

TBD

TBD
Three backoff dilemmas

Michael A. Bender

TBD
Three backoff dilemmas

Michael A. Bender
Joint work with Jeremy Fineman, Seth Gilbert, Tsvi Kopelowitz,

Seth Pettie, and Maxwell Young.

Backoff is about sharing
Classic scenario:
• Many devices.

• 1 (shared) resource.

• Only one device can access the  

resource at a time!

Examples:
• LANs

• Wireless networks

• Transactional memory

• Lock acquisition

• E-mail retransmission

• Congestion control (e.g., TCP)

Backoff as scheduling problem
packets
• unit length jobs

shared channel
• single “processor”

objective: minimize makespan
• broadcast all packets on channel to

maximize throughput

scheduling subtlety: backoff
mechanism
• how to coordinate access to

channel
packets to  
broadcast  
on channel

shared  
channel

Randomized backoff
Repeat until successful transmission
• Try to broadcast
• If failure then  
randomly choose t in window W  
and wait t seconds.

[Abramson ’70]

W W W

packet 1
packet 2

W W

Randomized backoff
Repeat until successful transmission
• Try to broadcast
• If failure then  
randomly choose t in window W  
and wait t seconds.

[Abramson ’70]

W W W

packet 1
packet 2

collision/failure

W W

Randomized backoff
Repeat until successful transmission
• Try to broadcast
• If failure then  
randomly choose t in window W  
and wait t seconds.

[Abramson ’70]

W W W

packet 1
packet 2

collision/failure collision/failure

W W

Randomized backoff
Repeat until successful transmission
• Try to broadcast
• If failure then  
randomly choose t in window W  
and wait t seconds.

[Abramson ’70]

W W W

packet 1
packet 2

collision/failure collision/failure successful slot

W W

Randomized backoff
Repeat until successful transmission
• Try to broadcast
• If failure then  
randomly choose t in window W  
and wait t seconds.

[Abramson ’70]

Bad scenario: thousands of devices
contending for the channel.

W W W

packet 1
packet 2

collision/failure collision/failure successful slot

W W

Randomized backoff
Repeat until successful transmission
• Try to broadcast
• If failure then  
randomly choose t in window W  
and wait t seconds.

[Abramson ’70]

Bad scenario: thousands of devices
contending for the channel.

W W W

packet 1
packet 2

collision/failure collision/failure successful slot

W W
Basic backoff question:  

How to choose and adapt the
window size W.

Standard answer: Binary exponential backoff

Window size W = 2

Repeat until successful transmission:
• Randomly choose slot t in window.
• Try to transmit at slot t.
• If failure, wait to end of W.  
Then double W.

[Metcalfe and Boggs ‘76]

Standard answer: Binary exponential backoff

Window size W = 2

Repeat until successful transmission:
• Randomly choose slot t in window.
• Try to transmit at slot t.
• If failure, wait to end of W.  
Then double W.

Why double?  
What if the window size

changes by a different factor?

[Metcalfe and Boggs ‘76]

Standard answer: Binary exponential backoff

Window size W = 2

Repeat until successful transmission:
• Randomly choose slot t in window.
• Try to transmit at slot t.
• If failure, wait to end of W.  
Then double W.

Why double?  
What if the window size

changes by a different factor?

How many attempts
until a success?

[Metcalfe and Boggs ‘76]

Standard answer: Binary exponential backoff

Window size W = 2

Repeat until successful transmission:
• Randomly choose slot t in window.
• Try to transmit at slot t.
• If failure, wait to end of W.  
Then double W.

Why double?  
What if the window size

changes by a different factor?

How many attempts
until a success?

[Metcalfe and Boggs ‘76]
How well does

exponential backoff
deal with arbitrary

release times?

Standard answer: Binary exponential backoff

Window size W = 2

Repeat until successful transmission:
• Randomly choose slot t in window.
• Try to transmit at slot t.
• If failure, wait to end of W.  
Then double W.

Why double?  
What if the window size

changes by a different factor?

How many attempts
until a success?

[Metcalfe and Boggs ‘76]

Are there any
guarantees on
makespan and
throughput?

How well does
exponential backoff
deal with arbitrary

release times?

Standard answer: Binary exponential backoff

Window size W = 2

Repeat until successful transmission:
• Randomly choose slot t in window.
• Try to transmit at slot t.
• If failure, wait to end of W.  
Then double W.

Why double?  
What if the window size

changes by a different factor?

How many attempts
until a success?

What about
robustness
guarantees?

[Metcalfe and Boggs ‘76]

Are there any
guarantees on
makespan and
throughput?

How well does
exponential backoff
deal with arbitrary

release times?

Standard answer: Binary exponential backoff

Window size W = 2

Repeat until successful transmission:
• Randomly choose slot t in window.
• Try to transmit at slot t.
• If failure, wait to end of W.  
Then double W.

Why double?  
What if the window size

changes by a different factor?

How many attempts
until a success?

What about
robustness
guarantees?

[Metcalfe and Boggs ‘76]

Are there any
guarantees on
makespan and
throughput?

This talk: some answers to
these research questions.

How well does
exponential backoff
deal with arbitrary

release times?

Exponential backoff
scales poorly.

Exponential backoff
scales poorly.

poor throughput

Exponential backoff
scales poorly.

poor throughput

fragile/not
robust to
failures

Exponential backoff
scales poorly.

poor throughput

fragile/not
robust to
failures

But it is used all over the place, often
hidden inside other protocols.

Exponential backoff
scales poorly.

poor throughput

fragile/not
robust to
failures

But it is used all over the place, often
hidden inside other protocols.

This talk: some fixes to
exponential backoff.  

And other backoff algorithms.

This talk

TBD (three backoff dilemmas).
• minimize makespan (maximize throughput)

• minimize # tries to access resource (minimize energy)

• achieve robustness to jamming or failures

Binary exponential backoff scales poorly.
• batch (all release times = 0)

• dynamic arrivals (arbitrary release times)

Better randomized backoff algorithms
• batch

• dynamic arrivals [Bender, Fineman, Gilbert, Young, SODA 16]

[Bender, Kopelowitz, Pettie Young STOC 16]

[Bender, Farach-Colton,
He, Kuszmaul, Leiserson,

SPAA 05]

Good pictures help convey intuition.

Good pictures help convey intuition.

So in preparing this talk, the first thing I did
is type “backoff” into Google.

What Google says about backoff is intuitive but off topic.

What Google says about backoff is intuitive but off topic.

What Google says about “randomized backoff” is on topic
but less algorithmic...

What Google says about “randomized backoff” is on topic
but less algorithmic...

This talk: asymptotic analysis of

— exponential backoff and

— more efficient alternatives.

What Google says about “randomized backoff” is on topic
but less algorithmic...

Model for multiple-access channels
Time is divided into discrete slots.

In every slot, a device can:
• Broadcast (access the channel)

• Listen (sense the channel)

Model for multiple-access channels
Time is divided into discrete slots.

In every slot, a device can:
• Broadcast (access the channel)

• Listen (sense the channel)

Results (known to every broadcaster/listener):
• If exactly one device broadcasts, then success.

• If two or more devices broadcast, then failure.

• If zero devices broadcast, then nothing.

success failure nothing

What’s this a picture of?

What’s this a picture of?

Me being defensive.

What’s this a picture of?

Me being defensive.

Real networks/
systems deviate from

this model. This model
focuses on the backoff

mechanism.

What’s this a picture of?

Me being defensive.

Real networks/
systems deviate from

this model. This model
focuses on the backoff

mechanism.
No listening in broadcast. 

(But we don’t use.)

Acks are needed.  
This talk isn’t about how

to implement acks.

Perfectly synchronized
slots may be unrealistic.

We don’t consider multi-
hop networks.

What’s this a picture of?

Me being defensive.

Real networks/
systems deviate from

this model. This model
focuses on the backoff

mechanism.
No listening in broadcast. 

(But we don’t use.)

Acks are needed.  
This talk isn’t about how

to implement acks.

Perfectly synchronized
slots may be unrealistic.

We don’t consider multi-
hop networks.

TBD
(Three backoff dilemmas)

Binary exponential backoff is
broken

• batch (all release times = 0)
• dynamic arrivals (arbitrary release times)

All n packets arrive time t = 0.

Let makespan = T.

Throughput: n/T.

packet-play-device. be
consistent.Batch scenario

throughput = 4/12
0 T

Exponential backoff on batches
Window size W = 2

Repeat until successful transmission:
• Randomly choose slot t in window.
• Try to broadcast at slot t.
• If collision, wait to end of W.  
Then double W.

Why double?  
What if the window size

changes by a different factor?

What backoff rate is best for batches?

Constant-sized windows
• W is a fixed constant

Additive increase
• After collision:

Logarithmic growth
• After collision:

LogLog growth
• After collision:

Binary exponential growth
• After collision:

W = W + 1

W = W
⇣
1 + 1

logW

⌘

W = 2W

W = W
⇣
1 + 1

log logW

⌘

back off  
slowly

back off  
rapidly

What backoff rate is best for batches?

Constant-sized windows
• W is a fixed constant

Additive increase
• After collision:

Logarithmic growth
• After collision:

LogLog growth
• After collision:

Binary exponential growth
• After collision:

W = W + 1

W = W
⇣
1 + 1

logW

⌘

W = 2W

W = W
⇣
1 + 1

log logW

⌘

back off  
slowly

back off  
rapidly

What backoff rate is best for batches?

Constant-sized windows
• W is a fixed constant

Additive increase
• After collision:

Logarithmic growth
• After collision:

LogLog growth
• After collision:

Binary exponential growth
• After collision:

W = W + 1

W = W
⇣
1 + 1

logW

⌘

W = 2W

W = W
⇣
1 + 1

log logW

⌘

back off  
slowly

back off  
rapidly

What backoff rate is best for batches?

Constant-sized windows
• W is a fixed constant

Additive increase
• After collision:

Logarithmic growth
• After collision:

LogLog growth
• After collision:

Binary exponential growth
• After collision:

W = W + 1

W = W
⇣
1 + 1

logW

⌘

W = 2W

W = W
⇣
1 + 1

log logW

⌘

back off  
slowly

back off  
rapidly

What backoff rate is best for batches?

Constant-sized windows
• W is a fixed constant

Additive increase
• After collision:

Logarithmic growth
• After collision:

LogLog growth
• After collision:

Binary exponential growth
• After collision:

W = W + 1

W = W
⇣
1 + 1

logW

⌘

W = 2W

W = W
⇣
1 + 1

log logW

⌘

Approx. running time

exponential in n

O(n log n)

O(n log n)

O(n2)

O(n loglog n)

[Bender, Farach-Colton, He, Kuszmaul, Leiserson 05]

~

~

~

~

Comparison
Time

Number of packets
0"

100000"

200000"

300000"

400000"

500000"

600000"

700000"

0" 5000" 10000" 15000" 20000" 25000" 30000" 35000" 40000" 45000"

additive
exponential

log & loglog

[Gilbert 14]

Constant-sized windows
• W is a fixed constant

Additive increase
• After collision:

Logarithmic growth
• After collision:

LogLog growth
• After collision:

Binary exponential growth
• After collision:

What backoff rate is best for batches?

W = W + 1

W = W
⇣
1 + 1

logW

⌘

W = 2W

W = W
⇣
1 + 1

log logW

⌘

exponential in n

O(n log n)

O(n log n/loglog n)

O(n2/log n)

O(n loglog n / logloglog n)

Actual running time

[Bender, Farach-Colton, He, Kuszmaul, Leiserson 05]

Constant-sized windows
• W is a fixed constant

Additive increase
• After collision:

Logarithmic growth
• After collision:

LogLog growth
• After collision:

Binary exponential growth
• After collision:

What backoff rate is best for batches?

W = W + 1

W = W
⇣
1 + 1

logW

⌘

W = 2W

W = W
⇣
1 + 1

log logW

⌘

exponential in n

O(n log n)

O(n log n/loglog n)

O(n2/log n)

O(n loglog n / logloglog n)

Actual running time

[Bender, Farach-Colton, He, Kuszmaul, Leiserson 05]

Optimal (monotonic):
O(n loglog n / logloglog n)

Backoff for batches
Exponential backoff is asymptotically
disappointing
• Used everywhere.

• Poor throughput: < 1/polylog(n).

• Example experiment: n=100.

‣ About 10% of slots are used.
‣ About 90% of resource is wasted!

LogLog backoff is better
• In simple experiments, much better.

• It’s the best monotonic backoff for batch arrivals.

• But it cannot achieve a makespan of O(n)  

(constant throughput).

Queuing theory (with Poisson arrivals)  
[Hastad, Leighton, Rogoff 87] [Goodman, Greenberg, Madras 88] [Goldberg and MacKenzie 96] [Raghavan and
Upfal 99][Goldberg, Mackenzie, Paterson, Srinivasan 00]
• Goal: achieve stability with good arrival rates.

• Exponential backoff is not as stable as polynomial backoff.

Adversarial queuing theory arrivals  
[Bender, Farach-Colton, He, Kuszmaul, Leiserson 05]
• Exponential backoff does not adapt well to bursts.

Adversarial queueing theory with n fixed stations  
[Chlebus, Kowalski, Rokicki 06 12] [Anantharamu, Chlebus, Rokicki 09] [Chlebus, Kowalski 04] [Chlebus,
Gasieniec, Kowalsi, Radzik 05] [Chrobak, Gasieniec, Kowalski 07] etc
• Adversarial injections

• Often deterministic algorithms: round-robin/binary search/etc.

Next few slides: dynamic arrivals
(packets have arbitrary release times)

m

Exponential backoff and bursts
Exponential backoff may not recover from bursts for a
time superpolynomial in the size of the burst.

O(1) throughput O(1/mc) throughput
 (for a time superpolynomial in m)

packet arrivals

[Bender, Farach-Colton,  
He, Kuszmaul, Leiserson 05]

Exponential backoff and bursts

Broadcast probability

• A packet in the system for d time units broadcasts

with probability Θ(1/d).

Contention at time t

• The contention at time t is the sum of the broadcast

probabilities of all packets currently in the system.

Exponential backoff and bursts

Contention at time t

• The contention at time t is the sum of the access

probabilities of all jobs currently in the system.

contention c = O(1)

• prob(slot t is successful) = O(1)

contention c = Ω(1)
• prob(the slot is successful) = 2-Θ(c)

contention c = o(1)
• prob(slot is not empty) = Θ(c)

The success probability
is exponentially small in
the contention.

m

Exponential backoff and bursts

Exponential backoff may not recover from bursts for a
time superpolynomial in the size of the burst.

O(1) throughput
O(1/poly(m)) throughput

 (for a time superpolynomial in m)

[Bender, Farach-Colton,  
He, Kuszmaul, Leiserson 05]

O(logm) = O

✓
1 +

1

2

+

1

3

+ · · ·+ 1

poly(m)

◆

m

Exponential backoff and bursts

Exponential backoff may not recover from bursts for a
time superpolynomial in the size of the burst.

O(1) throughput
O(1/poly(m)) throughput

 (for a time superpolynomial in m)

O(1) contention

[Bender, Farach-Colton,  
He, Kuszmaul, Leiserson 05]

O(logm) = O

✓
1 +

1

2

+

1

3

+ · · ·+ 1

poly(m)

◆

m

Exponential backoff and bursts

Exponential backoff may not recover from bursts for a
time superpolynomial in the size of the burst.

O(1) throughput
O(1/poly(m)) throughput

 (for a time superpolynomial in m)

O(1) contention

Θ(m) contention

[Bender, Farach-Colton,  
He, Kuszmaul, Leiserson 05]

O(logm) = O

✓
1 +

1

2

+

1

3

+ · · ·+ 1

poly(m)

◆

m

Exponential backoff and bursts

Exponential backoff may not recover from bursts for a
time superpolynomial in the size of the burst.

O(1) throughput
O(1/poly(m)) throughput

 (for a time superpolynomial in m)

O(1) contention

Θ(m) contention

O(log m) contention

[Bender, Farach-Colton,  
He, Kuszmaul, Leiserson 05]

O(logm) = O

✓
1 +

1

2

+

1

3

+ · · ·+ 1

poly(m)

◆

Morals for binary exponential backoff

Exponential backoff does not
scale well.

Morals for binary exponential backoff

Batch arrivals 
Exponential backoff backs off

too quickly.  
Log log backoff is optimal.

Exponential backoff does not
scale well.

Morals for binary exponential backoff

Batch arrivals 
Exponential backoff backs off

too quickly.  
Log log backoff is optimal.

Dynamic arrivals 
Exponential backoff doesn’t

recover fast enough from bursts.

(Loglog backoff is worse.)

Exponential backoff does not
scale well.

TBD
(Three backoff dilemmas)

How to scale exponential
backoff

•Analyze batch arrivals (a single burst).

• Analyze dynamic arrivals...  
 by reducing to series of batches.  

• Good makespan, good # broadcasts

with jamming/failures: [Bender, Fineman, Gilbert, Young, SODA 16]

without jamming: [Bender, Kopelowitz, Pettie, Young, STOC 16]

Batch arrivals

minimize makespan 
minimize effort 

achieve robustness to faults and jamming

successful slots

throughput = 4/12

TBD

Constant throughput for batches
Claim: When W=Θ(n), there are Θ(n) successes
w.h.p..
Upshot: We can reduce W by a constant factor

[Greenberg and Leiserson ‘89] 
[Gereb-Graus and Tsantilas ‘92] 

[Bender, Farach-Colton, He, Kuszmaul, Leiserson ‘05]

W W/2 W/4
...

2W

Constant throughput for batches
Claim: When W=Θ(n), there are Θ(n) successes
w.h.p..
Upshot: We can reduce W by a constant factor.

[Greenberg and Leiserson ‘89] 
[Gereb-Graus and Tsantilas ‘92] 

[Bender, Farach-Colton, He, Kuszmaul, Leiserson ‘05]

W W/2 W/4
...

2W

Constant throughput for batches
Claim: When W=Θ(n), there are Θ(n) successes
w.h.p..
Upshot: We can reduce W by a constant factor.

[Greenberg and Leiserson ‘89] 
[Gereb-Graus and Tsantilas ‘92] 

[Bender, Farach-Colton, He, Kuszmaul, Leiserson ‘05]

W W/2 W/4
...

2W

Sawtooth backoff
[Greenberg and Leiserson ‘89]  

[Gereb-Graus and Tsantilas ‘92]  
[Bender, Farach-Colton, He, Kuszmaul, Leiserson ‘05]

Time0"

10"

20"

30"

40"

50"

60"

70"

0" 50" 100" 150" 200" 250"

Window Size

Guess a value of W = n.

Back on with window size W/2, W/4, W/8, …

Back off with W = 2n.

Sawtooth backoff
[Greenberg and Leiserson ‘89]  

[Gereb-Graus and Tsantilas ‘92]  
[Bender, Farach-Colton, He, Kuszmaul, Leiserson ‘05]

Time0"

10"

20"

30"

40"

50"

60"

70"

0" 50" 100" 150" 200" 250"

Window Size

Theorem: For n packet that arrive at time 0, w.h.p., all packets
transmit after

O(n) time ⇒ O(1) throughput

O(log2 n) attempts.

Sawtooth backoff
[Greenberg and Leiserson ‘89]  

[Gereb-Graus and Tsantilas ‘92]  
[Bender, Farach-Colton, He, Kuszmaul, Leiserson ‘05]

Time0"

10"

20"

30"

40"

50"

60"

70"

0" 50" 100" 150" 200" 250"

Window Size

Theorem: For n packet that arrive at time 0, w.h.p., all packets
transmit after

O(n) time ⇒ O(1) throughput

O(log2 n) attempts.

(If we know n, we obtain O(n) makespan with O(1) expected attempts.)

Some Results for Dynamic Arrivals

Theorem:

n = # packets.

f = # slots blocked by adversary.

makespan: O(n+f) in expectation

‣ Θ(1) throughput when f=O(n).

broadcasts: O(log2(n+f)) in expectation.

[Bender, Fineman, GIlbert, Young SODA16]

(Not complicated algorithm. Complicated analysis.)

Some Results for Dynamic Arrivals

Theorem:

n = # packets.

f = # slots blocked by adversary.

makespan: O(n+f) in expectation

‣ Θ(1) throughput when f=O(n).

broadcasts: O(log2(n+f)) in expectation.

[Bender, Fineman, GIlbert, Young SODA16]

(We think listening can also be optimized, but that’s not what this paper is above.)

(Not complicated algorithm. Complicated analysis.)

Some Results for Dynamic Arrivals

Theorem:

n = # packets.

no jamming of slots.

makespan: O(n) in expectation.

channel accesses: O(log log*n) in expectation.

[Bender, Kopelowitz, Pettie, Young, STOC16]

(Complicated algorithm and analysis.)

Dynamic arrivals

maximize throughput 
minimize effort 

achieve robustness

successful slots

throughput = 4/12

[Bender, Fineman, GIlbert, Young SODA16]

Dynamic arrivals: synchronize into batches

Group packets into synchronized batches.

packets arriving
here stay silent

until the 2nd batch

1st batch starts

... and ends

2nd batch starts

... and ends

3rd batch starts

... and ends

packets arriving
here stay silent

until the 3rd batch
...

Use two channels (simulate on one)

Assume two channels.

We use the 2nd channel to synchronize into
batches.

control channel 
(“busy” signal)

data channel

Use two channels (simulate on one)

Assume two channels.

We use the 2nd channel to synchronize into
batches.

One assumption: even/odd round parity is known. Can be dispensed with as well.

We can simulate two channels on one.

control channel 
(“busy” signal)

data channel

Use two channels (simulate on one)

Assume two channels.

We use the 2nd channel to synchronize into
batches.

One assumption: even/odd round parity is known. Can be dispensed with as well.

We can simulate two channels on one.

control channel 
(“busy” signal)

data channel

Control channel implements a busy signal

Data channel implements batches.

Synchronize batches using busy signal

[Wu and Li ’88] [Haas and Deng ’02]

busy signal  
free

control channel

busy signal  

data channel

.

Control channel implements a busy signal

Data channel implements batches.

Synchronize batches using busy signal

[Wu and Li ’88] [Haas and Deng ’02]

busy signal  
free

control channel

busy signal  

A packet arriving
here stays silent
while it hears a

busy signal.

data channel

.

Control channel implements a busy signal

Data channel implements batches.

Synchronize batches using busy signal

[Wu and Li ’88] [Haas and Deng ’02]

busy signal  
free

control channel

busy signal  

When it hears
that the channel

is free....

A packet arriving
here stays silent
while it hears a

busy signal.

data channel

.

Control channel implements a busy signal

Data channel implements batches.

Synchronize batches using busy signal

[Wu and Li ’88] [Haas and Deng ’02]

busy signal  
free

control channel

busy signal  

... it joins the
next batch
protocol...

When it hears
that the channel

is free....

A packet arriving
here stays silent
while it hears a

busy signal.

data channel

.

Control channel implements a busy signal

Data channel implements batches.

Synchronize batches using busy signal

[Wu and Li ’88] [Haas and Deng ’02]

busy signal  
free

control channel

busy signal  

... it joins the
next batch
protocol...

When it hears
that the channel

is free....

... and
broadcasts a
busy signal.

A packet arriving
here stays silent
while it hears a

busy signal.

data channel

.

Protocol on one channel

Wait until two consecutive “silent” rounds.

Set round counter to 0:
• In odd rounds: broadcast  
 (simulate control channel).

• In even rounds: run Sawtooth backoff  
 (simulate data channel).

Theorem: For n requests that arrive dynamically,  
 Synchronized Sawtooth achieves Θ(1) throughput, w.h.p.

[Bender, Fineman, Gilbert, Young 16]

Protocol on one channel

Wait until two consecutive “silent” rounds.

Set round counter to 0:
• In odd rounds: broadcast  
 (simulate control channel).

• In even rounds: run Sawtooth backoff  
 (simulate data channel).

Theorem: For n requests that arrive dynamically,  
 Synchronized Sawtooth achieves Θ(1) throughput, w.h.p.

Packets broadcast every
other round.  

O(n) attempts is expensive!

[Bender, Fineman, GIlbert, Young 16]

Dynamic arrivals

maximize throughput
minimize effort
achieve robustness to jamming

throughput = 4/12

TBD
[Bender, Fineman, GIlbert, Young SODA 16]

It’s all about contention

Goal: waste O(1) fraction of slots.

Goal: achieve Θ(1) contention on a constant
fraction of all slots without doing too many
broadcasts.

wasted slots  nonwasted slots 

collision  
(from high  

contention)  

empty slot 
(from low  
contention)  

failure  successful  
broadcast 

(Recall: contention = sum of broadcast probabilities.)

Dynamic Arrivals with Jamming

Theorem:

n = # packets.

f = # slots blocked by adversary.

makespan: O(n+f) in expectation

‣ Θ(1) throughput when f=O(n).

broadcasts: O(log2(n+f)) in expectation. 

[Bender, Fineman, GIlbert, Young SODA16]

Resolving TDB
For a packet that’s been active for t slots:

• Broadcast on control channel with prob Θ((log t)/t).

• Broadcast on data channel with prob Θ(1/t).

• If successful, terminate.

• If ≥(7/8) t data slots are empty, then become

inactive.

For an inactive request:
• Wait until the first silent slot on the control channel.
• Become active.

(Not complicated algorithm. Complicated analysis.)

Resolving TDB
For a packet that’s been active for t slots:

• Broadcast on control channel with prob Θ((log t)/t).

• Broadcast on data channel with prob Θ(1/t).

• If successful, terminate.

• If ≥(7/8) t data slots are empty, then become

inactive.

For an inactive request:
• Wait until the first silent slot on the control channel.
• Become active.

Cheap probabilistic
busy signal.

(Not complicated algorithm. Complicated analysis.)

Resolving TDB
For a packet that’s been active for t slots:

• Broadcast on control channel with prob Θ((log t)/t).

• Broadcast on data channel with prob Θ(1/t).

• If successful, terminate.

• If ≥(7/8) t data slots are empty, then become

inactive.

For an inactive request:
• Wait until the first silent slot on the control channel.
• Become active.

Cheap probabilistic
busy signal.

Just like exponential
backoff.

(Not complicated algorithm. Complicated analysis.)

Resolving TDB
For a packet that’s been active for t slots:

• Broadcast on control channel with prob Θ((log t)/t).

• Broadcast on data channel with prob Θ(1/t).

• If successful, terminate.

• If ≥(7/8) t data slots are empty, then become

inactive.

For an inactive request:
• Wait until the first silent slot on the control channel.
• Become active.

Cheap probabilistic
busy signal.

Just like exponential
backoff.

Fault-tolerant
measure of low

contention.  
A batch ends when

O(1) fraction of
packets finished.

(Not complicated algorithm. Complicated analysis.)

Resolving TDB
For a packet that’s been active for t slots:

• Broadcast on control channel with prob Θ((log t)/t).

• Broadcast on data channel with prob Θ(1/t).

• If successful, terminate.

• If ≥(7/8) t data slots are empty, then become

inactive.

For an inactive request:
• Wait until the first silent slot on the control channel.
• Become active.

Cheap probabilistic
busy signal.

Just like exponential
backoff.

Fault-tolerant
measure of low

contention.  
A batch ends when

O(1) fraction of
packets finished.

Start a new batch.
(There may still be older
batches in the system.)

(Not complicated algorithm. Complicated analysis.)

Batches based upon contention

Group packets into synchronized batches.

packets arriving
here stay silent
until batch ends

Start a batch
when there’s no

busy signal. End a batch when
the contention
gets too low.

Batches based upon contention

Group packets into synchronized batches.

packets arriving
here stay silent
until batch ends

Start a batch
when there’s no

busy signal. End a batch when
the contention
gets too low.

Only now, we will be unable to
avoid overlapping batches.

Managing Contention depends on age structure of
packets

How contention changes depends on the
age structure of the packets.

young packets:
• create a lot of contention,
• but their contention reduces quickly as they age.

1 → 1/2 → 1/3 → 1/4 → 1/5 ...

old packets:
• create little contention,
• but their contention reduces slowly as they age.

1/1000 → 1/1001 → 1/1002 → 1/1003 → 1/1004 ...

What makes this analysis irritating fun irritating fun

Batches now overlap.

• Many batches are running simultaneously with

different start times.

We can’t use w.h.p. analysis on each batch.

Contention is a slippery parameter.

• How contention changes depends on the age

structure of the packet.

Idea of Structural Argument
If no new batch joins:
• each time the contention halves, it takes 2X as long

before it halves again. (There’s no guarantee on how
long it takes to halve.)

...
contention=C contention=C/2 contention=C/4 contention=Θ(1)

With constant probability:
• No new batch arrives until the contention is Θ(1).

• The contention stays Θ(1) for a long time.

• The contention doesn’t shrink to o(1) for too long before

a new batch enters the system.

Dynamic Arrivals without Jamming

Theorem:

n = # packets.

no jamming of slots.

expected makespan: O(n).

expected # channel accesses: O(log log*n).

[Bender, Kopelowitz, Pettie, Young,15]

Ideas: Backoff Without Jamming

Active packets collectively estimate n.
Then they run sawtooth with the right Θ(n).
The hardest part of estimating n, is
estimating log*n.

Morals for better backoff algorithms

Batches:  
Sawtooth is a robust algorithm  

(resolves TBD).

Morals for better backoff algorithms

Dynamic arrivals:  
Batched sawtooth is good for

throughput. 
(It’s lousy for minimizing channel

accesses and tolerating jamming.)

Batches:  
Sawtooth is a robust algorithm  

(resolves TBD).

Morals for better backoff algorithms

Dynamic arrivals:  
Batched sawtooth is good for

throughput. 
(It’s lousy for minimizing channel

accesses and tolerating jamming.)

Dynamic arrivals: 
Two scalable backoff protocols

that resolve TBDs.

Batches:  
Sawtooth is a robust algorithm  

(resolves TBD).

Summery Slide

Summery Slide

We should strive for
protocols that scale.

Summery Slide

Exponential backoff is broken (but ubiquitous)
• batch--backs off too quickly

• dynamic arrivals--doesn’t deal well with bursts.

We should strive for
protocols that scale.

Summery Slide

Asymptotically better
algorithms have provably
good guarantees.

Exponential backoff is broken (but ubiquitous)
• batch--backs off too quickly

• dynamic arrivals--doesn’t deal well with bursts.

We should strive for
protocols that scale.

Summery Slide

What about other models
and metrics?

Asymptotically better
algorithms have provably
good guarantees.

Exponential backoff is broken (but ubiquitous)
• batch--backs off too quickly

• dynamic arrivals--doesn’t deal well with bursts.

We should strive for
protocols that scale.

