
Asynchronous Robot Gathering
(A Tiny Tutorial on Distributed Computing Through

Combinatorial Topology)

Armando Castañeda
Instituto de Matemáticas, UNAM

Joint work with:
Manuel Alcántara, David Flores, Sergio Rajsbaum, UNAM

Matthieu Roy, LAAS-CNRS

Gathering
A collection of robots start on vertices of a
connected graph. They can move on vertices.

• Termination. Correct robots decide a vertex.

• Validity. If participating robots start on the
same vertex, they stay there.

• Agreement. All final vertices are the same

Asynchronous Luminous Robots (ALR)

• n fully asynchronous robots with low memory (the
less the better).

• Luminous: Each robot has a light to communicate
information (the less the better).

• Two available atomic operations:
1. Look: Takes a snapshot of the whole environment

(position and lights colors).
2. Move: Robot moves to an adjacent or same vertex

and changes light color.

• Up to n-1 crash failures (robots stop or disappear).

Asynchronous Luminous Robots (ALR)
Computation proceed in a sequence of
asynchronous rounds.

Robots can start at distinct times or do not even
start.

Algorithm choose(v, G):
r = non-negative integer
view = empty
undecided = true
While undecided do

Move(v, r)
view = Look(G) U view
(v, r, undecided) = Compute(view)

endWhile
return v

Asynchronous Luminous Robots (ALR)
Computation proceed in a sequence of
asynchronous rounds.

Robots can start at distinct times or do not even
start.

Becomes
visible

Algorithm choose(v, G):
r = non-negative integer
view = empty
undecided = true
While undecided do

Move(v, r)
view = Look(G) U view
(v, r, undecided) = Compute(view)

endWhile
return v

Related Work
• Gathering has been studied a lot, usually

without failures and in continuous space.
[Flocchini et al. 2012, Agmon and Peleg 2006, Bramas and Tixeuil
2015, Cieliebak et al. 2012, Klasing et al. 2008, …]

• ALR model introduced in the past, without
failures and without distinct starting times.
[Shantanu Das et al. 2016]

• First time gathering is studied considering
full asynchrony+failures.

Impossibility of Gathering

• Proof based on the topology approach to
distributed computing.

• Enough to analyze the case n=2.

For n > 1, the gathering is solvable if and only if
the base graph G is a single vertex

Distributed Computing and Topology

• Vertices represent robot/
process states.

• Simplices (vertices, edges,
triangles…) represent mutually
compatible system states.

• Complexes put all together.

• Target: Understand properties
of the complexes

my state

my state

my state

Distributed Computing and Topology

• Vertices represent robot/
process states.

• Simplices (vertices, edges,
triangles…) represent mutually
compatible system states.

• Complexes put all together.

• Target: Understand properties
of the complexes

my state

my state

my state

my state my state

Distributed Computing and Topology

• Vertices represent robot/
process states.

• Simplices (vertices, edges,
triangles…) represent mutually
compatible system states.

• Complexes put all together.

• Target: Understand properties
of the complexes.

my state

my state

my state

my state my state

Colorless Tasks
• A task is a triple (I, O, F):

1. I : input complex with valid input sets.
Each set represent several configurations.

2. O : Output complex with valid output sets.
Each set represent several configurations.

3. F : Input/Output function from input
simplexes to output sub complexes.

2-Robot Gathering Task
• Input Complex: Graph modeling possible input

sets.

G I

2-Robot Gathering Task
• Input Complex: Graph modeling possible input

sets.

G I

Robots start
on the vertex

2-Robot Gathering Task
• Input Complex: Graph modeling possible input

sets.

G I

Robots start on the vertices
(it does not matter which one*) *Colorless task

2-Robot Gathering Task
• Output Complex: Graph modeling possible

output sets.

G O

2-Robot Gathering Task
• Output Complex: Graph modeling possible

output sets.

G O

Robots decide
the vertex

2-Robot Gathering Task
• Input/Output Function: Relation between inputs

and outputs.

I O

2-Robot Gathering Task
• Input/Output Function: Relation between inputs

and outputs.

I O
F

2-Robot Gathering Task
• Input/Output Function: Relation between inputs

and outputs.

I O
F

2-Robot Gathering Task
• For a given graph G, the 2-robot gathering task

is the triple (I, O, F):

1. I : Complete graph with vertices V(G).

2. O : Empty graph with vertices V(G).

3. F : For every vertex v, F(v) = v;
For every edge e, F(e) = O.

Protocol Complex
• Complex P modeling all (or some relevant subset

of) executions.

• Vertices: Local states.

• Simplices: Mutually compatible states (state of
robots at the end of an execution).

• For every input configuration simplex s, E(s) = sub

complex of P with all executions with initial state s.

Protocol Complex
• Complex P modeling all (or some relevant subset

of) executions.

• Vertices: Local states.

• Simplices: Mutually compatible states (state of
robots at the end of an execution).

• For every input configuration simplex s, E(s) = sub

complex of P with all executions with initial state s.

Algorithm choose(v, G):
r = non-negative integer
view = empty
undecided = true
While undecided do

Move(v, r)
view = Look(G) U view
(v, r, undecided) = Compute(view)

endWhile
return v

Encode all
it has seen

Tiny detail:
full-information (roughly)

2-Robot Protocol

A1,(A1,—)

A

EOne round

2-Robot Protocol

A2,((A2,—)(A1,—))

A

ETwo rounds

2-Robot Protocol

A2,((A2,—)(A1,—))

A

ETwo rounds

And so on …

2-Robot Protocol
A B

One round E

2-Robot Protocol

A;B

A1,(A1,—) B1,(A1,B1)

A B

One round E

2-Robot Protocol

B||A

B1,(A1,B1) A1,(A1,B1)

A;B

A1,(A1,—) B1,(A1,B1)

A B

One round E

2-Robot Protocol

B||A

B1,(A1,B1) A1,(A1,B1)

A;B

A1,(A1,—) B1,(A1,B1)

B;A

A1,(A1,B1) B1,(—,B0)

A B

One round E

2-Robot Protocol

B||A

B1,(A1,B1) A1,(A1,B1)

A;B

A1,(A1,—) B1,(A1,B1)

B;A

A1,(A1,B1) B1,(—,B0)

A B

One round E

2-Robot Protocol
A B

B1,(A1,B1) A1,(A1,B1)A1,(A1,—) B1,(—,B1)

One round E

2-Robot Protocol
A B

B1,(A1,B1) A1,(A1,B1)A1,(A1,—) B1,(—,B1)

One round E

Solo executions

E

2-Robot Protocol
A B

Two Rounds

E

2-Robot Protocol
A B

Two Rounds

Solo executions

E

2-Robot Protocol
A B

Two Rounds

And so on …

Solo executions

Solvability Condition
Inp. Comp. I

Out. Comp. O

Prot. Comp. P

Solvability Condition
F(s)

F
s

Inp. Comp. I
Out. Comp. O

Prot. Comp. P

E(s)
E

Solvability Condition
F(s)

F
s

Inp. Comp. I
Out. Comp. O

Prot. Comp. P

Decision function maps
locas states to outputs

d: V(P) —> V(O)
E(s)

E

Solvability Condition
F(s)

F
s

Inp. Comp. I
Out. Comp. O

Prot. Comp. P

Decision function maps
locas states to outputs

d: V(P) —> V(O)
Executions must be mapped to

valid output sets => d is
simplicial and respects the

task specification

E(s)
E

Solvability Condition
F(s)

F
s

Inp. Comp. I
Out. Comp. O

Prot. Comp. P

Decision function maps
locas states to outputs

d: V(P) —> V(O)
Executions must be mapped to

valid output sets => d is
simplicial and respects the

task specification

E(s)
E

Solvability Condition
F(s)

F
s

t

d(t)

d

Inp. Comp. I
Out. Comp. O

Prot. Comp. P

Simplicial Maps

Simplicial Maps

Simplicial Maps

Simplicial Maps

Executions must be mapped to
valid output sets => d is

simplicial and respects the
task specification

E(s)
E

Solvability Condition
F(s)

F
s

t

d(t)

d

Inp. Comp. I
Out. Comp. O

Prot. Comp. P

Gathering is Impossible
I O

Gathering is Impossible
I O

A

Gathering is Impossible
I O

A

F

Gathering is Impossible
I O

A

F

P

E

stateA

Gathering is Impossible
I O

A

F

P

E

stateA

d

Gathering is Impossible
I O

A

P

stateA

d

stateB

B

d

Gathering is Impossible
I O

A

P

stateA

stateB

B

d

d

E

Gathering is Impossible
I O

A

P

stateA

stateB

B

d

d

E

Gathering is Impossible
I O

A

P

stateA

stateB

B

F

d

d

E

Gathering is Impossible
I O

A

P

stateA

stateB

B

F

d

d

d

??? :-(

Impossible!!

So … Relax
• What about gathering on an edge?

• Edge Gathering:

• Termination. Correct robots decide a vertex.

• Validity. If participating robots start on the same
vertex, they stay there. If start on an edge, decide
vertices of the edge.

• Edge Agreement. Decided vertices belong to an
edge (it could be the same vertex).

Solvability of Edge Gathering

For n = 2, edge gathering is solvable on any
connected base graph G

For n > 2, edge gathering is solvable if and only
if the base graph G is acyclic

Edge Gathering on Trees

Edge Gathering on Trees

The farthest two
robots might be

Edge Gathering on Trees

Positions of leaders
and mine

Edge Gathering on Trees

Tree with leaders
and me

Edge Gathering on Trees

Need to move?

Edge Gathering on Trees

Move and
update light

Edge Gathering on Trees

Edge Agreement. For every prefix of an execution:
dist(pos(i), pos(j)) <= diam(T) - min{round(i),round(j)}

2-Robot Edge Gathering
1. Precompute a spanning tree T of G

2. Algorithm A : Algorithm for trees.

3. For r=1 to diam(G) do

4. Look(G)

5. If distance of current positions on G > 1 then

6. Simulate a round of A on T

7. Move to next vertex

8. Return current position

Cycles are Obstacles

Proof:

1. The case n= 3 is enough.
2. Prove the triangle is impossible.
3. Solve the triangle from any cyclic graph.

For n > 2, if the base graph G is has cycles,
then edge gathering is unsolvable

The Triangle is Impossible
I O

The Triangle is Impossible
I OF

The Triangle is Impossible
I OF

The Triangle is Impossible
I OF

The Triangle is Impossible
I OF

The Triangle is Impossible
I OF

The Triangle is Impossible
I OF

P
E

The Triangle is Impossible
I OF

P
E

The Triangle is Impossible
I OF

P
E ??

Immediate Snapshot Executions (ISE)

• Subset of nice structured executions.

• Robots proceed in a sequence of concurrency
classes:

{A,B,C} {B} {A,C} {B} {B} {A,C} …

• Concurrency class: concurrent move, then
concurrent look.

A =
B =
C =

{A}{B}{C}

A1 (A1,—,—)

B1 (A1,B1,—) C1 (A1,B1,C1)

A =
B =
C =

{A}{B}{C}

A1 (A1,—,—)

B1 (A1,B1,—) C1 (A1,B1,C1)

{A}{B,C}

A1 (A1,—,—)

B1 (A1,B1,C1) C1 (A1,B1,C1)

A =
B =
C =

{A}{B}{C}

A1 (A1,—,—)

B1 (A1,B1,—) C1 (A1,B1,C1)

{A}{B,C}

A1 (A1,—,—)

B1 (A1,B1,C1) C1 (A1,B1,C1)

{A,B,C}

A1 (A1,B1,C1)

B1 (A1,B1,C1) C1 (A1,B1,C1)

A =
B =
C =

{A}{B}{C}

A1 (A1,—,—)

B1 (A1,B1,—) C1 (A1,B1,C1)

{A}{B,C}

A1 (A1,—,—)

B1 (A1,B1,C1) C1 (A1,B1,C1)

{A,B,C}

A1 (A1,B1,C1)

B1 (A1,B1,C1) C1 (A1,B1,C1)

And so on …

A =
B =
C =

{A}{B}{C}

A1 (A1,—,—)

B1 (A1,B1,—) C1 (A1,B1,C1)

{A}{B,C}

A1 (A1,—,—)

B1 (A1,B1,C1) C1 (A1,B1,C1)

{A,B,C}

A1 (A1,B1,C1)

B1 (A1,B1,C1) C1 (A1,B1,C1)

And so on …

A =
B =
C =

{A}{B}{C}

A1 (A1,—,—)

B1 (A1,B1,—) C1 (A1,B1,C1)

{A}{B,C}

A1 (A1,—,—)

B1 (A1,B1,C1) C1 (A1,B1,C1)

{A,B,C}

A1 (A1,B1,C1)

B1 (A1,B1,C1) C1 (A1,B1,C1)

And so on …

A =
B =
C =

{A}{B}{C}

A1 (A1,—,—)

B1 (A1,B1,—) C1 (A1,B1,C1)

{A}{B,C}

A1 (A1,—,—)

B1 (A1,B1,C1) C1 (A1,B1,C1)

{A,B,C}

A1 (A1,B1,C1)

B1 (A1,B1,C1) C1 (A1,B1,C1)

And so on …

1-Round ISE Complex

I PE

The Triangle is Impossible
I O

F

P

E

The Triangle is Impossible
I O

F

P

E If there is an algorithm =>
there is a simplicial map

d: V(P) —> V(O)
respecting F

The Triangle is Impossible
I O

F

P

E

1

2 3

The Triangle is Impossible
I O

F

P

E

1

2 3

d

The Triangle is Impossible
I O

F

P

E

1

2 3

d

The Triangle is Impossible
I O

F

P

E

1

2 3

d

The Triangle is Impossible
I O

F

P

E

1

2 3

d

is there such a d?

2-Dim Sperner’s Lemma

Every subdivision of a triangle with a Sperner coloring
has an odd number of 3-chromatic triangles

Subd.

1

32

1 or 31 or 2

2 or 3

1, 2 or 3

2-Dim Sperner’s Lemma

Every subdivision of a triangle with a Sperner coloring
has an odd number of 3-chromatic triangles

Subd.

1

32

1 or 31 or 2

2 or 3

1, 2 or 3

2

3 1

The Triangle is Impossible
I O

F

P

E

1

2 3

d In an execution,
three vertices
decided!! :-(

Solving Triangle from Cyclic Graphs

2 3

1

…

G

Solving Triangle from Cyclic Graphs

2 3

1

…

fout
G

Solving Triangle from Cyclic Graphs

2 3

1
1

2 3

2 3

32
…

fout
G

Solving Triangle from Cyclic Graphs

2 3

1
1

2 3

2 3

32
…1

1 1

fout
G

Solving Triangle from Cyclic Graphs

2 3

1
1

2 3

2 3

32
…1

1 1

fin

fout
G

Solving Triangle from Cyclic Graphs

2 3

1
1

2 3

2 3

32
…1

1 1

fin

u v

P

w fout
G

Solving Triangle from Cyclic Graphs

2 3

1
1

2 3

2 3

32
…1

1 1

fin

fin(x):
A = Edge gath. alg. on P
if x == 1 then return w
elseif x == 2 then return A.decide(u)
elseif x == 3 then return A.decide(v)

u v

P

w fout
G

Solving Triangle from Cyclic Graphs

2 3

1
1

2 3

2 3

32
…1

1 1

fin

fin(x):
A = Edge gath. alg. on P
if x == 1 then return w
elseif x == 2 then return A.decide(u)
elseif x == 3 then return A.decide(v)

u v

P

w

EdgeGathTriangle(x):
B = Edge gath. alg. on G
return fout(B.decide(fin(x)))

fout
G

Let’s Do More
• Edge Covering:

• Termination. Correct robots decide a vertex.

• Validity. If participating robots start on the
same vertex, they stay there. If start on an
edge, decide vertices of the edge.

• Edge Covering. If more than one decided
vertex, decisions cover an edge.

Solvability of Edge Covering

For n = 2, edge covering is solvable if and only
if the base graph G is not bipartite

For n > 2, edge covering is imposible on every
base graph G

2-Robot Edge Covering Algorithm

There is an odd length path or cycle between any pair
of nodes.

C

P1 P2

1) |P1—P2| is odd.
Done

2) |P1—P2| is even.
 Take P1—C—P2.

For n = 2, if the base graph G is is not bipartite
then edge covering is possible

2-Robot Edge Covering Algorithm
Protocol complex (path) can be mapped to those paths.
Why? Length of the complex (path) is odd.

E

2-Robot Edge Covering Algorithm
Protocol complex (path) can be mapped to those paths.
Why? Length of the complex (path) is odd.

E

2-Robot Edge Covering Algorithm
Protocol complex (path) can be mapped to those paths.
Why? Length of the complex (path) is odd.

E

2-Robot Edge Covering Algorithm
Protocol complex (path) can be mapped to those paths.
Why? Length of the complex (path) is odd.

E

2-Robot Edge Covering Algorithm
Protocol complex (path) can be mapped to those paths.
Why? Length of the complex (path) is odd.

E

2-Robot Edge Covering Algorithm
Protocol complex (path) can be mapped to those paths.
Why? Length of the complex (path) is odd.

E

2-Robot Edge Covering Algorithm
Protocol complex (path) can be mapped to those paths.
Why? Length of the complex (path) is odd.

E

2-Robot Edge Covering Impossibility

• Bipartite => for some pair, there is no odd length
path or cycle

• Protocol complex cannot be mapped to even length
paths: Endpoints to endpoints and edges to edges.

For n = 2, if the base graph G is bipartite, then
edge covering is impossible

2-Robot Edge Covering Impossibility

Proof:

1. Prove the edge is impossible.
2. Solve the edge from any bipartite graph.

For n = 2, if the base graph G is bipartite, then
edge covering is impossible

Impossibility of Edge Covering on Edge

What if the two robots start on the same vertex?

Initial
vertex

Impossibility of Edge Covering on Edge

What if the two robots start on the same vertex?

Initial
vertex

Impossibility of Edge Covering on Edge

What if the two robots start on the same vertex?

Initial
vertex

Impossibility of Edge Covering on Edge

What if the two robots start on the same vertex?

Initial
vertex

Impossibility of Edge Covering on Edge

What if the two robots start on the same vertex?

Initial
vertex

Impossibility of Edge Covering on Edge

What if the two robots start on the same vertex?

Initial
vertex

Impossibility of Edge Covering on Edge

What if the two robots start on the same vertex?

Initial
vertex

Impossibility of Edge Covering on Edge

What if the two robots start on the same vertex?

…

Initial
vertex

Impossibility of Edge Covering on Edge

What if the two robots start on the same vertex?

…
Impossible!! :-(

Initial
vertex

Solving Edge from Bipartite Graphs

G
2 1

Solving Edge from Bipartite Graphs

G
2 1

fout

12

Solving Edge from Bipartite Graphs

G
2 1

fout

12

fin
v

w v w

Solving Edge from Bipartite Graphs

EdgeCoveringEdge(x):
B = Edge covering alg. on G
return fout(B.decide(fin(x)))

G
2 1

fout

12

fin
v

w v w

Edge Covering Impossibility

Proof:
1. Suppose there is an edge covering algorithm

A on G.

2. A solves 2-robot edge covering on G.

3. G is not bipartite => G has cycles.

4. A solves edge gathering on G for n > 2
robots. Contradiction!!

For n > 2, edge covering is imposible on every
base graph G

Summary
1. Gathering. Impossible

2. Edge Gathering:

• For n=2, solvable on any graph.

• For n>2, solvable if an only if acyclic.

3. Edge Covering:

• For n=2, solvable if an only if not bipartite.

• For n>2, impossible.

ALR = R/W Wait-Free

Reduction based proofs:

1. Same connectivity properties.

2. Gathering => Consensus

3. Edge Gathering => 2-Set Consensus

4. Edge Covering => WSB

A task (maybe non-colorless) is solvable in ALR
if and only if it is solvable in Async. R/W Wait-Free

