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o X is minimal if there is no nonempty, proper subshift Y C X.

Given a minimal subshift X, we would like to characterize the set of Turing
degrees of members of X.

Definition

The language of subshift X is the set
Lx ={0 €2<¥: (3a € X) o is a subword of a}.

@ If X is minimal and ¢ € L, then for every a € X, o is a subword of «.
So every element of X can enumerate the set L.

© If we can enumerate Lx, then we can compute a member of X.
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The enumeration degrees and cototal sets

Definition
A <. B if every enumeration of B can compute an enumeration of A.

The enumeration degree of L x characterizes the set of Turing degrees of
members of X.

Proposition (Jeandel)

If we can enumerate the set of forbidden words Lx, then we can enumerate
Lx. I.C., LX Se Lx.

This is an interesting property for a set to have.

Definition
A set A is cototal if A <. A.
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QO Aset Aisrotalif A<, A. A degree a is total if it contains a total set.

Equivalently, a contains the graph of a total function G4 or even the
graph of a {0, 1}-valued total function.

© (Solon) A degree a is graph-cototal if it contains the complement of the
graph of a total function.

© A degree a is cototal if it contains a cototal set.

@ (Solon) A degree a is Solon cototal if it contains a set A such that A is of
total degree.

total = graph-cototal = cototal = Solon cototal.
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> enumeration degrees are graph-cototal

The degrees that contain X3 sets are called ¥ enumeration degrees.

Proposition

Every X e-degree is graph-cototal.

Proof.
Fix a X9 set A and an approximation { A;}s<.. Let
f(a) = 0, ifa ¢ A,
| theleast s suchthata € A; forallt > s — 1, otherwise.
It is not hard to see that G7f =, A. ]

This shows that cototal does not imply total.

5/15



Complements of maximal independent sets

Definition

Let G = (w, F) be a graph. A set M C w is independent, if no two members
of M are edge related.

6/15



Complements of maximal independent sets

Definition

Let G = (w, F) be a graph. A set M C w is independent, if no two members
of M are edge related. M is a Maximal independent set, if it has no
independent proper superset.




Complements of maximal independent sets

Definition

Let G = (w, F) be a graph. A set M C w is independent, if no two members
of M are edge related. M is a Maximal independent set, if it has no
independent proper superset.

Proposition

A maximal independent set in a computable graph is total (i.e., M <, M).

6/15



Complements of maximal independent sets

Definition

Let G = (w, F) be a graph. A set M C w is independent, if no two members
of M are edge related. M is a Maximal independent set, if it has no
independent proper superset.

Proposition

A maximal independent set in a computable graph is total (i.e., M <, M).

This means that M is cototal.

6/15



Complements of maximal independent sets

Definition

Let G = (w, F) be a graph. A set M C w is independent, if no two members
of M are edge related. M is a Maximal independent set, if it has no
independent proper superset.

Proposition

A maximal independent set in a computable graph is total (i.e., M <, M).

This means that M is cototal.

Theorem

Every cototal enumeration degree contains the complement of a maximal
independent set for the graph w<%.
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that there is a single algorithm that enumerates 7' from any infinite path in 7.

McCarthy also proved that (non-uniform) enumeration pointed trees have
cototal degree; these came up in work of Montalbén on the spectra of
structures.

Theorem (McCarthy) J

Every cototal enumeration degree contains the language of a minimal subshift.
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X=T[Y]={z: (3D) (x,D) eI’ AN DCY}.

Let K4 = @, T[A], where {I'c }cc., is an effective list of all enumereation
operators. Note that K 4 =, A.

Definition
@ (Cooper 1984) The (enumeration) jump of Ais A’ = K, @ K 4.
@ The skip of A is the set AY = K 4.

@ Both notions induce operations on degrees.

@ Both notions produce a set £, A.

@ Notethat A’ = K4, @ A® =, A@ A°.

© In other words, the jump is the “increasing version” of the skip.
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Theorem (Skip inversion)
Let S >, ()'. There is a set A such that A® =, S.

We can further ensure that if S is not total, then A is not of cototal degree.

In some ways, the skip in the enumeration degrees acts like the jump in the
Turing degrees.

@ The skip maps onto the cone above 0’ =, 0°.

@ A <. Bifandonlyif A® <; BO.

Neither property holds for the enumeration jump.
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Solon cototal does not imply cototal

Recall that an enumeration degree is Solon cototal if it contains a set A such
that A has total degree.

Corollary

Solon cototal does not imply cototal.

Proof.

Start with .S that is not total, but of total degree. Skip-invert to A. Then the
degree of A is not cototal, but it is Solon cototal, because the complement of
K 4 is of total degree. L




Iterated skips

Two properties of skips:
Q@ Ifa < b, then a® < b?;
@ a<a’,
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The generic case
Proposition
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The generic case
Proposition
If G is generic relative to a total set X, then (G ® X)® =. G @ X'. }

If G is arithmetically generic, then the skips of G and G form a double zigzag.

g<3> ‘ g<3> g<;°>> . g<3>
N "
08 //Y\
g<><> g<><> g<><> g<><>
Nof L
08 //Y\
g’ g’ g’ g’
\ // F\ /‘)l
Oe /Y\
g g g g
NS
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A very special case: a skip two-cycle

Proposition
There are sets A and B such that B = A® and A = B°. J

This is easy to prove: The double skip operator is monotone, so apply the
Knaster—Tarski’s fixed-point theorem.

Such set A and B must be above all hyperarithmetical sets.
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Thank you!
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