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Introduction

> It is well-accepted that the range of plants and animals is
changing in response to change in climate

> Large literature on species distribution models, explaining
species presence and abundance, introducing notions like
habitat models, climate envelopes, range limits, and niches,
presence-absence or abundance surfaces.

» Also a large literature attempting to explain how species
distribution will change in response to a changing climate
scenario, e.g., species distribution models for trees to study
climate change impacts on forest biodiversity at regional scales

» Useful in understanding this process is to relate change in
climate over time to change in climate over space



A basic idea

» Working with a single climate variable - here temperature - we
can formalize the notion of velocity of climate change

» Informally, this index represents the instantaneous local
velocity along the earth's surface needed to maintain constant
temperature

» Expressed in km/yr over a large spatial region arising from
spatial change in °C/km and °C/yr

» Taking ratio of latter to former produces a velocity

» Initial work (Loarie et al., 2009) is crude. No explicit modeling

of the climate process, deterministic or stochastic; it is purely
descriptive.

» Fails to incorporate the joint linkage between temperature,
time, and space

» Ad hoc uncertainty arising from variability in the ensemble of
climate scenarios rather than from model mis-specification
and measurement error.



cont.

Their basic idea:

let Temp = T = f(t) where t is time, i.e., a general
relationship capturing change in temperature across time, say
the past 100 years

let Temp = T = g(y) where y is latitude, i.e., a general
relationship capturing change in temperature across change in

latitude, say continental

dT dT
Suppose we calculate % and -

dT
Then the ratio, % = % (for a common dT) is defined as the
dy
velocity of climate change in this case, in the latitudinal

direction at a given t and y



Clarification
» We can illuminate this a bit more with finite differences and a
simple figure

of — f(t+At) —f(t)/At Ay f(t+ At) —f(t)
~gly+Ay)—gly)/dy  Atg(y+Ay)—g(y)

» The second fraction in the rightmost term is 1 (common
ATemp), as the suggestive figure below shows.

» Moreover, with a common “delta” temp and given a starting t
along with At, aligning with a given y, Ay is determined.

» So, Ay is the change in lat needed to provide the change in
temp that arises from t to t + At.

» With finite differences, many A temperatures are 0 so an
arbitrary correction to obtain finite velocities



The basic idea
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Our contribution

> We cast the development of velocity in a fully stochastic
framework

» We recognize that, at the least, we should write T(x,y,t),
i.e., temperature is a function of both location and time.

» This legitimizes the idea of instantaneous velocity and
_ 0T/ot
vel= 57173y,

» We view the temperature surface as random, model it
coherently, attach uncertainty, obtain full inference

» We specify a rich model for T(x,y, t), incorporating spatial
structure, anticipating that gradients, hence velocities, at
close locations should be similar



cont.

We calculate infinitesimal derivatives through a “parametric”
specification for E(T(x,y, t)) rather than descriptive finite
difference as in GIS calculations (eight neighbor slope and
aspect)

We obtain inference about gradients and velocities as a
post-model fitting exercise

We can obtain a temperature gradient at any time and
location; we can obtain a spatial gradient at any time and in
any direction

We can obtain velocity in any direction at any location and
also the direction of minimum velocity

Note that direction of maximum velocity is not meaningful
mathematically or ecologically



A temperature model

» Evidently, can build extremely complex temperature models.
The one we propose is developed to capture temperature
response at high spatial resolution

» We model annual average temperature using a linear mixed
model with spatially correlated random effects.

> The model is inherently a hierarchical model as it combines
two sources of data, annual average temperature and
elevation.



cont.

» Again, T(x,y,t) is the annual average temperature for
location (x,y) at time t, x is the easting coordinate, y is the
northing coordinate. Further, E(x,y) is elevation at location
(x,¥)-

» We model T(x,y,t) =

Bo + Bit + Pay + B3Z(x,y) + Bo(x,y) + Bi(x,y)t + e(x,y, t)

and

E(x,y) =p+ Z(x,y) +n(x,y)



cont.

Here, €(x,y, t) ~ N(0,0%) and n(x,y) ~ N(0,0%).

Both 5o(x, y) and S1(x,y) are spatial random effects
(intercept and slope) that account for the remaining spatial
variation in annual average temperature and rate of change in
annual temperature over time.

The latent process, Z(x, y) provides a spatially differentiable

surface in elevation, needed since we want the gradients and

velocities to be a function of elevation. So, we model E(x, y)
with a Gaussian process that allows explicit differentiability

So, Z(x,y) is a smooth centering surface while the E(x, y)
surface is not. Hopefully OK over a large spatial scale

Remarks: Do not need a “longitude” term with coefficient;
captured by elevation component

Eastings and northings rather than longitude and latitude



A key point

>

Two paths for the three spatial processes, So(x,y), Si(x,y)
and Z(x,y).

(i) model them as customary Gaussian processes, possibly
dependent. Adopt a covariance function such that process
realizations are mean square differentiable, e.g. Matérn with
v > 1. Calculate spatial gradients (as developed in Banerjee
et al. (2003))

(i) model them using dimension reduction, i.e., as parametric
linear transformations of a finite set of random variables at
fixed locations, enabling explicit gradient calculation

Adopt the latter approach due to computational necessity
(temperature at > 21,000 gridded locations) and use the
predictive process for dimension reduction.

Coregionalization to connect slope and intercept processes
independent of latent elevation process



The datasets
» We apply the multivariate predictive process model to
temperature data for the eastern United States.

» Temperature data is from the Parameter-elevation Regression
on Independent Slopes Model (PRISM) - average annual
temperature (°C) for the period 1963 to 2012. Data is on 2.5
minute resolution, which we aggregate to 7.5 minute, or 1/8
degree resolution (approx 11km boxes).

» Centers of grid boxes as observed locations, average of the
annual temperatures as the observations.

» Our dataset consists of 21,202 spatial locations.

» ETOPOQOL1 elevation dataset, a 1 arc-minute global model of
the earth’s surface. Elevation at each of the observed
temperature locations.

» Albers Equal-Area Conic projection to Albers coordinates
using parallels of 29.5° and 45°. All distances are Euclidean
distances under this projection.



Variability in annual temperature and elevation

Locations and latitudinal bands Annual average temperature Elevation across latitudinal bands
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The predictive process

» For the spatial process for elevation, let
Z=(Z(x1,%1),---,Z(Xn,yn)) where (x;,y;), i=1,...,n are
the observed locations.

» Let Z* = (Z(x},y7),-- -, Z(x%5, y5)) where (5. ¥7),
j=1,..., m are the knot locations of the predictive
processes. Then,

Z=Cyp(Cpr) 2

Z* ~ GP(0, Cz+)

where Cy 5. is an n x m covariance matrix with (i, j)th
element equal to the correlation between Z(x;, y;) and
Z(x;',y;) and Cz« is the m x m covariance matrix of Z*.



cont.

» Correlation between two locations, (x;, y;) and (x;, y;), using
the Matérn correlation function with smoothness parameter,
v = 3/2, and decay parameter, ¢,.

» That is, the covariance between Z(x;, y;) and Z(x;,y;) at any
two points (x;, yi) and (x;, y;) is

COV(Z(thi)v Z(bej)) = 7—zzp(dij; ¢z)
=72 (14 ¢ dyj) exp~ =%

where dj; is the distance between locations (x;, ;) and (x;, ;)
and 72 is the spatial variance parameter.



Coregionalization

» The spatial random intercept and slope processes, 3, and 3,
are modeled with a bivariate predictive process using a linear
model of coregionalization (dependence anticipated).

» Let By, nx 1, and B;, n x 1, be defined as

HEEUr

» Here, Wy and W are independent spatial processes and

a 0 . . .
A= 1 is a 2 x 2 lower triangular matrix where
a1 axn

aj1 and apy are non-negative and ap; is any real number.



cont.

» We employ predictive processes on both Wy and W. Let
Wk - (Wk(Xl)yl)a ey Wk(Xm)/n)), and
= (Wi(x$,y5)s oo WX, vi)) for k= 0,1. Then,

Wi = C(CY) ' w
Wi ~ GP(0, C;)

where C; is the covariance matrix of W and W} and C} is
the covariance matrix of W.

» Again model correlation using the Matérn correlation function
with range parameter ¢, and scale parameter 7',3 fixed to 1 to
identify of A.

» Then, using the predictive processes Wo and Wl, we obtain

(Bo. By)' by setting [ g‘l) =[A®I] VNVZ‘I’ ]




Adjusting for predictive process bias

» Predictive process systematically underestimates the variance
of the spatial process at any location (x, y).

» We add the adjustment term, {(x,y), such that

E(x,y) = p+ Z(x,y) + C(x,y) + 7(x, y).

» The 7(x;, y;)'s are indep with mean 0 and variance
(Cz)ii — (C/z7z*(CZ*)71Cz,z*)ii

> Finally, using the predictive processes and the variance
adjustment to elevation, we obtain
T(vav t) = - - -
Bo + Bit + Bay + B3Z(x,y) + Bo(x,y) + Bi(x, y)t + e(x, y, t)
and N
E(x,y) = n+ Z(x,y) + C0x y) +1(x, y).



Calculating gradients

>

Temporal gradient: for the annual temperature model, the
temporal gradient for temperature change is the expected
change in temperature per year.

Spatial gradient in an arbitrary direction: for the annual
temperature model, the spatial gradient gives the expected
change in temperature per kilometer.

Can do this using the gradient in the easting direction
(OE(T(x,y,t))/0x), in the northing direction

(OE(T(x,y.t))/0y)
OE(T(x,y,t))/0x

)
Let VE(T(x.y.1) = < OE(T(x.y. 1))/ dy
the direction u, a unit vector is VE(T(x,y,t))"

Max gradient direction: VE(T(x,y, t))/|[VE(T(x,y,t))||
t)ll

). Gradient in

Magnitude of the max gradient is ||[VE(T(x,y,



Details

» Returning to the predictive processes, let P*, @*, and R*
each be m x m correlation matrices of Z*, Wy, and W7,
respectively, i.e.,

P4 = p(djk; ¢2), Qi = p(djki ¢0), R = p(djk; #1)

> ¢,, ¢o, and ¢ are decay parameters of the Matérn correlation
function with v =3/2and j,k=1,..., m.

» Further, define the m x 1 correlation vectors p(x, y), q(x,y),
and r(x, y) where the jth element of p(x,y) is the correlation
b(etwe)en Z(x,y) and Z*(x7, y}), similarly for q(x, y) and
r(x,y



cont.

» That is,

» Then, the expected annual average temperature at location

(x,y) and time t is N N
E(T(x,y,t)) = Bo+ Brt + Poy + B3Z(x,y) + Bo(x,y) +

Bi(x,y)t = Bo+Brt+Bay +BZ(x,y) +[1 t]A[ Holx,) ]
Wl(X7 Y)

The spatial and temporal gradients at location (x, y) and time

t are computed as the derivative of the E(T(x,y,t)) with

respect to x for the eastern direction, y for the northern

direction, or t for time.

OE(T (x,y,t))
X

IE(T(x,y,t))
0

is the spatial gradient in the x direction,

is the spatial gradient in the y direction, and

W is the gradient through time.



Temporal gradient

» The temporal gradient is

OE(T(x,y,t))

5t = Bitan q(x,y) T QT Witan r(x,y)TR*IW;

> A spatial Gaussian process arising as a sum of two
independent predictive processes



Spatial gradients

» Write the derivative of p;(x, y) with respect to x as

op:(x, 5
l%ydszWW&%ﬁmw

= ¥ (x — x*)e VTR

J
» Similarly, the derivative with respect to y is
Ip;(x, y) —¢zy/(x=xF)2+(y—y;)?
—%7—=—£W—ﬁk ’ o
0a;(xy)  dai(xy) Ir(xy) o 8rjé§7y)

» The derivatives —5=, —5-=—, —52=,
. . X Loy x
obtained in the same fashion.

can be




cont.

Then, the spatial gradients
computed as
ETHxD) — B30 p(x,y) TP 12" + (a1 +

at) 8Xq(x,y)TQ* wi + azzta%r(x,y)TF\’*_1 wi

and

78E(T3(;’y’t)) = 53%P(X7Y)TP*7IZ* + (a1 +
3211:)%q(x,y)-’—(?*_1 wg + azzt%r(x,y)TR*_l wi

These quantities give the expected change in temperature per
unit of distance in the x and y direction

aE(T(vavt)) and BE(T(Xayvt)) are
ox dy

We can compute gradients in arbitrary directions from these
gradients, as described above

Again, spatial GP’s



Finally, velocities

v

A climate velocity for annual temperature is the ratio of the
temporal gradient to the spatial gradient and is measured in
dist/time, in our case km/yr.

Velocity in direction u is
OE(T(x,y,t))/0t OE(T(x,y,t))/0t
VT(xy,t)Tu " wmOE(T(x,y,t))/0x+udE(T(x,y,t))/0y

A ratio of GP's, a Cauchy process

Minimum velocity is velocity in direction of max gradient and
is 9E(T(x.y,t))/0t
[IVE(T (x,y,0))ll

We summarize only with minimum velocity (interpret as
optimal adaptation), reduces concern regarding “0"
denominators



Again, the data

» Temperature data for the eastern United States.

» Temperature data is from the Parameter-elevation Regression
on Independent Slopes Model (PRISM) - average annual
temperature (°C) for the period 1963 to 2012.

» 21,202 spatial locations.

» ETOPOL1 elevation dataset at each of the observed
temperature locations.

» Model: T(x,y,t)=
Bo + Bit + Bay + B3Z(x,y) + Bo(x,y) + Bi(x, y)t + e(x, y, t)
and
E(x,y) =p+Z(x,y) +n(x,y)



Parameter estimates

Table: Posterior median and 95% credible intervals

Parameter Median 95% Credible Interval

Bo 12.72 (12.68, 12.75)
B1(time) 0.022 (0.019, 0.023)
Ba(lat) -0.862 (-0.866, -0.860)
B3(elev) -0.007 (-0.007, -0.007)
I 105.49 (99.89, 112.73)
o2 0.457 (0.455, 0.458)
a% 10

2 31,893 (30,593, 33,143)




Temperature change per year across the eastern US
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Spatial gradient of temperature across the southeast

. Maximum Spatial Gradient
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Directions of maximum spatial gradient
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Velocity of climate across the southeast for 2012

Velocity
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Uncertainty estimates of climate velocity
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Time series of velocity with credible intervals

Locations and latitudinal bands

Velocity time series Velocity time series
© @
—— mean S 7| = mean
- - 95%Cl - - 95%Cl
0 - -
©
e 4
< 4
) z z
3 S o g < |
£ H g3
= 2 2
3
~ 4
o
84
-
o 4 e 4
T T T T T T T T T T
1970 1980 1990 2000 2010 1970 1980 1990 2000 2010
N ! J ! ! Year Year

Longitude




Latitude

Posterior distribution of directional velocities for 2012
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