H
H
B
|
u
|
a
|
B
u
|
B
H
n
u
]

EEOOEEEm
o] | |olo] leje




D

1B

H
H
B
|
u
|
a
|
B
u
|
B
H
n
u
]

EEOOEEEm
o] | |olo] leje




D

1B

Three backoft dilemmas

ERCEEREN

Q
L
u
u
|
B
|
|

L1 1 le] le] |
ECEEEREEN

ol | 1 1 lof o
EEOOEEEm

o] | |olo] leje




D

1B

Three backoft dilemmas

o)
C
o
VI
E
x
@®
=
O
C
@©
o)
=
)
s
G
-+
)
0p)

EENEEEEERCOEEEEEN

EEOOEEEm
o] | |olo] leje




Backoff Is about sharing

t)
O
0
o
0

Classic scenario:
- Many devices.
« 1 (shared) resource.

* Only one device can access the
resource at a timel!

Examples:

 LANSs

* Wireless networks

* Transactional memory

« Lock acquisition

* E-mail retransmission

« Congestion control (e.g., TCP)

Ehernet



Backoft as scheduling problem

packets
* unit length jobs

shared channel
» single “processor”

objective: minimize makespan

* broadcast all packets on channel to
maximize throughput

scheduling subtlety: backoff
mechanism

* how to coordinate access to
channel

shared packets to
channel broadcast
on channel



Randomized backoff abramson 70j

Repeat until successful transmission

e Try to broadcast

e Tf failure then
randomly choose t in window W
and walit t seconds.

packet1— § 1O 1 1 1 1 1 BRI I I 1
packet2— § O] | | 1 | 1 M I 0 ||
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Randomized backoff abramson 70j

Repeat until successful transmission

e Try to broadcast

e Tf failure then
randomly choose t in window W
and walit t seconds.

collision/failure
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Repeat until successful transmission

e Try to broadcast

e Tf failure then
randomly choose t in window W
and walit t seconds.
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Randomized backoff abramson 70j

Repeat until successful transmission

e Try to broadcast

e Tf failure then
randomly choose t in window W
and walit t seconds.

collision/failure collision/failure successful slot

| | N\
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Randomized backoff abramson 70j

Repeat until successful transmission

e Try to broadcast

e Tf failure then
randomly choose t in window W
and walit t seconds.

collision/failure collision/failure successful slot

| | N\

packet1— § IOF | 1 | | I R I LT 1 1 JO) I R I T Q11 10]
packet2— § JOf | | | 1 I M I 1 J 1 Jof | W U Jof [ 1 | 1

Bad scenario: thousands of devices
contending for the channel.



Randomized backoff abramson 70j

Repeat until successful transmission

e Try to broadcast

e Tf failure then
randomly choose t in window W
and walit t seconds.

collision/failure collision/failure successful slot

| | N\

packet1— § IOF | 1 | | I R I LT 1 1 JO) I R I T Q11 10]
packet2— §f JOf | | | 1 I M I 1 Y 1 Jof | W Y jof 1 1 | ]

Basic backoff question:
How to choose and adapt the <

Bad scenario: thousands of devices window size V.

contending for the channel.



Standard answer: Binary exponential lbackoff

[Metcalfe and Boggs ‘76]

Window size W = 2

Repeat until successful transmission:
e Randomly choose slot t in window.
e Try to transmit at slot ¢t.

e If failure, wait to end of Ww.
Then double W.

-
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Standard answer: Binary exponential lbackoff

[Metcalfe and Boggs ‘76]

Window size W = 2

Repeat until successful transmission:
e Randomly choose slot t in window.
e Try to transmit at slot ¢t.

e If failure, wait to end of Ww.
Then double W.

Al

Why double?
What if the window size
changes by a different factor?

s
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Standard answer: Binary exponential lbackoff

[Metcalfe and Boggs ‘76]
How many attempts
until a success!?

Repeat until successful transmission:

e Randomly choose slot t in window.

Window size W = 2

e Try to transmit at slot ¢t.

e If failure, wait to end of Ww.
Then double W.

Al

Why double?

What if the window size
changes by a different factor?

—
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Standard answer: Binary exponential lbackoff

Window size W = 2

How well does
How many attempts
until a success!?
release times!?

exponential backoff
Repeat until successful transmission:

[Metca|fe anA Rnnnc ‘7A]1
deal with arbitrary
e Randomly choose slot t in window.

e Try to transmit at slot ¢t.

e If failure, wait to end of Ww.
Then double W.

Al

Why double?

What if the window size
changes by a different factor?

—
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Standard answer: Binary exponential lbackoff

[MetcalfesaeatBagas ze!
How well does
. 7 . .
until a success? deal with arbitrary
release times?

. . exponential backoff
Window size W = 2
Repeat until successful transmission:

e Randomly choose slot t in window.
Are there any
e Try to transmit at slot ¢t. guarantees on
makespan and
e Tf failure, wait to end of Ww. throughput?

Then double W.

Al

Why double?
What if the window size
changes by a different factor?
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Standard answer: Binary exponential lbackoff

[Metca|fe anAd Rnnnec ‘7A1
How well does
How many attempts
until a success?

exponential backoff
deal with arbitrary
release times!?
Repeat until successful transmission:
e Randomly choose slot t in window.
Are there any
e Try to transmit at slot ¢t. guarantees on

makespan and
throughput!?

Window size W = 2

e If failure, wait to end of Ww.
Then double W.

N

What about

Why double? robustness

What if the window size guarantees!?
changes by a different factor?
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Standard answer: Binary exponential lbackoff

[Metca|fe anAd Rnnnec ‘7A1
How well does
How many attempts
until a success?

exponential backoff
deal with arbitrary
release times!?
Repeat until successful transmission:
e Randomly choose slot t in window.
Are there any
e Try to transmit at slot ¢t. guarantees on

makespan and
throughput!?

Window size W = 2

e If failure, wait to end of Ww.
Then double W.

N

What about

Why double? robustness

What if the window size guarantees!?
changes by a different factor?

» o[ [ o of [ [] time—
l L 1l | l__L
3 ' al l .
This talk: some answers to
w' wz wa w4 these research questions.




Exponential backoff
scales poorly.
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Exponential backoff
scales poorly.

fragile/not
robust to
failures
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But it is used all over the place, often
hidden inside other protocols.




poor throughput
Exponential backoff

scales poorly.

fragile/not
robust to
failures

This talk: some fixes to
exponential backoff.
And other backoff algorithms.

But it is used all over the place, often
hidden inside other protocols.

e



This talk

TBD (three backoff dilemmas).

* minimize makespan (maximize throughput)
* minimize # tries to access resource (minimize energy)
 achieve robustness to jamming or failures

Binary exponential backoff scales poorly.
° batCh (a” release tlmeS — O) [Bender, Farach-Colton,

He, Kuszmaul, Leiserson,
SPAA 05]

- dynamic arrivals (arbitrary release times)

Better randomized backoff algorithms
« batch
* dynamlc arrlvals [Bender, Fineman, Gilbert, Young, SODA 16]

[Bender, Kopelowitz, Pettie Young STOC 16]



Good pictures help convey intuition.



Good pictures help convey intuition.

So in preparing this talk, the first thing | did
Is type “backoff” into Google.



What Google says about backoff is intuitive but off topic.
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What Google says about backoff is intuitive but off topic.

backoff - Google Search

backoff - Google Search | o

Back off!
I have a

*SISTER"

and I'm not afraid to

vse her!

k of! unbess
'lu- 2O ¢«

K\vél $0
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What Google says about “randomized backoff” is on topic
but less algorithmic...

O T 4+ Q mpsé randomized backol [ 0
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What Google says about “randomized backoff” is on topic
but less algorithmic...

S T 4+ Q hpss randomized backof! e o
- oogle Se
o] a | icneel 333 M0 share 3
Web M lr;\ago' Videos News Shopping More ~ Search tools SafeSearch - o
| [— 1 1 1 \«
E(c) "‘.z: : > \'~l>_~,,'
._...Lu-;-:‘i i LS
- — ' = _ = g =
TN IR R SO I X 1,,=]. T
uce) = = : ’ : -— :
. 2 ' rand(0,CW) If I = ~He=1m m
- || -
» — i =
evmese | o = T I-__-
e = & 8

This talk: asymptotic analysis of
— exponential backoff and
— more efficient alternatives.




Model for multiple-access channels

Time is divided into discrete slots.
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In every slot, a device can:
* Broadcast (access the channel)
- Listen (sense the channel)



Model for multiple-access channels

Time is divided into discrete slots.

_|®oje] [®] | [®] [e]®] | time—

) 1

success failure nothing

In every slot, a device can:
* Broadcast (access the channel)
- Listen (sense the channel)

Results (known to every broadcaster/listener):
- |f exactly one device broadcasts, then success.

 |If two or more devices broadcast, then failure.

- |f zero devices broadcast, then nothing.



What'’s this a picture of”

Time is divided into discrete slots.
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success

In every slot, a device can: \i

+ Broadcast (access the channel)
+ Listen (sense the channel)

Results (known to every broadcaster/listener):
+ If exactly one device broadcasts, then success.

+ If two or more devices broadcast, then failure.

* If zero devices broadcast, then nothing.
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Time is divided into discrete slots.
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success

In every slot, a device can: }

+ Broadcast (access the channel)
+ Listen (sense the channel)

Results (known to every broadcaster/listener):
+ If exactly one device broadcasts, then success.

+ If two or more devices broadcast, then failure.

* If zero devices broadcast, then nothing.




Real networks/ \
systems deviate from
this model. This model

focuses on the backoff
mechanism.

What'’s this a picture of”
-

Time is divided into discrete slots.
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ccccccc

In every slot, a device can: >

+ Broadcast (access the channel)
+ Listen (sense the channel)

Results (known to every broadcaster/listener):
+ If exactly one device broadcasts, then success.

+ If two or more devices broadcast, then failure.

* If zero devices broadcast, then nothing.




Real networks/ \
systems deviate from
this model. This model

focuses on the backoff
mechanism.

What'’s this a picture of”

Time is divided into discrete slots.

Perfectly synchronized
slots may be unrealistic.

No listening in broadcast.
(But we don't use.)

s °
l I?I.I [e] T Jel Jele] ] time—

sssssss

In every slot, a device can:
+ Broadcast (access the channel)
+ Listen (sense the channel)

Acks are needed.
This talk isn't about how
to implement acks. .
Results (known to every broadcaster/listener):
+ If exactly one device broadcasts, then success.

+ If two or more devices broadcast, then failure.

* If zero devices broadcast, then nothing.

We don't consider multi-
hop networks.




What'’s this a picture of”

Real networks/ \
systems deviate from

this model. This model

(But we don't use.)

Acks are needed.
This talk isn't about how
to implement acks.

We don't consider multi-
hop networks.

Scheduling model for multiple-access channels

Perfectly synchronized
slots may be unrealistic.

No listening in broadcast.

+ Broadcast (access the channel)
+ Listen (sense the channel)

+ If exactly one device broadcasts, then success.
+ If two or more devices broadcast, then failure.
* If zero devices broadcast, then nothing.

focuses on the backoff
mechanism.

Time is divided into discrete slots.

s °
l I?IOI [e] T Jel Jele] ] time—

sssssss

In every slot, a device can: }

Results (known to every broadcaster/listener):
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Batch scenario

All n packets arrive time t = 0.

Let makespan = T.

Throughput: n/T.

 _|eoje] |®o] | |®] |e|l®]| throughput = 4/12
0 T



Exponential backoff on batches

Window size W = 2

Repeat until successful transmission:
e Randomly choose slot t in window.
e Try to broadcast at slot ¢t.

e ITf collision, wait to end of Ww.
Then double W.

Al

Why double?
What if the window size
changes by a different factor?

s
— b !
W| Wz w:; W4
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What backoff rate Is best for batches?

4 £ Constant-sized windows

- W is a fixed constant back off
slowly

Binary exponential growth lback of
il
- After collision: W =2W rapicly
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W is a fixed constant back off

slowly

Additive increase

- After collision: W =W +1
Logarithmic growth

- After collision: W =Ww (1 + 1oglw)

Binary exponential growth lback of
il
- After collision: W =2W rapicly



What backoff rate is best for batches?

{ #J Constant-sized windows
=% . Wis afixed constant Elzcwkl)?ff
Additive increase
 After collision: W =W +1
Logarithmic growth
. After collision: W =W (1 + 1Og1W)

LoglLog growth
- After collision: W =W (1 + o 1(1)gW)
Binary exponential growth lback off

. rapidly
« After collision: W =2W



What backoff rate is best for batches?

o )
-

pios

4 2. Constant-sized windows
=® . Wis a fixed constant
Additive increase

Approx. running time

exponential in n

 After collision: W =W +1 Ol
Logarithmic growth N

- After collision: W =W (1 + 1oglw) Ot log )
LoglLog growth St loglog )

- After collision: W =w (1 + o 1(1)gW)
Binary exponential growth S log 1)

« After collision: W =2W

[Bender, Farach-Colton, He, Kuszmaul, Leiserson 05]
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What backoff rate is best for batches?

f ; ~
4 b 2 Bon
WA ﬁ &

HOEES !

3

-

{ 2}l Constant-sized windows
- W is a fixed constant exponentialm 1

Additive increase

Actual running time

- O(n?/log n)
« After collision: W =W +1

Logarithmic growth
» After collision: W =W (1 + 1Og1W) O(1 log n/loglog 1)
LoglLog growth
- After collision: W =W (1 + 1og 1(1)gW) O(n loglog 1 / logloglog n)
Binary exponential growth
« After collision: W =2W

O(n log n)

[Bender, Farach-Colton, He, Kuszmaul, Leiserson 05]



What backoff rate is best for batches?

Actual running time

Optimal (monotonic): exponential in 1

. O(n?/log n)
» After collision: W W +1

Logarithmic growt
» After collision: Wy W (1+ O(1 log n/loglog 1)

LoglLog growth
- After collision: W =W (1 + logl(l)gW)
Sinary exponential grow
- After collision: W =2W

O(n loglog n / logloglog n)

O(n log n)

[Bender, Farach-Colton, He, Kuszmaul, Leiserson 05]



Backoft for batches

\ Exponential backoff is asymptotically
s disappointing

==“"——+ Used everywhere.

* Poor throughput: < 1/polylog(n).
- Example experiment: n=100.

» About 10% of slots are used.
» About 90% of resource is wasted!

LoglLog backoff is better
« |In simple experiments, much better.
* It’s the best monotonic backoff for batch arrivals.

« But it cannot achieve a makespan of O(n)
(constant throughput).



QueUing theory (with Poisson arrivals)

[Hastad, Leighton, Rogoff 87] [Goodman, Greenberg, Madras 88] [Goldberg and MacKenzie 96] [Raghavan and
Upfal 99][Goldberg, Mackenzie, Paterson, Srinivasan 00]

- Goal: achieve stability with good arrival rates.
« Exponential backoff is not as stable as polynomial backoff.

Adversarial queuing theory arrivals

[Bender, Farach-Colton, He, Kuszmaul, Leiserson 05]

- Exponential backoff does not adapt well to bursts.

Adversarial queueing theory with n fixed stations

[Chlebus, Kowalski, Rokicki 06 12] [Anantharamu, Chlebus, Rokicki 09] [Chlebus, Kowalski 04] [Chlebus,
Gasieniec, Kowalsi, Radzik 05] [Chrobak, Gasieniec, Kowalski 07] etc

* Adversarial injections
 Often deterministic algorithms: round-robin/binary search/etc.



Exponential backoff and bursts

Exponential backoff may not recover from bursts for a
time superpolynomial in the size of the burst. &

-

,

packet arrivals  [T] 8

<N |8
O(1) throughput O(1/m¢ ) throughput

(for a time superpolynomial in m)
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Broadcast probability

* A packet in the system for d time units broadcasts
with probability ©(1/d).

Contention at time t

« The contention at time t is the sum of the broadcast
probabilities of all packets currently in the system.



Exponential backoff and bursts

contention ¢ = O(1)
* prob(slot t is successful) = O(1)

contention ¢ = Q(1)

* prob(the slot is successful) = 2°

contention ¢ = o(1)
 prob(slot is not empty) = O(c)

O(C) ¢

The success probability
is exponentially small in
the contention.




Exponential backoff and bursts

Exponential backoff may not recover from bursts for a

[Bender, Farach-Colton,

time superpolynomial in the size of the burst. «iGm i

g O(1/poly(m) ) throughput
') (for a time superpolynomial in m)
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O(1) throughput m
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Exponential backoff and bursts

Exponential backoff may not recover from bursts for a

[Bender, Farach-Colton,

time superpolynomial in the size of the burst. «iGm i

O

g O(1/poly(m) ) throughput
O(1) throughput m

') (for a time superpolynomial in m)
I
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Exponential backoff and bursts

Exponential backoff may not recover from bursts for a

[Bender, Farach-Colton

time superpolynomial in the size of the burst. «iGm i

g O(1/poly(m) ) throughput
O(1) throughput mee (for a time superpolynomial in m)
— A -~ Q/ A —

O(1) contentlon

O(Iog m) contention
O(m) Contentlon

1 1 1
o(l _ 14— 4= 4.,
(logm) O( + 5 + 3 + +poly(m)>



Morals for binary exponential backoff

en0o backoff - Google Search

Exponential backoff does not
scale well.

I'M GONNA FART

" Back Off "
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Morals for binary exponential backoff

backoff - Google Search

& backoff e .;——J

Exponential backoff does not
scale well.

ot afrad to :

}m vse her/
Batch arrivals |

Exponential backoff backs off | ;}
too quickly. 3
Log log backoff is optimal.
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Morals for binary exponential backoff

backoff - Google Search

+Michael 2% Share o
o] a i P <

Exponential backoff does not
scale well.

)

.."Q - - t . .
il I'M GONNA FART 1 } B A s DynamIC arrlvals

LK - PR T. Y i

Exponential backoff doesn’t
recover fast enough from bursts.
(Loglog backoff is worse.)

Batch arrivals
Exponential backoff backs off

too quickly. =
Log log backoff is optimal. /' By
“ A ! K £y | WILL NOT
o 7 KEEP CALM
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oW 1O scale exponential
packoft

e Analyze batch arrivals (a single burst).

® Analyze dynamic arrivals...
by reducing to series of batches.

® G0ood makespan, good # broadcasts



Batch arrivals

TBD

minimize makespan
N, " minimize eftort
d = @ achieve robustness to faults and jamming

“Te[e] Tl T Io] I®[®] 1 throughput = 4/12



Constant throughput for batches

Claim: When W=0(n), there are ©(n) successes
w.h.p..

Upshot: We can reduce W by a constant factor
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Constant throughput for batches

Claim: When W=0(n), there are ©(n) successes
w.h.p..

Upshot: We can reduce W by a constant factor.
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[Greenberg and Leiserson ‘89]

S W_t _th b ‘ ff [Gereb-Graus and Tsantilas ‘92]
a O O aC <O [Bender, Farach-Colton, He, Kuszmaul, Leiserson ‘05]

Guess a value of W =n.
Back on with window size W/2, W/4, W/8, ...
Back off with W = 2n.

Window Size

1° ﬁI\J\ \\\L \ \
0 T T T T
0 50 100 150 200

50 IIMe




[Greenberg and Leiserson ‘89]

S W_t _th b ‘ ff [Gereb-Graus and Tsantilas ‘92]
a O O aC <O [Bender, Farach-Colton, He, Kuszmaul, Leiserson ‘05]

Theorem: For n packet that arrive at time 0, w.h.p., all packets
transmit after

O(n) time = O(1) throughput

O(log? n) attempts.

Window Size
70

m N\ N\
N

0 50 100 150 200 »0 llme



[Greenberg and Leiserson ‘89]

S W_t _th b ‘ ff [Gereb-Graus and Tsantilas ‘92]
a O O aC <O [Bender, Farach-Colton, He, Kuszmaul, Leiserson ‘05]

Theorem: For n packet that arrive at time 0, w.h.p., all packets
transmit after

O(n) time = O(1) throughput

O(log? n) attempts.

Window Size
70

: AN
Z AN
m AN .

1N NG NG

100 150 200 »0 llme

(If we know n, we obtain O(n) makespan with O(1) expected attempts.)



Some Results for Dynamic Arrivals

[Bender, Fineman, Gllbert, Young SODA16]

Theorem:
n = # packets.
f = # slots blocked by adversary.

makespan: O(n+f) in expectation
» O(1) throughput when =0(n).

# broadcasts: O(log?(n+f)) in expectation.

(Not complicated algorithm. Complicated analysis.)



Some Results for Dynamic Arrivals

[Bender, Fineman, Gllbert, Young SODA16]

Theorem:
n = # packets.
f = # slots blocked by adversary.

makespan: O(n+f) in expectation
» O(1) throughput when =0(n).

# broadcasts: O(log?(n+f)) in expectation.

(We think listening can also be optimized, but that’s not what this paper is above.)

(Not complicated algorithm. Complicated analysis.)



Some Results for Dynamic Arrivals

[Bender, Kopelowitz, Pettie, Young, STOC16]

Theorem:

n = # packets.
no jamming of slots.

makespan: O(n) in expectation.

# channel accesses: O(log log'n ) in expectation.

(Complicated algorithm and analysis.)



Z S
= O

‘Dynamic arrivals

maximize throughput
MINIMIZ& eTfort
acnieve robustness

[Bender, Fineman, Gllbert, Young SODA 6]

“Te[e] Tl T Io] I®[®] 1 throughput = 4/12



Dynamic arrivals: synchronize into batches

Group packets into synchronized batches.

1st batch starts 2nd batch starts 3rd batch starts

packets arriving packets arriving
here stay silent here stay silent
until the 2nd batch until the 3rd batch




Use two channels (simulate on one)

Assume two channels.

We use the 2nd channel to synchronize into
batches.
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We can simulate two channels on one.

One assumption: even/odd round parity is known. Can be dispensed with as well.



Use two channels (simulate on one)

Assume two channels.

We use the 2nd channel to synchronize into
batches.

control channel
(“busy” signal)

\4

W

We can simulate two channels on one.

One assumption: even/odd round parity is known. Can be dispensed with as well.

data channel
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Synchronize batches using busy signal

Control channel implements a busy signal wuand i sg) (Haas and beng 021

b ignal i
usy signa froe busy signal

control channe! | NENENENN_FENENENENENE__ SRR

A packet arriving
here stays silent

When it hears ... it joins the ... and
that the channel next batch broadcasts a

while it hears a : )
is free.... protocol... busy signal.

busy signal.

A A A
e N ~N\ N\

data channel | S

Data channel implements batches.




Protocol on one channel

[Bender, Fineman, Gilbert, Young |6]

Wait until two consecutive “silent” rounds.

Set round counter to O:

e Tn odd rounds: broadcast
(simulate control channel).

e Tn even rounds: run Sawtooth backoff
(simulate data channel).

Theorem: For n requests that arrive dynamically,
Synchronized Sawtooth achieves ©(1) throughput, w.h.p.



Protocol on one channel

[Bender, Fineman, Gllbert, Young |6]

Wait until two consecutive “silent” rounds.

Set round counter to O:

Packets broadcast every
e In odd rounds: broadcast - other round.

. O(n) attempts is expensive!
(simulate control channel).

e Tn even rounds: run Sawtooth backoff
(simulate data channel).

Theorem: For n requests that arrive dynamically,
Synchronized Sawtooth achieves ©(1) throughput, w.h.p.



Dynamic arrivals
TBD

[Bender, Fineman, Gllbert, Young SODA 16]

maximize throughput
minimize effort
achieve robustness to jamming

“Te[e] Tl T Io] I®[®] 1 throughput = 4/12



It’s all about contention

Goal: waste O(1) fraction of slots.

wasted slots nonwasted slots

r_H A
r N\

coIIisin e1|pty slot suchssfuI fa1|re

(from high (from low broadcast
contention) contention)

Goal: achieve O(1) contention on a constant
fraction of all slots without doing too many
broadcasts.

(Recall: contention = sum of broadcast probabilities.)



Dynamic Arrivals with Jamming

[Bender, Fineman, Gllbert,Young SODAI6]

Theorem:
n = # packets.
f = # slots blocked by adversary.

makespan: O(n+f) in expectation
» O(1) throughput when =0(n).

# broadcasts: O(log?(n+f)) in expectation.



Resolving TDB

For a packet that’s been active for t slots:

- Broadcast on control channel with prob O((log t )/1).

* Broadcast on data channel with prob O(1/1).
* |If successful, terminate.

* If >(7/8) t data slots are empty, then become
inactive.

For an inactive request:

e Wait until the first silent slot on the control channel.
e Become active.

(Not complicated algorithm. Complicated analysis.)
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Resolving TDB

* Broadcast on control channel with prob O((log t )/1).

* Broadcast on data channel with prob O(1/1).
* |If successful, terminate.

D

For a packet that’s been active for t slots: p Cheﬁﬂi’;‘;f;ﬁ}'f“‘c l

* If >(7/8) t data slots are empty, then become
inactive.

—

Just like exponential
backoff.

For an inactive request:

e Wait until the first silent slot on the control channel.
e Become active.

(Not complicated algorithm. Complicated analysis.)

Fault-tolerant
measure of low
contention.

A batch ends when
O(l) fraction of
packets finished.




* Broadcast on control channel with prob O((log t )/1).

Resolving TDB

* Broadcast on data channel with prob O(1/t). ¢ Justlike exponential

For a packet that’s been active for t slots: p Cheﬁﬂi’;‘;f;ﬁ}'f“‘c l

 If successful, terminate.

* If >(7/8) t data slots are empty, then become

inactive.

For an inactive request:

e Wait until the first silent slot on the control channel.

* Become active. —_

backoff.

Fault-tolerant
measure of low

\ contention.

A batch ends when

O(l) fraction of
packets finished.

(Not complicated algorithm. Complicated analysis.)

Start a new batch.
(There may still be older
batches in the system.)



Batches based upon contention

Group packets into synchronized batches.

Start a batch
when there’s no

: End a batch when
busy signal.

the contention
gets too low.

packets arriving
here stay silent
until batch ends




Batches based upon contention

Group packets into synchronized batches.

Start a batch Only now, we will be unable to

when there’s no avoid overlapping batches.

: End a batch when
busy signal.

the contention
gets too low.

packets arriving
here stay silent
until batch ends




Managing Contention depends on age structure of

packets

How contention changes depends on the
age structure of the packets.

young packets:
* create a lot of contention,
* but their contention reduces quickly as they age.

1-1/2->1/3—->1/4 - 1/5 ...

old packets:
* create little contention,
* but their contention reduces slowly as they age.

1/1000 — 1/1001 — 1/1002 — 1/1003 — 1/1004 ...



g What makes this analysis #tatirg fur #rtatirg fun

Batches now overlap.

* Many batches are running simultaneously with
different start times.

We can’t use w.h.p. analysis on each batch.

Contention is a slippery parameter.

* How contention changes depends on the age
structure of the packet.



|[dea of Structural Argument

If no new batch joins:

- each time the contention halves, it takes 2X as long
before it halves again. (There’s no guarantee on how
long it takes to halve.)

- - |

contention=C contention=C/2 contention=C/4 contention=@(1)

With constant probability:
- No new batch arrives until the contention is O(1).
- The contention stays O(1) for a long time.

« The contention doesn’t shrink to o(1) for too long before
a new batch enters the system.



Dynamic Arrivals without Jamming

[Bender, Kopelowitz, Pettie, Young, | 5]

Theorem:
n = # packets.
no jamming of slots.

expected makespan: O(n).

expected # channel accesses: O(log logn ).



|deas: Backoft Without Jamming

Active packets collectively estimate n.
Then they run sawtooth with the right O(n).

The hardest part of estimating n, is
estimating log*n.



Morals for better backoft algorithms

en0o backoff - Google Search

Batches:
Sawtooth is a robust algorithm
(resolves TBD).

I'M GONNA FART

" Back Off "

| WILL NOT
KEEP CALM

BACK
OFF!




Morals for better backoff algorithms

backoff - Google Search

Batches:
Sawtooth is a robust algorithm
(resolves TBD).

/ Dynamic arrivals:

Batched sawtooth is good for
throughput.
(It’s lousy for minimizing channel
accesses and tolerating jamming.)

| WILL NOT
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Morals for better backoff algorithms

8e00o backoff - Google Search
PO NT L+ Q bips @ backoff C | Reacer |1 O |

R

Google

Batches: .
Sawtooth is a robust algorithm | o \
(resolves TBD). RO @

/ Dynamic arrivals: Dvnamic arrivals:
Batched sawtooth is good for Two scalable backoff protocols

throughput. that resolve TBDs.
(It’s lousy for minimizing channel

accesses and toleratmg jamming.)
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Summery Slide

We should strive for
protocols that scale.

Yy

Exponential backoff is broken (but ubiquitous)

- batch--backs off too quickly
« dynamic arrivals--doesn’t deal well with bursts.
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Asymptotically better

algorithms have provably

good guarantees. What about other models

' and metrics?
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