
t-Resilient Immediate Snapshot and

its Relation with Agreement Problems

Carole DELPORTE†, Hugues FAUCONNIER†

Sergio RAJSBAUM‡, Michel RAYNAL⋆,⋄

†IRIF, Université Paris 7 Diderot, Paris, France

‡Instituto de Matemáticas, UNAM, México

⋆Institut Universitaire de France

⋄IRISA, Université de Rennes, France

c© Immediate Snapshot vs Agreement problems 1

Summary

• Basic wait-free read/write model

• Immediate snapshot and iterated model

• t-Resilient k-Immediate Snapshot

• Impossibility results

• Relation with x-Set agreement

• Conclusion

c© Immediate Snapshot vs Agreement problems 2

The AIM is: understand (again and again ...)

Understand t-resilience and its impact
on Immediate Snapshot and Agreement

i.e., Relations linking synchronization
problems and agreement problems

Enrich the map of our understanding of
distributed computability

c© Immediate Snapshot vs Agreement problems 3

Part 1

Basic wait-free model

Immediate snapshot object

and iterated model

c© Immediate Snapshot vs Agreement problems 4

Computing entities

• n asynchronous sequential processes p1, ..., pn

• Asynchrony = each process proceeds at its own speed,
which can be arbitrary and remains always unknown to
the other processes

• Up to t processes may crash, 1 ≤ t ≤ n− 1

⋆ t = n− 1: wait-free model

⋆ 1 ≤ t < n− 1: t-crash model

• Terminology: given a run

a process that crashes is faulty, otherwise it is correct

c© Immediate Snapshot vs Agreement problems 5

Communication and notations

• SWMR atomic registers: one REG[i] per process pi
REG[i]: written by pi, read by all

• CARWn,t[t = n− 1]: wait-free model

• CARWn,t[1 ≤ t < n− 1]: t-crash model

• Capital letters: for shared objects

• Small letters: for local variables

c© Immediate Snapshot vs Agreement problems 6

k-Set agreement

One-shot object that provides the processes with a single
operation denoted proposek(), which returns/decides a value

Each process is assumed to propose a value

Specification:

• Termination: proposek() by a correct process terminates

• Validity: A decided value is a proposed value

• Agreement: At most k different values are decided

Consensus is 1-set agreement

c© Immediate Snapshot vs Agreement problems 7

Well-known computability results

• Consensus: impossible in CARWn,t[t ≥ 1]

• k-Set agreement: impossible in CARWn,t[t ≥ k]

• (2n− 1)-Renaming: possible in CARWn,t[t ≤ n− 1]

• Immediate snapshot: possible in CARWn,t[t = n− 1]

c© Immediate Snapshot vs Agreement problems 8

Immediate snapshot object

One-shot object that provides the processes with a single
operation denoted write snapshot(), which returns/decides a
view (set of pairs 〈i, vi〉)

Specification:

• Termination: write snapshot() by a correct terminates

• Self-inclusion: ∀ i : 〈i, v〉 ∈ viewi

• Validity: ∀ i : (〈j, v〉 ∈ viewi)⇒ pj invoked write snapshot(v)

• Containment: ∀ i, j : (viewi ⊆ viewj) ∨ (viewj ⊆ viewi)

• Immediacy:
∀ i, j : (〈i, v〉 ∈ viewj) ∧ (〈j, v′〉 ∈ viewi) ⇒ (viewi = viewj)

c© Immediate Snapshot vs Agreement problems 9

One-shot ////////////immediate Snapshot object

• A snapshot has two operations write(v) and snapshot()

• Defined by
Termination, Self-inclusion, Validity, and Containment
////////////immediacy

• write snapshot(v) encapsulates write(v)⊕ snapshot()

• On atomicity:

⋆ A snapshot object is atomic,

⋆ An immediate snapshot object is not atomic

Immediacy captures concurrent operations:
“if I see you and you see me, we see the same”

c© Immediate Snapshot vs Agreement problems 10

Immediate snapshot in the wait-free model (BG’93)

level n+1

level n− 1

level n

level 1

level 2

level x
∀x: at most x processes
stop at levels y ≤ x

c© Immediate Snapshot vs Agreement problems 11

Immediate snapshot in the wait-free read/write model

REG[1..n] init to [⊥, ..,⊥]

LEVEL[1..n] init to [(n+1), .., (n+1)]

operation write snapshot(vi) is
REG[i]← vi;
repeat

LEVEL[i]← LEVEL[i]− 1;
for j ∈ {1, . . . , n} do leveli[j]← LEVEL[j] end for;

seeni←
{

j : leveli[j] ≤ leveli[i]}
until (|seeni| ≥ leveli[i]) end repeat;
viewi← {〈j,REG[j]〉 such that j ∈ seeni}
return(viewi)

end operation.

c© Immediate Snapshot vs Agreement problems 12

The iterated immediate snapshot (wait-free) model

KIS [1..) sequence of immediate snapshot objects

KIS [r]: object used at round r by the processes

Model: sequence of asynchronous rounds

ri ← 0; ℓsi ← initial local state of pi (including its input);
repeat forever % asynchronous IS-based rounds

ri ← ri +1;
viewi← KIS [ri].write snapshot(ℓsi);
lsi ← δ(lsi, viewi); % new local state

end repeat.

c© Immediate Snapshot vs Agreement problems 13

Power and limits of the IIS (wait-free) model

• Algorithmic foundation of distributed iterated models
structured sequence of rounds

• Equivalent to the usual read/write wait-free model

Borowsky E. and Gafni E., A simple algorithmically reasoned characterization of
wait-free computations. Proc. PODC’97, pp. 189-198, 1997

• IIS enriched with a (non-trivial) failure detector FD is
weaker than CARWn,t[t = n− 1,FD]

Rajsbaum, S., Raynal, M., and Travers, C., An impossibility about failure de-
tectors in the iterated immediate snapshot model. IPL, 108(3):160-164 2008

• Possible extension:

Iterated Restricted Immediate Snapshot model

Rajsbaum S., Raynal M., and Travers C., The iterated restricted immediate
snapshot model. Proc. 14th Annual Int’l Conference on Computing and Com-
binatorics, Springer LNCS 5092, pp. 487-497, 2008

c© Immediate Snapshot vs Agreement problems 14

Part 2

t-Resilient k-Immediate Snapshot

c© Immediate Snapshot vs Agreement problems 15

• The IIS model considers t = n− 1 (wait-free)

• Consider a t-crash model: 1 ≤ t < n− 1

⋆ Define an associated immediate snapshot object

Notion of k-immediate snapshot object (k-IS)

which could be used in the t-crash iterated model

⋆ Design algorithms for k-IS in CARWn,t[1 ≤ t < n−1]

• In short: How to benefit from the fact that at least n−t
processes never crash when designing a k-IS object?

c© Immediate Snapshot vs Agreement problems 16

Definition: k-immediate snapshot object

It is an immediate snapshot object with a “natural” prop-
erty on the size on the set of pairs obtained by a process

• Termination: write snapshot() by a correct terminates

• Self-inclusion: ∀ i : 〈i, v〉 ∈ viewi

• Validity: ∀ i : (〈j, v〉 ∈ viewi)⇒ pj invoked write snapshot(v)

• Containment: ∀ i, j : (viewi ⊆ viewj) ∨ (viewj ⊆ viewi)

• Immediacy: ∀ i, j : (〈i, v〉 ∈ viewj) ∧ (〈j, v′〉 ∈ viewi) ⇒ (viewi = viewj)

• Output size: for any pi: |viewi| ≥ n− k

c© Immediate Snapshot vs Agreement problems 17

On the size of the returned set

• Immediate snapshot object

⋆ Any set view is such that |view| ≥ 1

⋆ Can be implemented in CARWn,t[t = n−1] [BG93]

• k-immediate snapshot object

⋆ Any set view is such that |view| ≥ n− k
(more information obtained by a process)

⋆ (n− 1)-IS object = basic immediate snapshot

⋆ Can k-IS be implemented when t < n− 1?

c© Immediate Snapshot vs Agreement problems 18

A previous result

It is impossible to implement

t-resilient t-immediate snapshot

in CARWn,t[1 ≤ t < n− 1]

t-Resilient immediate snapshot is impossible.
C. Delporte and H. Fauconnier, S. Rajsbaum, M. Raynal
Proc. 23nd Int’l Colloquium on Structural Information
and Communication Complexity (SIROCCO’16), Springer
LNCS 9988, pp. 177-191 (2016)

c© Immediate Snapshot vs Agreement problems 19

Two impossibility results

• Consensus impossibility in CARWn,t[t ≥ 1]

• t-IS impossibility in CARWn,t[t < n− 1]

1 2

1 ≤ t ≤ n− 1
CONS

t-IS
1 ≤ t < n− 1

n− 1

c© Immediate Snapshot vs Agreement problems 20

Preliminary theorems

• A property associated with k-IS objects:

Let ℓ ≥ n − k be the size of the smallest view (view)
obtained by a process.
There is a set S of processes such that |S| = ℓ and

each process of S obtains view or crashes during its
invocation of write snapshotk()

• A simple impossibility associated with k-IS objects:

k-IS cannot be implemented in CARWn,t[k < t]

• A stronger impossibility associated with k-IS objects:

If k < n− 1:
k-IS cannot be implemented in CARWn,t[1 ≤ t < n]

c© Immediate Snapshot vs Agreement problems 21

Part 3

Relations between

k-Immediate snapshot

and x-set Agreement

in CARWn,t[t < n− 1]

c© Immediate Snapshot vs Agreement problems 22

AIM

Understand their relative impossibility

• Are all/some x-SA (resp. k-IS) objects “more
impossible” than all/some k-IS (resp. x-SA)?

• Are all/some x-SA (resp. k-IS) objects “less
impossible” than all/some k-IS (resp. x-SA)?

• Which is their cartography (possibility, impos-
sibility, reductions)?

• Compare/rank impossibility classes

• Etc.

c© Immediate Snapshot vs Agreement problems 23

From k-IS to x-SA

System model: CARWn,t[1 ≤ t ≤ k < n− 1, k-IS], n = 9

From k-IS to x-SA with x = max(1, t+ k − (n− 2))

k → 1 2 3 < n/2 n− 4 n− 3 n− 2 n− 1
t ↓ 1 2 3 4 5≥ n/2 6 7 8

1 1-SA 1-SA 1-SA 1-SA 1-SA 1-SA 1-SA 2-SA
2 1-SA 1-SA 1-SA 1-SA 1-SA 2-SA 3-SA
3 1-SA 1-SA 1-SA 2-SA 3-SA 4-SA

4 < n/2 1-SA 2-SA 3-SA 4-SA 5-SA

5 ≥ n/2 3-SA 4-SA 5-SA 6-SA

6 5-SA 6-SA 7-SA
7 = n− 4 7-SA 8-SA
8 = n− 1 9-SA

c© Immediate Snapshot vs Agreement problems 24

From k-IS to x-SA: reduction algorithm

System model: CARWn,t[1 ≤ t ≤ k < n− 1, k-IS]

x = max(1, k + t− (n− 2))

One k-IS object: KIS

An array of SWMR atomic registers: VIEW [1..n] init ⊥

operation proposex(v) is
viewi← KIS .write snapshotk(v);
V IEW [i]← viewi;
wait(|{ j such that V IEW [j] 6= ⊥}| = n− t);
let view be the smallest of the previous (n− t) views;
return(smallest proposed value in view)

end operation.

c© Immediate Snapshot vs Agreement problems 25

From CONS (1-SA) to k-IS

System model: CARWn,t[1 ≤ t ≤ k < n− 1,CONS]

n = 9 processes

k→ 1 2 3 n− 3 n− 2 n− 1
t ↓ 1 2 3 4 5 6 7 8

1 1-IS 2-IS 3-IS 4-IS 5-IS (n− 3)-IS (n− 2)-IS (n− 1)-IS
2 2-IS 3-IS 4-IS 5-IS (n− 3)-IS (n− 2)-IS (n− 1)-IS
3 3-IS 4-IS 5-IS (n− 3)-IS (n− 2)-IS (n− 1)-IS

4 < n/2 4-IS 5-IS (n− 3)-IS (n− 2)-IS (n− 1)-IS
5 ≥ n/2 5-IS (n− 3)-IS (n− 2)-IS (n− 1)-IS
6 = n− 3 (n− 3)-IS (n− 2)-IS (n− 1)-IS
7 = n− 2 (n− 2)-IS (n− 1)-IS
8 = n− 1 (n− 1)-IS

c© Immediate Snapshot vs Agreement problems 26

From CONS to k-IS (1)

System model: CARWn,t[1 ≤ t ≤ k < n− 1,CONS]

• REG[1..n]: array of SWMR atomic registers

• CONS [(n−t)..n]: consensus objects (tolerating t crashes)

⋆ Reduction of k-IS to CONS: based on an iteration

⋆ Aim of iteration ℓ: obtain a view with (n−t+ℓ) pairs

c© Immediate Snapshot vs Agreement problems 27

From CONS to k-IS (2)

System model: CARWn,t[1 ≤ t ≤ k < n− 1,CONS]

operation write snapshotk(v) is
REG[i]← v; viewi← ∅; deci ← ∅; ℓ← −1; launch T1 and T2.

task T1 is
repeat ℓ← ℓ+1;

wait
(

∃ a set auxi: (deci ⊂ auxi) ∧ (|auxi| = n− t+ ℓ)

∧ (auxi ⊆ {〈j,REG[j]〉 such that REG[j] 6= ⊥})
)

;

deci ← CONS [n− t+ ℓ].propose1(auxi);
if (〈i, vi〉 ∈ deci) ∧ (viewi = ∅) then viewi← deci end if

until (ℓ = t) end repeat
end task T1.

task T2 is wait(viewi 6= ∅); return(viewi) end task T2.

c© Immediate Snapshot vs Agreement problems 28

Combining the previous results

k-IS and CONS: equivalent when (t < n/2) ∧ (t+ k ≤ n− 1)

1 2 < n/2 (n− 2)≥ n/2 (n− 1)

≥ n/2

(n− 2)

(n− 1)

2
1

< n/2

t

k

c© Immediate Snapshot vs Agreement problems 29

When CONS is stronger than k-IS

CONS stronger than k-IS when (n/2 ≤ t ≤ k < n− 1)

1 2 < n/2 (n− 2)≥ n/2 (n− 1)

≥ n/2

(n− 2)

(n− 1)

2
1

< n/2

t

k

c© Immediate Snapshot vs Agreement problems 30

CONCLUSION

c© Immediate Snapshot vs Agreement problems 31

What has been learned

• Impossibility of t-resilient k-immediate snapshot objects

• A model with less failures does not necessarily help!

⋆ The assumption “at most t < n − 1 processes may
crash” does not provide us with additional computa-
tional power to implement a t-IS object

⋆ ⇒ limits of the t-crash iterated model

• A computability map of objects impossible to implement
in the wait-free read/write models

• Relations between agreement and synchronization

c© Immediate Snapshot vs Agreement problems 32

Open problems at the heart of DC computability

• Direction “from k-IS to x-SA”
Is it possible to implement x-SA objects, with 1 ≤ x <
t + k − (n − 2), in t-crash n-process systems enriched
with k-IS objects?

Conjecture: the answer to this question is no

• Direction “from x-SA to k-IS”
Which k-IS objects can be implemented from x-SA ob-
jects in a t-crash n-process read/write system?

Conjecture: x-SA objects (x > 1) allows to build k-IS
objects only for the pairs (t, k) satisfying x ≤ t+k−(n−2)
(see the first table)

c© Immediate Snapshot vs Agreement problems 33

