
Communication
Using Faulty Beeps

Avery Miller
University of Manitoba

Andrzej Pelc
Université du Québec en Outaouais

 Kokouvi Hounkanli
Université du Québec en Outaouais

Talk Outline

1. A Message-Passing Model (barely...)

2. Motivation

3. Literature

4. Synchronization and Consensus in a Faulty MAC

5. Open Questions

Beeping

A network of n processes, modeled as a graph

Time is synchronous: slots with aligned boundaries, no
global clock

In each slot, a process can transmit or listen

Rather than transmitting a binary string, each
transmission is a beep

Beeping

In slot t,

if process v is beeping, then it receives nothing in slot t

if process v is listening, and no neighbouring process beeps,
then v receives nothing in slot t

if process v is listening, and one or more neighbouring
processes beep, then v receives a beep in slot t

Note: this is less communication than sending single-bit
messages

Limitations

Beeps are not additive: simultaneous beeps aren't
"louder" than a single beep, so can't distinguish number
of transmitting neighbours

Even if only one process beeps, the identity of the
transmitter is not known

The only thing a listening process can distinguish: do I
hear noise or not?

A transmitting process cannot distinguish anything.

MAC

B = Beeping Process

= Beep Heard

MAC

B = Beeping Process

= Beep Heard

B

MAC

B = Beeping Process

= Beep Heard

B B B

Talk Outline

1. A Message-Passing Model (barely...)

2. Motivation

3. Literature

4. Synchronization and Consensus in a Faulty MAC

5. Open Questions

Why?

Curiosity: what can we do with the most primitive kind
of communication?

Application to challenging environments: what can we
accomplish when very little spectrum/bandwidth/
infrastructure is available? Jamming?

Modeling natural processes: very primitive coordination/
communication primitives in nature, which arguably
don't send binary strings (fireflies, neurons, others?)

Talk Outline

1. A Message-Passing Model (barely...)

2. Motivation

3. Literature

4. Synchronization and Consensus in a Faulty MAC

5. Open Questions

Results in Beeping Model

Interval colouring [Cornejo, Kuhn DISC 2010]

Maximum Independent Set [Afek et al. DISC 2011]

Conflict Resolution, Membership Problem [Huang, Moscibroda DISC 2013]

Leader election [Ghaffari, Haeupler SODA 2013] [Förster et al. DISC 2014]

Broadcast, Multi-broadcast, Gossiping [Czumaj, Davies OPODIS 2015]

Dominating Set [Yu et al. INFOCOM 2015]

Randomized space complexity [Gilbert, Newport DISC 2015]

Talk Outline

1. A Message-Passing Model (barely...)

2. Motivation

3. Literature

4. Synchronization and Consensus in a Faulty MAC

5. Open Questions

Global Synchronization

Consider a multiple-access channel (a clique network)
with anonymous processes.

Our assumption: an adversary may wake up any set of
processes in any slot. Upon waking up, each process
starts executing its algorithm immediately with local
clock equal to 0.

Our goal: A deterministic algorithm that terminates at all
n processes at the same global time. The first slot after
termination is time 0 of an established global clock.

Model: Wake-up

Two (distinguishable) kinds of wake-up

1. Adversary

2. Transmission on channel

Only adversary wake-up ➯ impossible

Add wake-up by transmission ➯ trivial

Model: Faults

In each slot, with known constant probability p, the
channel can fail

Failure slot:

No beeps are heard

Transmitter: never knows whether beep succeeded

Receiver: can’t tell apart silence vs. failure

MAC

B = Beeping Process

= Beep Heard

B B B

Challenges

Initial idea: Synchronize to first heard beep, time t

Issue: Beeper at time t does not know if successful…

Solution? Provide feedback at some time t’ > t

Issue: Beeper at t’ does not know if successful…

… ad infinitum?

Issue: distinguish between “first” vs. “feedback” beep?

More Challenges

Processes are anonymous.

Issue: What if adversary wakes up all processes at the
same time?

Number of processes is unknown.

Issue: What if process is alone?

The GLOBALSYNC Algorithm

Theorem: Fix any constant ϵ > 0. With probability at
least 1-ϵ, all processes terminate GLOBALSYNC in the
same global round, which occurs O(1) rounds after the
first wake-up.

That is, our algorithm runs in constant time and fails
with probability at most ϵ for any given constant ϵ > 0.

(multiply all bounds in this talk by (log ε)-factor if you want the bound in terms of ε)

The GLOBALSYNC Algorithm

Alarm Beeps: when woken up spontaneously, beep
periodically, trying to wake up other processes.

The interval between consecutive alarm beeps increases,
to avoid clever adversary.

Between alarm beeps, wait and listen for feedback beeps.

If large number of unanswered alarm beeps, terminate
algorithm at next scheduled alarm beep.
W.h.p: lone process or all woken up at same time

The GLOBALSYNC Algorithm

Let constant γ > 0 such that pγ < ϵ/4.

Remark: in a sequence of γ consecutive beeps, at least
one occurs in a fault-free round with high probability.

When alarm beeper hears feedback:
listen 2γ rounds then beeps for 2γ rounds.

When woken up by a beep:
listen 2γ rounds and then beep for 2γ rounds.

The GLOBALSYNC Algorithm

Terminate in round r+4γ+1, where r is first successful alarm beep.

What is r?

Divide time into phases of length 2γ. Let t be first beep heard by v.

Single beep in the phase ⇒ t is alarm beep

Multiple beeps in the phase ⇒ t is feedback beep

If t is alarm beep, v sets r = t.
Else, v sets r to be its most recent transmit round.

Application:
(Weak) Consensus

The task:

Each process receives an input value

All processes must output the same value

Validity: if all inputs are the same, then output = input

In general, output can differ from all inputs (no
integrity)

The Algorithm

Essentially set disjointness: as soon as the processes detect two different
inputs, they output a known default value. If no difference detected, all
processes output their own input value.

First, synchronize clocks using GLOBALSYNC

Each process beeps out its own input value in binary: 1 = beep, 0 = listen

As we did in GLOBALSYNC, proceed in rounds of length γ to ensure that
a successful beep occurs in each round with high probability.

As soon difference is spotted, output default value, else, output own input
value

Encoding

For this to work, need to re-encode input values

replace each 0 with 01, each 1 with 10, end with 11

It follows that:

No encoded value is a prefix of another

At the first bit where original inputs differ, all nodes
hear a beep in one of the two corresponding rounds

Bounds

Theorem: Fix any constant ϵ > 0. With error probability
at most ϵ, consensus can be solved deterministically
using beeps in a fault-prone MAC in time O(log w),
where w is the smallest of all input values of processes
in the channel.

Theorem: Deterministic consensus in a fault-free MAC
with beeps requires Ω(log w) rounds, where w is the
smallest of all input values of processes in the channel.

Talk Outline

1. A Message-Passing Model (barely...)

2. Motivation

3. Literature

4. Synchronization and Consensus in a Faulty MAC

5. Open Questions

Open Questions

Other fault models:

individual failures: a beep is not sent or not received

failure probability p is not known

adversarial

Multi-hop network instead of MAC

Randomized algorithms

Consensus with strong validity

