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Application: Smart Cities Deep Learning Training & Prediction Bayes + DL

Chicago Data

Speed, occupancy and flow, averaged over 5 minutes

1500 highway loop-detectors around Chicago area

Approx 50Mb per sensor (75Gb total)
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Application: Smart Cities Deep Learning Training & Prediction Bayes + DL

Non-recurrent traffic patterns
Chicago Bears game

Impact on I-55 north bound travel
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Application: Smart Cities Deep Learning Training & Prediction Bayes + DL

Non-recurrent traffic conditions
Weather and Accidents

Impact of light snow and accidents travel times

Snow in DC area on January 21, 2016

Snapshot at 12:41am (traffic flow is very light at this time of the
day)
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Application: Smart Cities Deep Learning Training & Prediction Bayes + DL

Non-recurrent traffic conditions
Protesters

Impact of people protesting on a bridge over a highway

Interstate I-55, 20 miles away from Chicago on February 27,
2016

Snapshot at 2:11 PM
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Application: Smart Cities Deep Learning Training & Prediction Bayes + DL

Relations are Highly Nonlinear
Shockwawe effect in traffic flows
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Forecast Fitting

model bears game weather day normal day

DL+Filter

DL
black = data, red = model forecast, blue = naive forecast
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Why do we care about DL?

Input space (X ) includes numerical, text (word2vec), images, videos Vectors,

matrices and tensors, ...

Google’s translation algorithm

∼ 1-2 billion parameters

Alexa’s speech recognition: 100 million parameters

Networks will get larger and more efficient

Google Waymo

Advances in computing speed (Nvidia) lets us train and implement Deep
Learning in real-time.
Google Waymo’s Lidar processes 6MB Data per second ...
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Multi-Layer Deep Models

NN models one layer!! Key is to use multi “deep” layers

Learn weight and connections in hidden layers

Predicting House Prices ...

Input(X) Factor Output(Y)

Size
Family Size

Price

# bedrooms
Commute
(walkability)

Zip(postal) Code

School Quality
Wealth
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Multi-Layer Faces
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Kolmogorov-Arnold
There are no multivariate functions just superpositions of univariate ones

Let f1, . . . , fL be given univariate activation functions. We set

F (X ) = (f1 ◦ . . . ◦ fL) (X )

fl = σl

 Nl∑
j=1

WljXj + bl

 = σl(WlXl + bl) , 1 ≤ l ≤ L,

Our deep predictor has hidden units Nl and depth L.
Put simply, we model a high dimensional mapping F via the
superposition of univariate semi-affine functions.
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Kolmogorov-Arnold Example

Interaction terms, x1x2 and (x1x2)2, and max functions,
max(x1, x2) can be expressed as nonlinear functions of semi-affine
combinations. Specifically,

x1x2 =
1

4
(x1 + x2)2 − 1

4
(x1 − x2)2

max(x1, x2) =
1

2
|x1 + x2|+

1

2
|x1 − x2|

(x1x2)2 =
1

4
(x1+x2)4+

7

4 · 33
(x1−x2)4− 1

2 · 33
(x1+2x2)4−23

33
(x1+

1

2
x2)4
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Shallow Learner

Our traditional model

Ŷ = f W1,b1
1 (f2(W2X + b2)

)
= f W1,b1

1 (Z )

PCA: Z = f2(X ) = W>X + b

PPR: Z = f2(X ) =
∑N1

i=1 fi (Wi1X1 + . . .+ WipXp)

Examples: Principal component analysis (PCA), partial least
squares (PLS), reduced rank regression (RRR), linear
discriminant analysis (LDA), project pursuit regression (PPR),
and logistic regression
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Deep Learning Predictors
Smart conditional averaging

The competitors: Trees, RF, GP.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

(a) Tree Kernel (b) Random Forest Kernel

Few points will be neighbors in a high dimensional input space.
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Whats wrong with Kernels?

2D image of 1000 uniform samples from a 50-dimensional ball B50.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Marginal distribution shrinks as dimensionality of the space grows
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(a) p = 100 (b) p = 200 (c) p = 300 (d) p = 400
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ReLU

Affine transformation defines a plane

ReLU: f (x) = max(0, x) ”fires up” if point X in on the
”right” side of this plane

Bias terms allow for hyperplanes not to go through 0.

−4 −2 0 2 4

0
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R
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R
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Example: Three-Layer Network
It takes 3 neurons to define 8 regions in 2D

w3 x + b3w1 x + b1

w2 x + b2

1

2 3

4

5

5

7

-3 -2 -1 1 2
x1

-2

-1

1

2

x2

Hyperplanes defined by three neurons with ReLU activation
functions

Ŷ (X ) =
∑
k∈K

wk(X )Ŷk(X ),
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Tree vs DL example

Y =softmax(w0Z 2 + b0)

Z 2 = tanh(w2Z 1 + b2) Z 1 = tanh(w1X + b1).

0

0

1

0

0 0.0000

0.0000

1.0000

1.0000

0.0312

1.0000

0.0000

0.8000

0.6000

0.0400

1.0000

An advantage of deep architectures is that the number of
hyper-planes grow exponentially with the number of layers.
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Academic Curiosity? ... but it works so well!!

Across many
products/areas:

Android
Apps
drug discovery
Gmail
lmage understanding
Maps
Natural language
understanding
Photos
Robotics research
Speech
Translation
YouTube
... many others ...

Growing Use of Deep Learn¡ng at Google\

# of directories conta¡ning model description files
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Still a niche? ... becoming mainstream
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Training, Validation, and Testing

Given the training dataset D = {Y (i),X (i)}Ti=1 of input-output

pairs and a loss function L(Y , Ŷ ), we compute

Ŵ = (Ŵ0, . . . , ŴL) and b̂ = (b̂0, . . . , b̂L)

by solving

argminW ,b
1

T

T∑
i=1

L(Yi , Ŷ
W ,b(Xi )) .

For the L2-norm for a traditional least squares

L(Yi , Ŷ (Xi )) = ‖Yi − Ŷ (Xi )‖22 ,

our target function becomes the mean-squared error (MSE).
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Back-Propagation

Stochastic gradient descent adapted to a deep learning setting.

Proximal Newton Algorithm: ∇L available for deep learners.

One caveat of back-propagation is the multi-modality of the system
to be solved (and the resulting slow convergence properties).

Deep learning methods heavily rely on the availability of large
computational power: NVIDIA GPU and Google’s TPU.
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Tensor Processing Unit

The problem: Deep Learning is typically applied to large
datasets.

A driverless car processes 6GB data per second.

Applications need computational speed

The solution: A specialized processor called Tensor
Processing Unit (TPU, GPU, CPU)

Processing advances tied to TPU not CPU
Google TPU 2.0 and Nvidia TeslaV100
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Image recognition has improved

Machines are becoming better than humans
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Application: Identifying Skin Cancer

Dataset: 130,000 images of skin
lesions/2,000 different diseases

Test data: 370 high-quality,
biopsy-confirmed images

Better performance than 23
Stanford dermatologists

10,000 hours no match for deep
learning and large datasets
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Application: Training A New Rembrandt

Analyze all 346 of Rembrandt’s paintings

Identify all geometric patterns used by Rembrandt.

Reassemble into a fully formed face and bust
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Google: αGo

Supervised and Reinforcement Learning

Value Function and Tree Search

Convenient

Fullyobserved

Discrete action space

Perfectsimulator

Relativelyshort game

Trial-and errorexperi-
ence

Largehuman datasets

Inconvenient

Actions executed awkwardly

Incomplete information

Imperfectsimulator

Longer tasks, hard to assess
value

Hard to practice millions of
times

Small human data sources
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Google Data Center Cooling Costs Reduced by 40%

Monitoring real-time conditions and adjusting data center climate
control based on past experience
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What is Wrong with DL

Point estimates

No model selection mechanism

No regularization mechanism
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What is Bayes?

Incorporate prior knowledge about unknown θ before data X
is observed

Understand uncertainty about θ after data is observed

p(θ|X ) =
p(x |θ)p(θ)∫
p(x |θ)p(θ)dθ

Posterior p(θ|X ) has all the information about θ we can
extract from X , given the prior
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Bayesian Learning

Given training data D = (X ,Y ), the goal is to build a model
p(y |x , θ,X ,Y )

Define prior p(θ)

Find posterior (training)

p(θ|X ,Y ) =
p(Y |θ,X )p(θ)∫
p(x |θ,Y )p(θ)dθ

Predict using total probability

p(ynew|xnew,X ,Y ) =

∫
p(ynew|xnew, θ)p(θ|X ,Y )dθ

Bayes predictor averages over all of the models parametrized
by θ

equation = intractable
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Probabilistic Interpretation

In a traditional probabilistic setting, view the output Y as a
random variable generated by a probability model p(Y |YW ,b(X ))
with conditioning is on the predictor Ŷ (X ).

The loss function is then

L(Y , Ŷ ) = − log p(Y |Y Ŵ ,b̂(X )),

the negative log-likelihood.

When predicting the probability of congestion, we have a
multinomial logistic regression model with cross-entropy loss
function.
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Bayes + DL

Bayesian inference for DL: reparameterization

Calculate Monte Carlo gradients using variational inference.

The variation inference approximates the posterior p(θ | X ,Y )
with a variation distribution q(θ | φ), θ = (W , b).

KL(q || p) =

∫
q(θ | D, φ) log

q(θ | D, φ)

p(θ | D)
dθ.
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Variational Inference

KL requires intractable log p(θ | D)

Useful identity

log p(D) = ELBO(φ) + KL(q || p)

The sum does not depend on φ, thus minimizing KL(q || p) is
the same that maximizing

ELBO(φ) =

∫
q(θ | D, φ) log

p(Y | X , θ)p(θ)

q(θ | D, φ)
dθ

ELBO(φ)→ max
φ

is solved using stochastic gradient descent.
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Gradient of ELBO

To calculate the gradient, it is convenient to write the ELBO as

ELBO(φ) =

∫
q(θ | D, φ) log p(Y | X , θ)dθ−∫
q(θ | D, φ) log

q(θ | D, φ)

p(θ)
dθ

∇φ
∫

q(θ | D,Y , φ) log p(Y | X , θ)dθ = ∇φEθ∼q log p(Y | X , θ)

Is not a expectation!
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Reparametrization

Reparametrization trick represents θ as a value of a deterministic
function, θ = g(ε,X , φ), where ε ∼ r(ε) does not depend on φ.
Now, the derivative is given by

∇φEq log p(Y | X , θ) =

∫
r(ε)∇φ log p(Y | g(ε, x , φ))dε =

Eε[∇g log p(Y | g(ε,X , φ))∇φg(ε,X , φ)].

The reparametrization is trivial in the case when
q(θ | D, φ) = N(θ | µ(D, φ),Σ(D, φ)), than
θ = µ(D, φ) + εΣ(D, φ), ε ∼ N(0, I ).
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Bayesian Regularisation

Typically we find MAP (poor man’s version of Bayes)
estimator via

log p(Y |X , θ) + log p(θ)→ max
θ

Via VI we search for distribution over θ∫
q(θ|D, φ) log p(Y |X , θ)dθ −KL(q(θ|φ)||p(θ))→ max

φ

Equivalent to adding noise to the DL parameters θ at each
iteration
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Normal Dropout

Dropout is a model selection technique designed to avoid
over-fitting in the training process.

Normal dropout add normal noise to θ at each iteration.

The dropout architecture becomes

D
(l)
i ∼ N(1, σ2),

W (l) = W (l) ? D(l),

Z
(l)
i = W

(l)
i X (l) + b

(l)
i .

· · ·
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Bayesian Regularization for DL
Take q(θ|α, γ) = N(θ|α, γα2)
Then Bayesian regularization (ELBO)∫

N(θ|α, γα2) log p(Y | X , θ)dθ −KL(q || p(θ))→ max
α

First term is the objective function of the DL + Normal
Dropout training procedure
We have additional KL term!
Need to find p(θ) so that KL does not depend on α

−20 −10 0 10 20

0
5

10
15

x

y

p(θ) ∝ 1

|θ|
Variational Dropout and the Local Reparameterization Trick

Diederik P. Kingma, Tim Salimans, Max Welling
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Bayes DL Classification

2-layer network (MLP) with tanh activation

5-neurons

1000 observations (.5 for training)
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Prediction

Used automated variational inference (AVI)

Can calculate uncertainty in predicted value!
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Bayes DL Classification II

2-layer network (MLP) with tanh activation

5-neurons

60k observations (60k for training)
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Discussion

Many successful applications. Extremely high dimensionality

SGD is very powerful tool to obtain point estimates

Recently: first steps towards Bayes + DL: Dropout + VI

Still baby steps, methods are not scalable (4 hours to train DL
for MNIST vs 2 minutes for Chicago Traffic)

Uncertainty assertion for deep predictors?

Decision making and policy under uncertainty?
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