The Inverse Function Theorems of Lawrence M. Graves

Asen L. Dontchev

Mathematical Reviews (AMS) and the University of Michigan

Supported by NSF Grant 156229
Hi, here is a question I need your help with.

Let T be tangent to ellipse E at f, show that for p in a neighbourhood of f,

$$||P_E(p) - P_T(p)|| = o(||p - f||).$$

That is; P_T is the linearisation of P_E at f and

$$||P_E(p) - P_T(p)||/||p - f|| \to 0, \quad \text{as } p \to f.$$

Since projection onto a line L is linear this will let us show that the D-R operator
The theorems

- The Hildebrand-Graves theorem (1927)
- The (Lyusternik-) Graves theorem (1950)
- The Bartle-Graves theorem (1952)

Lawrence Murry Graves (1896–1973)
Lipschitz modulus

\[\text{lip}(f; \bar{x}) := \limsup_{\substack{x', x \to \bar{x}, \atop x \neq x'}} \frac{\|f(x') - f(x)\|}{\|x' - x\|}. \]

Theorem (Hildebrand–Graves, TAMS 29: 127–153).

Let \(X \) be a Banach space and consider a function \(f : X \to X \) and a linear bounded mapping \(A : X \to X \) which is invertible. Suppose that

\[\text{lip}(f - A; \bar{x}) \cdot \|A^{-1}\| < 1. \]

Then \(f \) is strongly regular at \(\bar{x} \) for \(f(\bar{x}) \).

Strong regularity: A mapping \(F : X \rightrightarrows X \) is said to be strongly regular at \(\bar{x} \) for \(\bar{y} \) when \((\bar{x}, \bar{y}) \in \text{gph} \ F \) and \(F^{-1} \) has a single-valued localization around \(\bar{y} \) for \(\bar{x} \) which is Lipschitz continuous.
The H-G IFT implies the classical (Dini) IFT

\[f \text{ is strictly differentiable at } \bar{x} \iff \text{lip}(f - Df(\bar{x}); \bar{x}) = 0. \]

The classical (Dini) IFT

Let \(f : \mathbb{R}^n \rightarrow \mathbb{R}^n \) be strictly differentiable at \(\bar{x} \). Then \(f \) is strongly regular at \(\bar{x} \) if and only if the derivative \(Df(\bar{x}) \) is nonsingular.
Clarke’s generalized Jacobian $\partial f(x)$

Theorem (F. Clarke, Pac. J. Math. 64:97–102).
Consider a function $f : \mathbb{R}^n \to \mathbb{R}^n$ which is Lipschitz continuous around \bar{x} and suppose that all matrices in $\partial f(\bar{x})$ are nonsingular. Then f is strongly regular at \bar{x}.

Let X be a Banach spaces and consider a function $f : X \to X$ which is strictly differentiable at \bar{x} and any set-valued mapping $F : X \rightrightarrows X$. Let $\bar{y} \in f(\bar{x}) + F(\bar{x})$. Then $f + F$ is strongly regular at \bar{x} for \bar{y} if and only if the mapping

$$y \mapsto (f(\bar{x}) + Df(\bar{x})(\cdot - \bar{x}) + F(\cdot))^{-1}(y)$$

has the same property.
Theorem (A. Izmailov, MP (A) 147:581–590).

Let \(f : \mathbb{R}^n \to \mathbb{R}^n \) be Lipschitz continuous around \(\bar{x} \), let \(F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n \), and let \(\bar{y} \in f(\bar{x}) + F(\bar{x}) \). Suppose that for every \(A \in \partial f(\bar{x}) \) the mapping \(f(\bar{x}) + A(\cdot - \bar{x}) + F(\cdot) \) is strongly regular at \(\bar{x} \) for \(\bar{y} \). Then \((f + F)\) has the same property.

Lyusternik-Graves theorem (1934-1950)

Theorem.

Let X, Y be Banach spaces and consider a function $f : X \to Y$ and a point $\bar{x} \in \text{int dom } f$ along with a bounded linear mapping $A : X \to Y$ which is surjective, such that

$$\text{lip}(f - A; \bar{x}) \cdot \|A^{-1}\|^- < 1,$$

where the inner “norm” of A is defined as

$$\|A^{-1}\|^- := \sup_{\|y\| \leq 1} \inf_{x \in A^{-1}(y)} \|x\|.$$

Then f is **metrically regular** at \bar{x} for $f(\bar{x})$.

Metric Regularity

A mapping $F : X \rightrightarrows Y$ is said to be metrically regular at \bar{x} for \bar{y} when $\bar{y} \in F(\bar{x})$, $\text{gph } F$ is locally closed at (\bar{x}, \bar{y}) and there is a constant $\tau \geq 0$ together with neighborhoods U of \bar{x} and V of \bar{y} such that

$$d(x, F^{-1}(y)) \leq \tau d(y, F(x)) \quad \text{for every } (x, y) \in U \times V.$$

The infimum of all constants $\tau \geq 0$ for which this inequality holds is the regularity modulus of F at \bar{x} for \bar{y} denoted by $\text{reg}(F; \bar{x} \mid \bar{y})$.

Equivalent to the Aubin property of the inverse:

$$F^{-1}(x) \cap V \subset F^{-1}(x') + \tau \rho(x, x') B$$
Theorem.

Let X be a complete metric space, Y be a linear metric space with shift-invariant metric. Consider a mapping $F : X \rightrightarrows Y$ and a function $f : X \to Y$ such that there exist nonnegative scalars κ and μ with

$$\kappa \mu < 1, \quad \text{reg}(F; \bar{x} | \bar{y}) \leq \kappa \quad \text{and} \quad \text{lip}(f; \bar{x}) \leq \mu.$$

Then $f + F$ is [strongly] metrically regular at \bar{x} for $\bar{y} + g(\bar{x})$ with

$$\text{reg}(g + F; \bar{x} | \bar{y}) \leq (\kappa^{-1} - \mu)^{-1}.$$

Open problem. Is there a Lyustenik-Graves theorem in nonlinear metric spaces?

Let \(f : \mathbb{R}^n \rightarrow \mathbb{R}^m \) be Lipschitz continuous around \(\bar{x} \), and every \(A \in \partial f(\bar{x}) \) is surjective. Then \(f \) is metrically regular at \(\bar{x} \) for \(f(\bar{x}) \).

Extension to mapping of the form \(f + F \) acting in Banach spaces: R. Cibulka, AD and V. Veliov, (SICON 54: 3273–3296, 2016)
Bartle-Graves theorem (1952)

Let X and Y be Banach spaces and let $f : X \to Y$ be a function which is strictly differentiable at \bar{x} and such that the derivative $Df(\bar{x})$ is surjective. Then there is a neighborhood V of $f(\bar{x})$ along with a constant $\gamma > 0$ such that f^{-1} has a continuous selection s on V with the property

$$\|s(y) - \bar{x}\| \leq \gamma \|y - f(\bar{x})\| \quad \text{for every } y \in V.$$

Consider a mapping $F : X \rightrightarrows Y$ and any $(\bar{x}, \bar{y}) \in \text{gph } F$ and suppose that for some $c > 0$ the mapping $B_c(\bar{y}) \ni y \mapsto F^{-1}(y) \cap B_c(\bar{x})$ is closed-convex-valued. Consider also a function $f : X \to Y$ with $\bar{x} \in \text{int dom } f$. Let κ and μ be nonnegative constants such that

$$\kappa \mu < 1, \quad \text{reg}(F; \bar{x} | \bar{y}) \leq \kappa \quad \text{and} \quad \text{lip}(f; \bar{x}) \leq \mu.$$

Then for every $\gamma > \kappa/(1 - \kappa \mu)$ the mapping $(f + F)^{-1}$ has a continuous local selection s around $f(\bar{x}) + \bar{y}$ for \bar{x} with the property

$$\|s(y) - \bar{x}\| \leq \gamma \|y - \bar{y}\| \quad \text{for every } y \in V.$$
A nonsmooth Bartle-Graves theorem?

Conjecture.

Consider a function $f : \mathbb{R}^n \to \mathbb{R}^m$ which is Lipschitz continuous around \bar{x} and a convex and closed set $C \subset \mathbb{R}^n$ and suppose that for all matrices A in $\partial f(\bar{x})$ the mapping

$$x \mapsto f(\bar{x}) + A(x - \bar{x}) + C$$

is metrically regular at \bar{x} for \bar{y}. Then $(f + C)^{-1}$ has a continuous local selection around \bar{y} for \bar{x} which is calm at \bar{y}.
Newton Method for Variational Inequalities

Variational inequality (VI): find $x \in C$ such that

$$f(x) + N_C(x) \ni 0,$$

where $N_C(x)$ the normal cone to C at x:

$$N_C(x) = \{ w | \langle w, y - x \rangle \leq 0 \text{ for all } y \in C \}$$

Newton’s method for VI: at each step solve a linear VI:

$$f(x_k) + Df(x_k)(x_{k+1} - x_k) + N_C(x_{k+1}) \ni 0$$

Josephy (1979): If $f + N_C$ is strongly regular at \bar{x} for 0 then there exists a neighborhood O of \bar{x} such that for every $x_0 \in O$ the method generates a unique in O sequence and this sequence is superlinearly convergent to \bar{x}.
Strong Regularity for Newton’s Method

Newton method for a parameterized VI

\[x_0 = a, \quad f(x_k) + Df(x_k)(x_{k+1} - x_k) + N_C(x_{k+1}) \ni p \]

Consider the mapping

\[R^n \times R^n \ni (a, p) \mapsto \Xi(a, p) = \left\{ \{x_k\} \in l_\infty(R^n) \mid x_0 = a, \right. \]

\[f(x_k) + Df(x_k)(x_{k+1} - x_k) + N_C(x_{k+1}) \ni p, \quad k = 1, 2, \ldots \}

Theorem (with RTR (2010) and Aragon et al. (2011)).

Let \(f(\bar{x}) + N_C(\bar{x}) \ni 0 \); then \(\{\bar{x}\} \in \Xi(\bar{x}, 0) \). The mapping \(\Xi \) has a Lipschitz continuous single-valued localization around \((\bar{x}, 0) \) for \(\{\bar{x}\} \) each value of which is a superlinearly convergent sequence to a solution \(x(p) \) of \(f(x) + N_C(x) \ni p \) if and only if \(f + N_C \) is strongly regular at \(\bar{x} \) for 0.
Open problem

Conjecture.

Let f be Lipschitz continuous around \bar{x} for 0 and for each $A \in \partial f(\bar{x})$ the mapping

$$x \mapsto f(\bar{x}) + A(x - \bar{x}) + N_C(x)$$

is strongly regular at \bar{x} for 0. Then the mapping

$$\mathbb{R}^n \times \mathbb{R}^n \ni (a, p) \mapsto \text{the set of all sequence } \{x_k\} \in l_\infty(\mathbb{R}^n) \text{ such that } x_0 = a, \text{ and }$$

$$f(x_k) + A(x_{k+1} - x_k) + N_C(x_{k+1}) \ni p$$

for some $A \in \partial f(x_k) \quad k = 1, 2, \ldots$, has a Lipschitz continuous single-valued localization around $(\bar{x}, 0)$ for $\{\bar{x}\}$ each value of which is a superlinearly convergent sequence to a solution $x(p)$ of $f(x) + N_C(x) \ni p$.
Muchas Gracias!