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Gathering 
A collection of robots start on vertices of a 
connected graph. They can move on vertices. 

• Termination. Correct robots decide a vertex. 

• Validity. If participating robots start on the 
same vertex, they stay there. 

• Agreement. All final vertices are the same



Asynchronous Luminous Robots (ALR) 

• n fully asynchronous robots with low memory (the 
less the better). 

• Luminous: Each robot has a light to communicate 
information (the less the better). 

• Two available atomic operations: 
1. Look: Takes a snapshot of the whole environment 

(position and lights colors). 
2. Move: Robot moves to an adjacent or same vertex 

and changes light color. 

• Up to n-1 crash failures (robots stop or disappear).



Asynchronous Luminous Robots (ALR) 
Computation proceed in a sequence of 
asynchronous rounds. 

Robots can start at distinct times or do not even 
start.

Algorithm choose(v, G): 
r = non-negative integer 
view = empty 
undecided = true 
While undecided do 

Move(v, r) 
view = Look(G) U view 
(v, r, undecided) = Compute(view) 

endWhile
return v



Asynchronous Luminous Robots (ALR) 
Computation proceed in a sequence of 
asynchronous rounds. 

Robots can start at distinct times or do not even 
start.

Becomes  
visible

Algorithm choose(v, G): 
r = non-negative integer 
view = empty 
undecided = true 
While undecided do 

Move(v, r) 
view = Look(G) U view 
(v, r, undecided) = Compute(view) 

endWhile
return v



Related Work 
• Gathering has been studied a lot, usually 

without failures and in continuous space.                    
[Flocchini et al. 2012, Agmon and Peleg 2006, Bramas and Tixeuil 
2015, Cieliebak et al. 2012, Klasing et al. 2008, …] 

• ALR model introduced in the past, without 
failures and without distinct starting times.            
[Shantanu Das et al. 2016] 

• First time gathering is studied considering       
full asynchrony+failures.



Impossibility of Gathering

• Proof based on the topology approach to 
distributed computing. 

• Enough to analyze the case n=2.

For n > 1, the gathering is solvable if and only if 
the base graph G is a single vertex



Distributed Computing and Topology

• Vertices represent robot/
process states. 

• Simplices (vertices, edges, 
triangles…) represent mutually 
compatible system states. 

• Complexes put all together.  

• Target: Understand properties 
of the complexes
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Colorless Tasks
• A task is a triple (I, O, F): 

1. I : input complex with valid input sets.  
Each set represent several configurations. 

2. O : Output complex with valid output sets. 
Each set represent several configurations. 

3. F : Input/Output function from input 
simplexes to output sub complexes.



2-Robot Gathering Task
• Input Complex: Graph modeling possible input 

sets.

G I
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2-Robot Gathering Task
• For a given graph G, the 2-robot gathering task 

is the triple (I, O, F): 

1. I : Complete graph with vertices V(G). 

2. O : Empty graph with vertices V(G). 

3. F : For every vertex v, F(v) = v;                           
For every edge e, F(e) = O.



Protocol Complex
• Complex P modeling all (or some relevant subset 

of) executions. 

• Vertices: Local states. 

• Simplices: Mutually compatible states (state of 
robots at the end of an execution). 

• For every input configuration simplex s, E(s) = sub 

complex of P with all executions with initial state s.



Protocol Complex
• Complex P modeling all (or some relevant subset 

of) executions. 

• Vertices: Local states. 

• Simplices: Mutually compatible states (state of 
robots at the end of an execution). 

• For every input configuration simplex s, E(s) = sub 

complex of P with all executions with initial state s.

Algorithm choose(v, G): 
r = non-negative integer 
view = empty 
undecided = true 
While undecided do 

Move(v, r) 
view = Look(G) U view 
(v, r, undecided) = Compute(view) 

endWhile
return v

Encode all    
it has seen 

Tiny detail:  
full-information (roughly)
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Executions must be mapped to 
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So … Relax
• What about gathering on an edge? 

• Edge Gathering: 

• Termination. Correct robots decide a vertex. 

• Validity. If participating robots start on the same 
vertex, they stay there. If start on an edge, decide 
vertices of the edge. 

• Edge Agreement. Decided vertices belong to an 
edge (it could be the same vertex).



Solvability of Edge Gathering

For n = 2, edge gathering is solvable on any 
connected base graph G

For n > 2, edge gathering is solvable if and only 
if the base graph G is acyclic



Edge Gathering on Trees
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Edge Gathering on Trees
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Edge Gathering on Trees

Need to move?



Edge Gathering on Trees

Move and  
update light



Edge Gathering on Trees

Edge Agreement. For every prefix of an execution: 
dist(pos(i), pos(j)) <= diam(T) - min{round(i),round(j)}



2-Robot Edge Gathering
1. Precompute a spanning tree T of G 

2. Algorithm A : Algorithm for trees. 

3. For r=1 to diam(G) do

4.      Look(G) 

5.      If distance of current positions on G > 1 then  

6.           Simulate a round of A on T 

7.      Move to next vertex 

8. Return current position



Cycles are Obstacles

Proof:  

1. The case n= 3 is enough. 
2. Prove the triangle is impossible. 
3. Solve the triangle from any cyclic graph.

For n > 2, if the base graph G is has cycles, 
then edge gathering is unsolvable
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Immediate Snapshot Executions (ISE)

• Subset of nice structured executions. 

• Robots proceed in a sequence of concurrency 
classes: 

{A,B,C} {B} {A,C} {B} {B} {A,C} … 

• Concurrency class: concurrent move, then 
concurrent look.
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1-Round ISE Complex
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2-Dim Sperner’s Lemma

Every subdivision of a triangle with a Sperner coloring 
has an odd number of 3-chromatic triangles
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The Triangle is Impossible
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d In an execution, 
three vertices 
decided!! :-( 
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Solving Triangle from Cyclic Graphs
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fin(x): 
A = Edge gath. alg. on P 
if        x == 1 then return w 
elseif x == 2 then return A.decide(u)  
elseif x == 3 then return A.decide(v) 

u v

P

w

EdgeGathTriangle(x): 
B = Edge gath. alg. on G 
return fout(B.decide(fin(x))) 

fout
G



Let’s Do More
• Edge Covering: 

• Termination. Correct robots decide a vertex. 

• Validity. If participating robots start on the 
same vertex, they stay there. If start on an 
edge, decide vertices of the edge. 

• Edge Covering. If more than one decided 
vertex, decisions cover an edge.



Solvability of Edge Covering

For n = 2, edge covering is solvable if and only 
if the base graph G is not bipartite

For n > 2, edge covering is imposible on every 
base graph G 



2-Robot Edge Covering Algorithm

There is an odd length path or cycle between any pair 
of nodes.

C

P1 P2

1) |P1—P2| is odd.              
Done 

2) |P1—P2| is even.                  
    Take P1—C—P2.   

For n = 2, if the base graph G is is not bipartite 
then edge covering is possible
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Why? Length of the complex (path) is odd.
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2-Robot Edge Covering Impossibility

• Bipartite => for some pair, there is no odd length 
path or cycle 

• Protocol complex cannot be mapped to even length 
paths: Endpoints to endpoints and edges to edges.

For n = 2, if the base graph G is bipartite, then 
edge covering is impossible



2-Robot Edge Covering Impossibility

Proof:  

1. Prove the edge is impossible. 
2. Solve the edge from any bipartite graph.

For n = 2, if the base graph G is bipartite, then 
edge covering is impossible



Impossibility of Edge Covering on Edge 

What if the two robots start on the same vertex?
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Impossibility of Edge Covering on Edge 

What if the two robots start on the same vertex?

…
Impossible!! :-( 

Initial  
vertex



Solving Edge from Bipartite Graphs
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Solving Edge from Bipartite Graphs

EdgeCoveringEdge(x): 
B = Edge covering alg. on G 
return fout(B.decide(fin(x))) 

G
2 1

fout

12

fin
v

w v w



Edge Covering Impossibility

Proof:  
1. Suppose there is an edge covering algorithm 

A on G. 

2. A solves 2-robot edge covering on G. 

3. G is not bipartite => G has cycles. 

4. A solves edge gathering on G for n > 2 
robots. Contradiction!!

For n > 2, edge covering is imposible on every 
base graph G 



Summary 
1. Gathering. Impossible 

2. Edge Gathering:  

• For n=2, solvable on any graph.  

• For n>2, solvable if an only if acyclic. 

3. Edge Covering:  

• For n=2, solvable if an only if not bipartite. 

• For n>2, impossible.



ALR = R/W Wait-Free

Reduction based proofs:  

1. Same connectivity properties. 

2. Gathering => Consensus 

3. Edge Gathering => 2-Set Consensus 

4. Edge Covering => WSB

A task (maybe non-colorless) is solvable in ALR     
if and only if it is solvable in Async. R/W Wait-Free 


