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Normal probability density function

Standard Normal Distribution
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Normal quantile

Standard Normal Distribution
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Univariate quantile mapping
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Bivariate quantiles
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Bahadur representation of generalized spatial quantiles

Theorem

The following asymptotic Bahadur-type representation holds with
probability 1 for any u:

n'/2(Q(u) — Q(u)) = —n~V2H=18, + O(n~(149/4(log n)'/2(loglog n)(119)/4)

as n— oo.

(Apologies for not including the details.)



A few properties

» Computationally can be extremely simple, no limitations from
sample size and dimension (high p, low n allowed).

» Confidence sets based on generalized spatial quantiles can have
exact coverage.

» Works on infinite-dimensional spaces.

» Some generalized spatial quantiles have a one-to-one
relationship with the unit ball, like univariate quantiles.



Example: simulated data plots
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Figure: Simulated data with a few GSQ (covered areas are deliberately different)



What is data-depth?

» Suppose F is a cumulative distribution function corresponding to
the random variable X € R” .

» A data-depthis a function of RP and measures on RP such that
there exists 6 € RP such that

D(,F) > D(6+t(x—6),F)

forany x e R and and any t € (0,1).
» Multivariate quantiles naturally yield data-depths.



Example: a depth plot

Figure: Perspective and contour plots of projection depth on top, simplicial at bottom.



GSQ-depths are great for classification
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Figure: A simulated 2-class classification problem with GSQ-depth classifier



GSQ-depth based classification: some results

Table: Arcene classification without feature selection (neural nets did not

converge)

Method CPU Time | Accuracy
GSQ 3.67 0.925
Random Forest | 16714.20 0.895
SVM 966.86 0.842
LDA 0.28 0.74

Logit 0.35 0.69




Simultaneous model selection and inference in LM:

Data: {(Y;,x;)) e RxRPi=1,...,n.}. We want the best fitting
parsimonious linear regression model.
» Fit the largest model with all the p covariates, and get /3, with
(unknown) sampling distribution .

» Compute Aq = ED(j, Fp), the expected depth of 3 with respect
to its own distribution.

» Forj=1,...,p, define 3_; as 5, with j3; replaced by zero.
» Compute the expected data-depth

A =ED(B_j), Fn).

» Those variables for which A; < A, are the important ones and
these collectively form the most wonderful model ever!



Resampling step

Depth-based model selection

Compute and compare

Aj = ED(B(_j), Fn).

This involves two distributions, and we use resampling to approximate
this.

» The m-out-of-n (moon-bootstrap): Get a simple random sample
of size m, with replacement, from the data. Assume m — oo, and
m/n— 0as n— oc.

» An unusual Bayesian bootstrap: Generate resampling weights
Wi, ..., Wpi.i. d. ~ Gamma(a, 8), such that EW = 1,
VWi — 00 as n — oo. Use W; as a weight with the i-th
observation.

» Subsampling: Get a simple random sample of size m, without
replacement, from the data. Assume m — oo, and m/n — 0 as
n — oo. (Considerably less efficient.)



The data on monsoons

Figure: Air from the eastern Indian Ocean (yellow) and air descending over
Arabia (blue) converge in the Somali jet. Low pressure at 30S. {Courtesy:
UMn Climate Expeditions team.}



Variable dropped en(S—))

- Tmax 0.1490772
- X120W 0.2190159
- ELEVATION 0.2288938
- X120E 0.2290021
- ATT_Deg_Celsius 0.2371846
- X80E 0.2449195
- LATITUDE 0.2468698
-TNH 0.2538924
- Nino34 0.2541503
- X10W 0.2558397
- LONGITUDE 0.2563105
- X100E 0.2565388
- EAWR 0.2565687
- X70E 0.2596766
- v_wind_850 0.2604214
- X140E 0.2609039
- X40W 0.261159
- SolarFlux 0.2624313
- X160E 0.2626321
- EPNP 0.2630901
- TempAnomaly 0.2633658
- u_wind_850 0.2649837
- WP 0.2660394
<none> 0.2663496
- POL 0.2677756
- Tmin 0.268231

- X20E 0.2687891
-EA 0.2690791
- u_wind_200 0.2692731
- u_wind_600 0.2695297
-SCA 0.2700276
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Figure: Comparing full model rolling predictions with reduced models: (a)
Bias across years, (b) MSE across years.
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Figure: Comparing full model rolling predictions with reduced models: (c)
density plots for 2012, (d) stationwise residuals for 2012



A brief outline

» We consider 19 tests subjects, with 2 kinds of visuals tasks.

» Each subject went through 9 runs, where they saw faces or
scrambled images, and had to react.

» We fit a spatio-temporal model. Temporally, we fit a AR(5) with
quadratic drift. Spatially, we consider different layers nearest
neighbor voxels.

» We measure the degree of spatial dependency in different
regions of the brain.

» The figures below are for one subject in one run.
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Figure: Plot of significant p-values at 95% confidence level at the specified
cross-sections.



Figure: A smoothed surface obtained from the p-values clearly shows high
spatial dependence in right optic nerve, auditory nerves, auditory cortex and
left visual cortex areas
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An example

Example

Data: {(Y}, Xi1, Xi2),i=1,...,n.

True model: Y; = 5x;1 + e;, €;iidN(0,1).
Candidate models:

My 1Y = Bixin + BaXie + €,
Mz 1Y = Bixi + €,

Ms 1Y = BaXiz + €,

.A/l4 Y, = €.



Example: model selection
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