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Introduction

I It is well-accepted that the range of plants and animals is
changing in response to change in climate

I Large literature on species distribution models, explaining
species presence and abundance, introducing notions like
habitat models, climate envelopes, range limits, and niches,
presence-absence or abundance surfaces.

I Also a large literature attempting to explain how species
distribution will change in response to a changing climate
scenario, e.g., species distribution models for trees to study
climate change impacts on forest biodiversity at regional scales

I Useful in understanding this process is to relate change in
climate over time to change in climate over space



A basic idea
I Working with a single climate variable - here temperature - we

can formalize the notion of velocity of climate change

I Informally, this index represents the instantaneous local
velocity along the earth’s surface needed to maintain constant
temperature

I Expressed in km/yr over a large spatial region arising from
spatial change in oC/km and oC/yr

I Taking ratio of latter to former produces a velocity

I Initial work (Loarie et al., 2009) is crude. No explicit modeling
of the climate process, deterministic or stochastic; it is purely
descriptive.

I Fails to incorporate the joint linkage between temperature,
time, and space

I Ad hoc uncertainty arising from variability in the ensemble of
climate scenarios rather than from model mis-specification
and measurement error.



cont.

I Their basic idea:

I let Temp ≡ T = f (t) where t is time, i.e., a general
relationship capturing change in temperature across time, say
the past 100 years

I let Temp ≡ T = g(y) where y is latitude, i.e., a general
relationship capturing change in temperature across change in
latitude, say continental

I Suppose we calculate dT
dt and dT

dy .

I Then the ratio,
dT
dt
dT
dy

= dy
dt (for a common dT ) is defined as the

velocity of climate change in this case, in the latitudinal
direction at a given t and y



Clarification

I We can illuminate this a bit more with finite differences and a
simple figure

vel =
f (t + ∆t)− f (t)/∆t

g(y + ∆y)− g(y)/∆y
=

∆y

∆t

f (t + ∆t)− f (t)

g(y + ∆y)− g(y)

I The second fraction in the rightmost term is 1 (common
∆Temp), as the suggestive figure below shows.

I Moreover, with a common “delta” temp and given a starting t
along with ∆t, aligning with a given y , ∆y is determined.

I So, ∆y is the change in lat needed to provide the change in
temp that arises from t to t + ∆t.

I With finite differences, many ∆ temperatures are 0 so an
arbitrary correction to obtain finite velocities





Our contribution

I We cast the development of velocity in a fully stochastic
framework

I We recognize that, at the least, we should write T (x , y , t),
i.e., temperature is a function of both location and time.

I This legitimizes the idea of instantaneous velocity and
vel= ∂T/∂t

∂T/∂y

I We view the temperature surface as random, model it
coherently, attach uncertainty, obtain full inference

I We specify a rich model for T (x , y , t), incorporating spatial
structure, anticipating that gradients, hence velocities, at
close locations should be similar



cont.

I We calculate infinitesimal derivatives through a “parametric”
specification for E (T (x , y , t)) rather than descriptive finite
difference as in GIS calculations (eight neighbor slope and
aspect)

I We obtain inference about gradients and velocities as a
post-model fitting exercise

I We can obtain a temperature gradient at any time and
location; we can obtain a spatial gradient at any time and in
any direction

I We can obtain velocity in any direction at any location and
also the direction of minimum velocity

I Note that direction of maximum velocity is not meaningful
mathematically or ecologically



A temperature model

I Evidently, can build extremely complex temperature models.
The one we propose is developed to capture temperature
response at high spatial resolution

I We model annual average temperature using a linear mixed
model with spatially correlated random effects.

I The model is inherently a hierarchical model as it combines
two sources of data, annual average temperature and
elevation.



cont.

I Again, T (x , y , t) is the annual average temperature for
location (x , y) at time t, x is the easting coordinate, y is the
northing coordinate. Further, E (x , y) is elevation at location
(x , y).

I We model T (x , y , t) =

β0 + β1t + β2y + β3Z (x , y) + β0(x , y) + β1(x , y)t + ε(x , y , t)

and

E (x , y) = µ+ Z (x , y) + η(x , y)



cont.

I Here, ε(x , y , t) ∼ N(0, σ2T ) and η(x , y) ∼ N(0, σ2E ).

I Both β0(x , y) and β1(x , y) are spatial random effects
(intercept and slope) that account for the remaining spatial
variation in annual average temperature and rate of change in
annual temperature over time.

I The latent process, Z (x , y) provides a spatially differentiable
surface in elevation, needed since we want the gradients and
velocities to be a function of elevation. So, we model E (x , y)
with a Gaussian process that allows explicit differentiability

I So, Z (x , y) is a smooth centering surface while the E (x , y)
surface is not. Hopefully OK over a large spatial scale

I Remarks: Do not need a “longitude” term with coefficient;
captured by elevation component

I Eastings and northings rather than longitude and latitude



A key point
I Two paths for the three spatial processes, β0(x , y), β1(x , y)

and Z (x , y).

I (i) model them as customary Gaussian processes, possibly
dependent. Adopt a covariance function such that process
realizations are mean square differentiable, e.g. Matérn with
ν ≥ 1. Calculate spatial gradients (as developed in Banerjee
et al. (2003))

I (ii) model them using dimension reduction, i.e., as parametric
linear transformations of a finite set of random variables at
fixed locations, enabling explicit gradient calculation

I Adopt the latter approach due to computational necessity
(temperature at > 21, 000 gridded locations) and use the
predictive process for dimension reduction.

I Coregionalization to connect slope and intercept processes
independent of latent elevation process



The datasets
I We apply the multivariate predictive process model to

temperature data for the eastern United States.

I Temperature data is from the Parameter-elevation Regression
on Independent Slopes Model (PRISM) - average annual
temperature (◦C) for the period 1963 to 2012. Data is on 2.5
minute resolution, which we aggregate to 7.5 minute, or 1/8
degree resolution (approx 11km boxes).

I Centers of grid boxes as observed locations, average of the
annual temperatures as the observations.

I Our dataset consists of 21,202 spatial locations.

I ETOPO1 elevation dataset, a 1 arc-minute global model of
the earth’s surface. Elevation at each of the observed
temperature locations.

I Albers Equal-Area Conic projection to Albers coordinates
using parallels of 29.5◦ and 45◦. All distances are Euclidean
distances under this projection.



Variability in annual temperature and elevation
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The predictive process

I For the spatial process for elevation, let
Z = (Z (x1, y1), . . . ,Z (xn, yn))′ where (xi , yi ), i = 1, . . . , n are
the observed locations.

I Let Z ∗ = (Z (x∗1 , y
∗
1 ), . . . ,Z (x∗m, y

∗
m))′ where (xj , y

∗
j ),

j = 1, . . . ,m are the knot locations of the predictive
processes. Then,

Z̃ = C ′Z,Z∗(CZ∗)
−1Z∗

Z∗ ∼ GP(0,CZ∗)

where C
′
Z,Z∗ is an n ×m covariance matrix with (i , j)th

element equal to the correlation between Z (xi , yi ) and
Z (x∗j , y

∗
j ) and CZ∗ is the m ×m covariance matrix of Z∗.



cont.

I Correlation between two locations, (xi , yi ) and (xj , yj), using
the Matérn correlation function with smoothness parameter,
ν = 3/2, and decay parameter, φz .

I That is, the covariance between Z (xi , yi ) and Z (xj , yj) at any
two points (xi , yi ) and (xj , yj) is

Cov(Z (xi , yi ),Z (xj , yj)) = τ2z ρ(dij ;φz)

= τ2z (1 + φzdij) exp−φzdij

where dij is the distance between locations (xi , yi ) and (xj , yj)
and τ2z is the spatial variance parameter.



Coregionalization

I The spatial random intercept and slope processes, β0 and β1,
are modeled with a bivariate predictive process using a linear
model of coregionalization (dependence anticipated).

I Let β0, n × 1, and β1, n × 1, be defined as[
β0

β1

]
= [A⊗ I ]

[
W 0

W 1

]
I Here, W 0 and W 1 are independent spatial processes and

A =

(
a11 0
a21 a22

)
is a 2 × 2 lower triangular matrix where

a11 and a22 are non-negative and a21 is any real number.



cont.
I We employ predictive processes on both W 0 and W 1. Let
W k = (Wk(x1, y1), . . . ,Wk(xn, yn))′ and
W
∗
k = (Wk(x∗1 , y

∗
1 ), . . . ,Wk(x∗m, y

∗
m))′ for k = 0, 1. Then,

W̃ k = C ′k(C ∗k )−1W ∗
k

W
∗
k ∼ GP(0,C ∗k )

where C ′k is the covariance matrix of W k and W ∗
k and C ∗k is

the covariance matrix of W ∗
k .

I Again model correlation using the Matérn correlation function
with range parameter φk and scale parameter τ2k fixed to 1 to
identify of A.

I Then, using the predictive processes W̃ 0 and W̃ 1, we obtain

(β̃0, β̃1)′ by setting

[
β̃0

β̃1

]
= [A⊗ I ]

[
W̃ 0

W̃ 1

]
.



Adjusting for predictive process bias

I Predictive process systematically underestimates the variance
of the spatial process at any location (x , y).

I We add the adjustment term, ζ(x , y), such that

E (x , y) = µ+ Z̃ (x , y) + ζ(x , y) + η̃(x , y).

I The η̃(xi , yi )’s are indep with mean 0 and variance
(CZ)ii − (C ′

Z ,Z∗(CZ∗)
−1CZ ,Z∗)ii

I Finally, using the predictive processes and the variance
adjustment to elevation, we obtain
T (x , y , t) =
β0 + β1t + β2y + β3Z̃ (x , y) + β̃0(x , y) + β̃1(x , y)t + ε(x , y , t)
and
E (x , y) = µ+ Z̃ (x , y) + ζ(x , y) + η̃(x , y).



Calculating gradients
I Temporal gradient: for the annual temperature model, the

temporal gradient for temperature change is the expected
change in temperature per year.

I Spatial gradient in an arbitrary direction: for the annual
temperature model, the spatial gradient gives the expected
change in temperature per kilometer.

I Can do this using the gradient in the easting direction
(∂E (T (x , y , t))/∂x), in the northing direction
(∂E (T (x , y , t))/∂y)

I Let ∇E (T (x , y , t)) =

(
∂E (T (x , y , t))/∂x
∂E (T (x , y , t))/∂y

)
. Gradient in

the direction u, a unit vector is ∇E (T (x , y , t))Tu

I Max gradient direction: ∇E (T (x , y , t))/||∇E (T (x , y , t))||
I Magnitude of the max gradient is ||∇E (T (x , y , t))||



Details

I Returning to the predictive processes, let P∗, Q∗, and R∗

each be m ×m correlation matrices of Z ∗, W ∗
0, and W ∗

1,
respectively, i.e.,
P∗jk = ρ(djk ;φz),Q∗jk = ρ(djk ;φ0),R∗jk = ρ(djk ;φ1)

I φz , φ0, and φ1 are decay parameters of the Matérn correlation
function with ν = 3/2 and j , k = 1, . . . ,m.

I Further, define the m × 1 correlation vectors p(x , y), q(x , y),
and r(x , y) where the jth element of p(x , y) is the correlation
between Z (x , y) and Z ∗(x∗j , y

∗
j ), similarly for q(x , y) and

r(x , y)



cont.

I Then, the expected annual average temperature at location
(x , y) and time t is
E (T (x , y , t)) = β0 + β1t + β2y + β3Z̃ (x , y) + β̃0(x , y) +

β̃1(x , y)t = β0+β1t+β2y +β3Z̃ (x , y)+[1 t]A

[
W̃0(x , y)

W̃1(x , y)

]
I The spatial and temporal gradients at location (x , y) and time

t are computed as the derivative of the E (T (x , y , t)) with
respect to x for the eastern direction, y for the northern
direction, or t for time.

I That is, ∂E(T (x ,y ,t))
∂x is the spatial gradient in the x direction,

∂E(T (x ,y ,t))
∂y is the spatial gradient in the y direction, and

∂E(T (x ,y ,t))
∂t is the gradient through time.



Temporal gradient

I The temporal gradient is

∂E (T (x , y , t))

∂t
= β1+a21 q(x , y)TQ∗−1W ∗

0+a22 r(x , y)TR∗−1W ∗
1

I A spatial Gaussian process arising as a sum of two
independent predictive processes



Spatial gradients

I Write the derivative of pj(x , y) with respect to x as

∂pj(x , y)

∂x
=

∂

∂x
ρ((x , y), (x∗j , y

∗
j );φz)

= −φ2z(x − x∗j )e
−φz

√
(x−x∗j )2+(y−y∗j )2 .

I Similarly, the derivative with respect to y is

∂pj(x , y)

∂y
= −φ2z(y − y∗j )e

−φz
√

(x−x∗j )2+(y−y∗j )2 .

I The derivatives
∂qj (x ,y)

∂x ,
∂qj (x ,y)

∂y ,
∂rj (x ,y)
∂x , and

∂rj (x ,y)
∂y can be

obtained in the same fashion.



cont.

I Then, the spatial gradients ∂E(T (x ,y ,t))
∂x and ∂E(T (x ,y ,t))

∂y are
computed as
∂E(T (x ,y ,t))

∂x = β3
∂
∂x p(x , y)TP∗−1Z ∗ + (a11 +

a21t) ∂
∂x q(x , y)TQ∗−1W ∗

0 + a22t
∂
∂x r(x , y)TR∗−1W ∗

1

and
∂E(T (x ,y ,t))

∂y = β3
∂
∂y p(x , y)TP∗−1Z ∗ + (a11 +

a21t) ∂
∂y q(x , y)TQ∗−1W ∗

0 + a22t
∂
∂y r(x , y)TR∗−1W ∗

1

I These quantities give the expected change in temperature per
unit of distance in the x and y direction

I We can compute gradients in arbitrary directions from these
gradients, as described above

I Again, spatial GP’s



Finally, velocities

I A climate velocity for annual temperature is the ratio of the
temporal gradient to the spatial gradient and is measured in
dist/time, in our case km/yr.

I Velocity in direction u is
∂E(T (x ,y ,t))/∂t
∇T (x ,y ,t)Tu

= ∂E(T (x ,y ,t))/∂t
u1∂E(T (x ,y ,t))/∂x+u2∂E(T (x ,y ,t))/∂y

I A ratio of GP’s, a Cauchy process

I Minimum velocity is velocity in direction of max gradient and
is ∂E(T (x ,y ,t))/∂t
||∇E(T (x ,y ,t))||

I We summarize only with minimum velocity (interpret as
optimal adaptation), reduces concern regarding “0”
denominators



Again, the data

I Temperature data for the eastern United States.

I Temperature data is from the Parameter-elevation Regression
on Independent Slopes Model (PRISM) - average annual
temperature (◦C) for the period 1963 to 2012.

I 21,202 spatial locations.

I ETOPO1 elevation dataset at each of the observed
temperature locations.

I Model: T (x , y , t) =
β0 + β1t + β2y + β3Z (x , y) + β0(x , y) + β1(x , y)t + ε(x , y , t)
and
E (x , y) = µ+ Z (x , y) + η(x , y)



Parameter estimates

Table: Posterior median and 95% credible intervals

Parameter Median 95% Credible Interval

β0 12.72 (12.68, 12.75)
β1(time) 0.022 (0.019, 0.023)
β2(lat) -0.862 (-0.866, -0.860)
β3(elev) -0.007 (-0.007, -0.007)
µ 105.49 (99.89, 112.73)
σ2T 0.457 (0.455, 0.458)
σ2E 10
τ2Z 31,893 (30,593, 33,143)



Temperature change per year across the eastern US
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Spatial gradient of temperature across the southeast
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Directions of maximum spatial gradient
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Velocity of climate across the southeast for 2012
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Uncertainty estimates of climate velocity
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Time series of velocity with credible intervals
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Posterior distribution of directional velocities for 2012
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