>
</tr>
<tr>
<td>(\mathbf{VCT}_2): Given a sequence (\mathcal{I}) that does not admit a subsequence that eliminates ([0, 1]), find a point that is not captured by (\mathcal{I}).</td>
</tr>
</tbody>
</table>

Theorem (B., Gherardi, Hölzl and Pauly 2016)

- \(\mathbf{VCT}_0 \) **is computable**,
- \(\mathbf{VCT}_1 \equiv_{SW} \text{WWKL} \),
- \(\mathbf{VCT}_2 \equiv_{SW} \text{WWKL} \times \mathbb{C}_\mathbb{N} \).
Proof.

- The proof of computability of VCT_0 is based on a construction that repeats steps of the classical proof of the Vitali Covering Theorem (and is not just based on a waiting strategy).
- The proof of $\text{VCT}_1 \equiv_{\text{sW}} \text{WWKL}$ is based on the equivalence chain $\text{VCT}_1 \equiv_{\text{sW}} \text{PC}_{[0,1]} \equiv_{\text{sW}} \text{WWKL}$.
- We use a Lemma by Brown, Giusto and Simpson on “almost Vitali covers” in order to prove $\text{VCT}_2 \leq_{\text{sW}} \text{WWKL} \times C_N$. The harder direction is the opposite one for which it suffices to show $C_N \times \text{VCT}_2 \leq_{\text{sW}} \text{VCT}_2$ by an explicit construction:
Vitali Covering Theorem in the Weihrauch Lattice

\[\mathcal{C}_R \equiv_{SW} \text{WKL} \times \mathcal{C}_N \]

\[\text{HBT}_1 \equiv_{SW} \mathcal{C}_{[0,1]} \equiv_{SW} \text{WKL} \]

\[\text{VCT}_2 \equiv_{SW} \text{PC}_R \equiv_{SW} \text{WWKL} \times \mathcal{C}_N \]

\[\text{VCT}_1 \equiv_{SW} \text{PC}_{[0,1]} \equiv_{SW} \text{WWKL} \]

\[\text{ACT} \equiv_{SW} \ast\text{-WWKL} \]

\[\text{VCT}_0 \]

\[\text{ACT} : \text{Int} \Rightarrow [0,1], \mathcal{I} \mapsto [0,1] \setminus \bigcup \mathcal{I}, \text{ where } \text{dom(\text{ACT})} \text{ is the set of all non-disjoint } \mathcal{I} = (I_n)_n \text{ with } \sum_{n=0}^{\infty} \lambda(I_n) < 1. \]
- **ACT**: $\text{Int} \ni [0, 1], \mathcal{I} \mapsto [0, 1] \setminus \bigcup \mathcal{I}$, where $\text{dom}(\text{ACT})$ is the set of all non-disjoint $\mathcal{I} = (I_n)_n$ with $\sum_{n=0}^{\infty} \lambda(I_n) < 1$.

Vitali Covering Theorem in the Weihrauch Lattice

$C_\mathbb{R} \equiv_{SW} \text{WKL} \times C_\mathbb{N}$

$HBT_1 \equiv_{SW} C_{[0,1]} \equiv_{SW} \text{WKL}$

$VCT_2 \equiv_{SW} PC_\mathbb{R} \equiv_{SW} \text{WWKL} \times C_\mathbb{N}$

$VCT_1 \equiv_{SW} PC_{[0,1]} \equiv_{SW} \text{WWKL}$

$VCT_0 \equiv_{SW} *\text{-WWKL}$

$\text{dom}(\text{ACT})$ is the set of all non-disjoint $\mathcal{I} = (I_n)_n$ with $\sum_{n=0}^{\infty} \lambda(I_n) < 1$.

$\bigcup \mathcal{I}$,
Las Vegas and Monte Carlo
Computability
Non-Deterministic Turing Machines

$$\setminus$$

Condition: $$(\forall x \in \text{dom}(f)) \{r \in R : r \text{ does not fail with } x\} \neq \emptyset$$
Las Vegas Turing Machines

Condition: \((\forall x \in \text{dom}(f)) \ \mu \{ r \in R : r \text{ does not fail with } x \} > 0\)
Monte Carlo Turing Machines

Condition: \((\forall x \in \text{dom}(f)) \mu\{r \in R : r \text{ does not fail with } x\} > 0\)
Non-Deterministic Computability

Proposition (B., de Brecht and Pauly 2012)

\[f \leq_w WKL \iff f \text{ is non-deterministically computable.} \]

Non-deterministically computable functions (in this model) were first introduced and studied by Martin Ziegler.

Theorem (Gherardi and Marcone 2009)

The class of \(f \leq_w WKL \) is closed under composition.

There are at least three independent proofs:
- The original proof in terms of the separation problem.
- A proof by B. and Gherardi in terms of Kleene’s ternary logic.
- A very simple proof in terms of non-deterministically computable functions by B., de Brecht and Pauly.

Corollary

\[WKL \equiv_w WKL \ast WKL. \]
Proposition (B., de Brecht and Pauly 2012)

\[f \leq_{\text{W}} \text{WKL} \iff f \text{ is non-deterministically computable.} \]

Non-deterministically computable functions (in this model) were first introduced and studied by Martin Ziegler.

Theorem (Gherardi and Marcone 2009)

The class of \(f \leq_{\text{W}} \text{WKL} \) *is closed under composition.*

There are at least three independent proofs:

- The original proof in terms of the separation problem.
- A proof by B. and Gherardi in terms of Kleene’s ternary logic.
- A very simple proof in terms of non-deterministically computable functions by B., de Brecht and Pauly.

Corollary

\[\text{WKL} \equiv_{\text{W}} \text{WKL} \ast \text{WKL}. \]
Proposition (B., de Brecht and Pauly 2012)

\(f \leq_W \text{WKL} \iff f \text{ is non-deterministically computable.} \)

Non-deterministically computable functions (in this model) were first introduced and studied by Martin Ziegler.

Theorem (Gherardi and Marcone 2009)

The class of \(f \leq_W \text{WKL} \) is closed under composition.

There are at least three independent proofs:

- The original proof in terms of the separation problem.
- A proof by B. and Gherardi in terms of Kleene’s ternary logic.
- A very simple proof in terms of non-deterministically computable functions by B., de Brecht and Pauly.

Corollary

\(\text{WKL} \equiv_W \text{WKL} \ast \text{WKL} \).
Las Vegas Computability

Proposition (B., Gherardi and Hölzl 2015)

\[f \leq_W \text{WWKL} \iff f \text{ is Las Vegas computable.} \]

Proposition

\[\text{WWKL} \equiv_W \text{WWKL} \ast \text{WWKL}. \]

Can be proved as for \text{WKL} in terms of Las Vegas computable functions with an additional application of Fubini’s Theorem.

Corollary

Las Vegas computable functions are closed under composition.
Proposition (B., Gherardi and Hölzl 2015)

\[f \leq_{W} \text{WWKL} \iff f \text{ is Las Vegas computable.} \]

Proposition

\[\text{WWKL} \equiv_{W} \text{WWKL} \ast \text{WWKL}. \]

Can be proved as for \text{WKL} in terms of Las Vegas computable functions with an additional application of Fubini’s Theorem.

Corollary

Las Vegas computable functions are closed under composition.
Proposition (B., Gherardi and Hölzl 2015)

\[f \leq_{W} \text{WWKL} \iff f \text{ is Las Vegas computable.} \]

Proposition

\[\text{WWKL} \equiv_{W} \text{WWKL} \ast \text{WWKL}. \]

Can be proved as for \text{WKL} in terms of Las Vegas computable functions with an additional application of Fubini’s Theorem.

Corollary

\[\text{Las Vegas computable functions are closed under composition.} \]
Proposition (B., Hölzl and Kuyper 2016)

\[f \leq_{\text{W}} \text{PC}_R' \equiv_{\text{W}} \text{WWKL}' \times C_N' \iff f \text{ is Monte Carlo computable.} \]

This result is based on a classification of positive \(G_\delta \)--choice by B., Hölzl, Nobrega and Pauly.

Theorem (Bienvenu and Kuyper 2016)

\[\text{WWKL}' \ast \text{WWKL}' \equiv_{\text{W}} \text{PC}_{2N}' \ast \text{PC}_{2N}' \equiv_{\text{W}} \text{PC}_R' \ast \text{PC}_R' \equiv_{\text{W}} \text{WKL}'. \]

This contrasts \(\text{WKL}' \ast \text{WKL}' \equiv_{\text{W}} \text{WKL}'' \).

Corollary

Monte Carlo computable functions are closed under composition.
Proposition (B., Hölzl and Kuyper 2016)

\[f \leq^W \text{PC}_R' \equiv^W \text{WWKL}' \times C'_N \iff f \text{ is Monte Carlo computable.} \]

This result is based on a classification of positive \(G_\delta \)-choice by B., Hölzl, Nobrega and Pauly.

Theorem (Bienvenu and Kuyper 2016)

\[\text{WWKL}' \ast \text{WWKL}' \equiv^W \text{PC}_{2N}' \ast \text{PC}_{2N}' \equiv^W \text{PC}_R' \ast \text{PC}_R' \equiv^W \text{PC}_R'. \]

This contrasts \(\text{WKL}' \ast \text{WKL}' \equiv^W \text{WKL}'' \).

Corollary

Monte Carlo computable functions are closed under composition.
Proposition (B., Hölzl and Kuyper 2016)

\[f \leq_W PC'_R \equiv_W WWKL' \times C'_N \iff f \text{ is Monte Carlo computable.} \]

This result is based on a classification of positive G_δ–choice by B., Hölzl, Nobrega and Pauly.

Theorem (Bienvenu and Kuyper 2016)

\[WWKL' \ast WWKL' \equiv_W PC'_{2N} \ast PC'_{2N} \equiv_W PC'_R \ast PC'_R \equiv_W PC'_R. \]

This contrasts $WKL' \ast WKL' \equiv_W WKL''$.

Corollary

Monte Carlo computable functions are closed under composition.
Classes of Computability

Non-deterministic
- WKL
- fixed points

Monte Carlo
- PC\(_R\) \(\equiv_{SW} \) WWKL\(^\prime\) \(\times C'_N\)
- sorting

Las Vegas
- WWKL
- Nash equilibria

IVT
- zeros

differentiation

\(\lim\)
Definition

\(\text{SORT}_n : \{0, 1, ..., n - 1\}^\mathbb{N} \rightarrow \{0, 1, ..., n - 1\}^\mathbb{N} \) is defined by

\[
\text{SORT}_n(p) := 0^{k_0}1^{k_1}...(m - 1)^{k_{m-1}} \hat{m}
\]

if \(m < n \) is the smallest digit that appears infinitely often in \(p \) and each digit \(i < m \) appears exactly \(k_i \) times in \(p \).

Proposition (Neumann and Pauly, B., Hölzl and Kuyper 2016)

- \(C_N \leq_{sW} \text{SORT}_2 \leq_{sW} C'_N \)
- \(\text{IVT} \leq_{sW} \text{SORT}_2 \leq_{sW} \text{WWKL}' \)
Sorting

Definition

\(\text{SORT}_n : \{0, 1, \ldots, n - 1\}^\mathbb{N} \to \{0, 1, \ldots, n - 1\}^\mathbb{N} \) is defined by

\[
\text{SORT}_n(p) := 0^{k_0}1^{k_1}(m - 1)^{k_{m-1}}\hat{m}
\]

if \(m < n \) is the smallest digit that appears infinitely often in \(p \) and each digit \(i < m \) appears exactly \(k_i \) times in \(p \).

\[
\begin{array}{cccccccccccccccc}
0 & 3 & 2 & 1 & 3 & 1 & 2 & 1 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 3 & \\
\end{array}
\]

\[
\downarrow \text{SORT}_5
\]

\[
\begin{array}{cccccccccccccccc}
0 & 1 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & \ldots
\end{array}
\]

Proposition (Neumann and Pauly, B., Höltzl and Kuyper 2016)

- \(C_N \leq_{sW} \text{SORT}_2 \leq_{sW} C'_N \)
- \(\text{IVT} \leq_{W} \text{SORT}_2 \leq_{W} \text{WWKL}' \)
Definition

\(\text{SORT}_n : \{0, 1, \ldots, n-1\}^\mathbb{N} \to \{0, 1, \ldots, n-1\}^\mathbb{N}\) is defined by

\[
\text{SORT}_n(p) := 0^{k_0}1^{k_1}(m-1)^{k_{m-1}}\hat{m}
\]

if \(m < n\) is the smallest digit that appears infinitely often in \(p\) and each digit \(i < m\) appears exactly \(k_i\) times in \(p\).

Proposition (Neumann and Pauly, B., Hölzl and Kuyper 2016)

- \(C_{\mathbb{N}} \leq_{sW} \text{SORT}_2 \leq_{sW} C'_{\mathbb{N}}\)
- \(\text{IVT} \leq_{W} \text{SORT}_2 \leq_{W} \text{WWKL}'\)
Sorting in the Weihrauch Lattice

\[
\begin{align*}
\text{lim}' & \quad \text{PC}'_R \equiv_{\text{sw}} \text{WWKL}' \times C'_N \\
\text{PC}'_2^N & \equiv_{\text{sw}} \text{WWKL}' \\
C'_N \quad & \\
\text{C}'_N & \quad \text{K}'_N \\
\text{C}'_N & \quad \text{ SORT}_{n+2} \\
\text{PC}'_2^N & \equiv_{\text{sw}} \text{WWKL}' \\
\text{CC}_{[0,1]} & \equiv_{\text{sw}} \text{ IVT} \\
\Sigma^0_2 \text{– measurable} \\
\Sigma^0_3 \text{– measurable}
\end{align*}
\]
Besides COH sorting is the only problem that we know that is low\textsubscript{2} but not low in the following sense.

Proposition (Neumann and Pauly, B., Hölzl and Kuyper 2016)

\[
\lim \ast \lim \ast \text{SORT}_2 \leq \text{W lim} \ast \lim \text{ and } \lim \ast \text{SORT}_2 \not\leq \text{W lim}.
\]

Neumann and Pauly proved that \text{SORT}_2^\ast characterizes the class of functions computable by certain algebraic machine models.

Corollary

\textit{BSS computable functions }\textit{f : }\mathbb{R}^\ast \rightarrow \mathbb{R}^\ast \textit{ are computable on Monte Carlo machines.}
Besides **COH** sorting is the only problem that we know that is low2 but not low in the following sense.

Proposition (Neumann and Pauly, B., Hölzl and Kuyper 2016)

\[
\lim \ast \lim \ast \text{SORT}_2 \leq_W \lim \ast \lim \text{ and } \lim \ast \text{SORT}_2 \nleq_W \lim.
\]

Neumann and Pauly proved that \text{SORT}_2^* characterizes the class of functions computable by certain algebraic machine models.

Corollary

BSS computable functions \(f : \mathbb{R}^* \rightarrow \mathbb{R}^* \) *are computable on Monte Carlo machines.*
Besides **COH** sorting is the only problem that we know that is low\(_2\) but not low in the following sense.

Proposition (Neumann and Pauly, B., Hölzl and Kuyper 2016)

\[
\lim * \lim * \text{SORT}_2 \leq_W \lim * \lim \text{ and } \lim * \text{SORT}_2 \not\leq_W \lim.
\]

Neumann and Pauly proved that **SORT\(_2^*\)** characterizes the class of functions computable by certain algebraic machine models.

Corollary

BSS computable functions \(f : \mathbb{R}^* \rightarrow \mathbb{R}^* \) are computable on Monte Carlo machines.
References

- F.G. Dorais, D.D. Dzhafarov, J.L. Hirst, J.R. Mileti, P. Shafer
 On Uniform Relationships Between Combinatorial Problems,
 Transactions of the AMS 368:2 (2016) 1321–1359

- Vasco Brattka, Guido Gherardi and Rupert Hölzl
 Probabilistic Computability and Choice,

- Vasco Brattka, Guido Gherardi and Rupert Hölzl
 Las Vegas Computability and Algorithmic Randomness,

- Laurent Bienvenu, Rutger Kuyper
 Parallel and Serial Jumps of Weak Weak König’s Lemma,
 Rod Downey Festschrift, LNCS, Springer (to appear)

- Vasco Brattka, Guido Gherardi, Rupert Hölzl and Arno Pauly
 The Vitali Covering Theorem in the Weihrauch Lattice,
 Rod Downey Festschrift, LNCS, Springer (to appear)

- Eike Neumann and Arno Pauly
 A topological view on algebraic computation models,