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Chicago Data

B

Speed, occupancy and flow, averaged over 5 minutes
1500 highway loop-detectors around Chicago area
Approx 50Mb per sensor

(75Gb

total)

Bayes + DL
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Non-recurrent traffic patterns
Chicago Bears game
Impact on I-55 north bound travel
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Training & Prediction
Non-recurrent traffic conditions

Weather and Accidents
Impact of light snow and accidents travel times

Snow in DC area on January 21, 2016
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Snapshot at 12:41am (traffic flow is very light at this time of the
day)
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Non-recurrent traffic conditions

Protesters

Impact of people protesting on a bridge over a highway

Interstate I-55, 20 miles away from Chicago on February 27,
2016
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Relations are Highly Nonlinear

Shockwawe effect in traffic flows

Bayes
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Forecast Fitting

model bears game weather day normal day

DL+Filter

DL
black = data, red = model forecast, blue = naive forecast
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Why do we care about DL?

Input space (X) includes numerical, text (word2vec), images, videos Vectors,

matrices and tensors, ...
Google's translation algorithm
~ 1-2 billion parameters
Alexa's speech recognition: 100 million parameters
Networks will get larger and more efficient
Google Waymo
Advances in computing speed (Nvidia) lets us train and implement Deep

Learning in real-time.
Google Waymo's Lidar processes 6MB Data per second ...
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Multi-Layer Deep Models
NN models one layer!! Key is to use multi “deep” layers
Learn weight and connections in hidden layers

Predicting House Prices ...

Input(X) Factor Output(Y)

Size \

Family Size

# bedrooms
Commute

walkability) rice

Zip(postal) Cod

/chhooI Quality
Wealth
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Training & Prediction

Multi-Layer Faces

Bayes + DL

Deep neural
networks learn
hierarchical feature
representations
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hidden layer 1

hidden layer 2 hidden
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Kolmogorov-Arnold

There are no multivariate functions just superpositions of univariate ones

Let f1,..., f. be given univariate activation functions. We set

F(X)=(fio...of)(X)

fi=o/ | D WiXj+b | =a(WX +b), 1<I<L,

Our deep predictor has hidden units N, and depth L.
Put simply, we model a high dimensional mapping F via the
superposition of univariate semi-affine functions.
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Kolmogorov-Arnold Example

Interaction terms, xyx2 and (x1x2)2, and max functions,
max(x1, x2) can be expressed as nonlinear functions of semi-affine
combinations. Specifically,

1 1
X1Xp = Z(Xl + %)% — Z(Xl — x2)?

1 1
max(x, x2) = §\x1 + x| + §|x1 — x|

1 7 1 23 1
~(atxe)+—— (a—xe)* - B 33(X1+2X2) —plats x)*

2 _
(baxe)” =7 4.33
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Shallow Learner

Our traditional model
Y = P (H(WaX + b)) = P(2)

PCA: Z=H(X)=WTX+b

PPR: Z = fp(X) = oM, (Wi Xa + ... + WipXp)

Examples: Principal component analysis (PCA), partial least
squares (PLS), reduced rank regression (RRR), linear
discriminant analysis (LDA), project pursuit regression (PPR),
and logistic regression
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Deep Learning Predictors

Bayes + DL
Smart conditional averaging

The competitors: Trees, RF, GP.

(a) Tree Kernel

(b) Random Forest Kernel
Few points will be neighbors in a high dimensional input space.

DA™ 14/42
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Training & Prediction

Whats wrong with Kernels?

2D image of 1000 uniform samples from a 50-dimensional ball Bsg

Marglnal distribution shrlnks as dimen5|ona||ty of the space grows
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RelLU

Affine transformation defines a plane
ReLU: f(x) = max(0, x) "fires up” if point X in on the
"right” side of this plane

Bias terms allow for hyperplanes not to go through 0.

Bayes + DL
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Example: Three-Layer Network

It takes 3 neurons to define 8 regions in 2D

x2
2}

b
Wi X + by wax b

Hyperplanes defined by three neurons with ReLU activation
functions

A

Y(X) =) wi(X)Yi(X),

kek

Bayes + DL



Application: Smart Cities

Deep Learning

Training & Prediction

Tree vs DL example

Y =softmax(w°Z? + b°)
Z? = tanh(w?Z' 4 b?) Z' = tanh(w' X + b')
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An advantage of deep architectures is that the number of

hyper-planes grow exponentially with the number of layers.
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Bayes + DL

Academic Curiosity? ... but it works so well!!

# of directories containing model description files

Unique Project Directories

Growing Use of Deep Learning at Google
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Across many

products/areas:
Android
Apps
drug discovery
Gmail
Image understanding
Maps
Natural language
understanding
Photos
Robotics research
Speech
Translation
YouTube
... many others ...
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Still a niche? ... becoming mainstream

@ Deep learning
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Training, Validation, and Testing

Given the training dataset D = ~{\’("),X(")},-T:1 of input-output
pairs and a loss function L(Y, \A/) we compute

WZ(W(),...,WL) and B:(Bo,...,bL)

by solving
-

1 ~
argminyy 7 Z L(Y;, YVP(X))).
i=1

For the Ly-norm for a traditional least squares
LY, V(X)) = 1Y = Y(X)I3,

our target function becomes the mean-squared error (MSE).
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Back-Propagation

Stochastic gradient descent adapted to a deep learning setting.
Proximal Newton Algorithm: V£ available for deep learners.

One caveat of back-propagation is the multi-modality of the system
to be solved (and the resulting slow convergence properties).

Deep learning methods heavily rely on the availability of large
computational power: NVIDIA GPU and Google’s TPU.
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Training & Prediction Bayes + DL
Tensor Processing Unit
datasets.

The problem: Deep Learning is typically applied to large

A driverless car processes 6GB data per second
Applications need computational speed

The solution: A specialized processor called Tensor
Processing Unit (TPU, GPU, CPU)

Processing advances tied to TPU not CPU
Google TPU 2.0 and Nvidia TeslaV100

Q>

23/42
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Image recognition has improved

Bayes + DL

Ever cleverer
2011 2016 Error rates on ImageNet Visual Recognition
Challenge, %
humans
26% errors

5% errors

2011 12
Machines are becoming better than humans

DA 24/42
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Application: ldentifying Skin Cancer

Dataset: 130,000 images of skin
lesions /2,000 different diseases

Test data: 370 high—quality,‘
biopsy-confirmed images {

Better performance than 23
Stanford dermatologists £

10,000 hours no match for deep

. wild 4 b
learning and large datasets
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Application: Training A New Rembrandt

Analyze all 346 of Rembrandt's paintings
Identify all geometric patterns used by Rembrandt.

Reassemble into a fully formed face and bust
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Google: aGo

Supervised and Reinforcement Learning

Value Function and Tree Search

Convenient
Fullyobserved
Discrete action space
Perfectsimulator
Relativelyshort game

Trial-and errorexperi-
ence

Largehuman datasets

Inconvenient
Actions executed awkwardly
Incomplete information
Imperfectsimulator

Longer tasks, hard to assess
value

Hard to practice millions of
times

Small human data sources

DL



Low PUE
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Google Data Center Cooling Costs Reduced by 40%

Bayes + DL

ML Control On

/

Monitoring real-time conditions and adjusting data center climate
High PUE

control based on past experience

ML Control Off

N\
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What is Wrong with DL

Point estimates
No model selection mechanism

No regularization mechanism

Bayes + DL
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Training & Prediction
What is Bayes?

is observed

Bayes + DL
Incorporate prior knowledge about unknown 6 before data X

Understand uncertainty about 6 after data is observed

 p(:0)p(0)
POX) = T ox16)p(6)

Posterior p(6|X) has all the information about 6 we can
extract from X, given the prior
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Bayesian Learning

Given training data D = (X, Y), the goal is to build a model
p(ylx,0,X,Y)

Define prior p()

Find posterior (training)

p(Y16, X)p(6)

| plcte. V)p(o)as

pOIX. V) =

Predict using total probability

p(Ynew‘XneWaXa Y) = /p(Ynew|XneW79)p(9’X7 Y)de

Bayes predictor averages over all of the models parametrized
by 6

= intractable
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Probabilistic Interpretation

In a traditional probabilistic setting, view the output Y as a
random variable generated by a probability model p(Y|Y"W:2(X))
with conditioning is on the predictor Y(X).

The loss function is then
LY, V) = —logp(Y|YVE(X)),
the negative log-likelihood.

When predicting the probability of congestion, we have a
multinomial logistic regression model with cross-entropy loss
function.
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Bayes + DL

Bayesian inference for DL: reparameterization
Calculate Monte Carlo gradients using variational inference.

The variation inference approximates the posterior p(6 | X, Y)
with a variation distribution q(0 | ¢), 8 = (W, b).

KL(qllp) = [ a(6]D.6) 108 Wde.
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Variational Inference

KL requires intractable log p(6 | D)
Useful identity

log p(D) = ELBO(¢) + KL(q || p)

The sum does not depend on ¢, thus minimizing KL(q || p) is
the same that maximizing

p(Y | X.6)p(6)
a01D.0)

ELBO(¢) — mde)lx is solved using stochastic gradient descent.

ELBO(¢) = / 4(6| D, ) log
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Gradient of ELBO

To calculate the gradient, it is convenient to write the ELBO as

ELBO(¢) = / a(6 | D.#)log p(Y | X.0)d6—

q(¢ | D, ¢)
[ at610.0)108 R R

Vo [ 401D, Y.6)logp(Y | X,6)d0 = VsErnqlogp(Y | X.6)

Is not a expectation!
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Reparametrization

Reparametrization trick represents @ as a value of a deterministic
function, 6 = g(e, X, ¢), where € ~ r(e) does not depend on ¢.
Now, the derivative is given by

VoEqlog (Y | X.0) = [ r(0¥slogp(Y | gle,x,0))de =
Ee[vg |Og p(Y | g(E,X,QZ)))V(bg(E,X,Qf))].

The reparametrization is trivial in the case when

4(0] D.6) = N(O | 5(D.). Z(D. ). than
6 = 1(D.$) + €X(D, ), €~ N(0,1).
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Bayesian Regularisation

Typically we find MAP (poor man's version of Bayes)
estimator via

log p(Y|X,0) + log p(0) — max
Via VI we search for distribution over 0
| at61D,0)1og p(¥ 1. 0)d8 ~ KL(a(8]6)]|p(6)) — mx

Equivalent to adding noise to the DL parameters 6 at each
iteration
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Normal Dropout

Dropout is a model selection technique designed to avoid
over-fitting in the training process.

Normal dropout add normal noise to 6 at each iteration.
The dropout architecture becomes

DY ~ N(1,0?),
w = w0« pO),
Z0 — wx" 4 0.

Bayes + DL
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Bayesian Regularization for DL

Take q(6|a,v) = N(6a, ya?)
Then Bayesian regularization (ELBO)

[ W@l 0?)log p(Y | X.8)d0 ~ KL(a || p(6)) —» max

First term is the objective function of the DL + Normal
Dropout training procedure

We have additional KL term!

Need to find p(#) so that KL does not depend on «
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Bayes DL Classification
2-layer network (MLP) with tanh activation
5-neurons

Bayes + DL

1000 observations (.5 for training)

Toy binary classification data set

@& Class0

® Class1
> 0 i
-1

-2

-2
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Prediction

Used automated variational inference (AVI)

Can calculate uncertainty in predicted value!
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Bayes DL Classification |l

2-layer network (MLP) with tanh activation
5-neurons
60k observations (60k for training)
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Discussion

Many successful applications. Extremely high dimensionality
SGD is very powerful tool to obtain point estimates
Recently: first steps towards Bayes 4+ DL: Dropout + VI

Still baby steps, methods are not scalable (4 hours to train DL
for MNIST vs 2 minutes for Chicago Traffic)

Uncertainty assertion for deep predictors?

Decision making and policy under uncertainty?
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