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Normal probability density function

Standard Normal Distribution 
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Normal quantile

Standard Normal Distribution 

 
 

 

Support of Distn
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Univariate quantile mapping
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Bivariate quantiles
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Bahadur representation of generalized spatial quantiles

Theorem
The following asymptotic Bahadur-type representation holds with
probability 1 for any u:

n1/2(Q̂(u) − Q(u)) = −n−1/2H−1Sn + O(n−(1+s)/4(log n)1/2(log log n)(1+s)/4)

as n→∞.

(Apologies for not including the details.)



A few properties

I Computationally can be extremely simple, no limitations from
sample size and dimension (high p, low n allowed).

I Confidence sets based on generalized spatial quantiles can have
exact coverage.

I Works on infinite-dimensional spaces.
I Some generalized spatial quantiles have a one-to-one

relationship with the unit ball, like univariate quantiles.



Example: simulated data plots

Figure: Simulated data with a few GSQ (covered areas are deliberately different)



What is data-depth?

I Suppose F is a cumulative distribution function corresponding to
the random variable X ∈ Rp .

I A data-depth is a function of Rp and measures on Rp such that
there exists θ ∈ Rp such that

D(θ,F) ≥ D(θ + t(x− θ),F)

for any x ∈ Rp and and any t ∈ (0,1).
I Multivariate quantiles naturally yield data-depths.



Example: a depth plot
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Figure: Perspective and contour plots of projection depth on top, simplicial at bottom.



GSQ-depths are great for classification

Figure: A simulated 2-class classification problem with GSQ-depth classifier



GSQ-depth based classification: some results

Method CPU Time Accuracy
GSQ 3.67 0.925
Random Forest 16714.20 0.895
SVM 966.86 0.842
LDA 0.28 0.74
Logit 0.35 0.69

Table: Arcene classification without feature selection (neural nets did not
converge)



Simultaneous model selection and inference in LM:

Data: {(Yi ,xi ) ∈ R× Rp, i = 1, . . . ,n.}. We want the best fitting
parsimonious linear regression model.

I Fit the largest model with all the p covariates, and get β̂, with
(unknown) sampling distribution Fn.

I Compute ∆0 = ED(β̂,Fn), the expected depth of β̂ with respect
to its own distribution.

I For j = 1, . . . ,p, define β̂(−j) as β̂, with β̂j replaced by zero.
I Compute the expected data-depth

∆j = ED(β̂(−j),Fn).

I Those variables for which ∆j < ∆0 are the important ones and
these collectively form the most wonderful model ever!



Resampling step

Depth-based model selection

Compute and compare

∆j = ED(β̂(−j),Fn).

This involves two distributions, and we use resampling to approximate
this.

I The m-out-of-n (moon-bootstrap): Get a simple random sample
of size m, with replacement, from the data. Assume m→∞, and
m/n→ 0 as n→∞.

I An unusual Bayesian bootstrap: Generate resampling weights
W1, . . . ,Wn i. i. d. ∼ Gamma(α, β), such that EW1 = 1,
VW1 →∞ as n→∞. Use Wi as a weight with the i-th
observation.

I Subsampling: Get a simple random sample of size m, without
replacement, from the data. Assume m→∞, and m/n→ 0 as
n→∞. (Considerably less efficient.)



The data on monsoons

Figure: Air from the eastern Indian Ocean (yellow) and air descending over
Arabia (blue) converge in the Somali jet. Low pressure at 30S. {Courtesy:
UMn Climate Expeditions team.}



Variable dropped ên(S−j )
- Tmax 0.1490772
- X120W 0.2190159
- ELEVATION 0.2288938
- X120E 0.2290021
- ∆TT_Deg_Celsius 0.2371846
- X80E 0.2449195
- LATITUDE 0.2468698
- TNH 0.2538924
- Nino34 0.2541503
- X10W 0.2558397
- LONGITUDE 0.2563105
- X100E 0.2565388
- EAWR 0.2565687
- X70E 0.2596766
- v_wind_850 0.2604214
- X140E 0.2609039
- X40W 0.261159
- SolarFlux 0.2624313
- X160E 0.2626321
- EPNP 0.2630901
- TempAnomaly 0.2633658
- u_wind_850 0.2649837
- WP 0.2660394
<none> 0.2663496
- POL 0.2677756
- Tmin 0.268231
- X20E 0.2687891
- EA 0.2690791
- u_wind_200 0.2692731
- u_wind_600 0.2695297
- SCA 0.2700276
- DMI 0.2700579
- PNA 0.2715089
- v_wind_200 0.2731708
- v_wind_600 0.2748239
- NAO 0.2764488

Table: Ordered values of ên(S−j) after dropping the j-th variable from the full
model in the Indian summer precipitation data
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Figure: Comparing full model rolling predictions with reduced models: (a)
Bias across years, (b) MSE across years.
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Figure: Comparing full model rolling predictions with reduced models: (c)
density plots for 2012, (d) stationwise residuals for 2012



A brief outline

I We consider 19 tests subjects, with 2 kinds of visuals tasks.
I Each subject went through 9 runs, where they saw faces or

scrambled images, and had to react.
I We fit a spatio-temporal model. Temporally, we fit a AR(5) with

quadratic drift. Spatially, we consider different layers nearest
neighbor voxels.

I We measure the degree of spatial dependency in different
regions of the brain.

I The figures below are for one subject in one run.
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Figure: Plot of significant p-values at 95% confidence level at the specified
cross-sections.



Figure: A smoothed surface obtained from the p-values clearly shows high
spatial dependence in right optic nerve, auditory nerves, auditory cortex and
left visual cortex areas
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An example

Example

Data: {(Yi , xi1, xi2), i = 1, . . . ,n.
True model: Yi = 5xi1 + ei , ei iidN(0,1).
Candidate models:

M1 :Yi = β1xi1 + β2xi2 + ei ,

M2 :Yi = β1xi1 + ei ,

M3 :Yi = β2xi2 + ei ,

M4 :Yi = ei .



Example: model selection
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Figure: E-value model selection scores
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