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Total variation gradient flows

Rudin, Osher and Fatemi (1992): Given u0 ∈ L2(Ω) ∩ BV (Ω), let

u1 ∈ argmin
u∈BV (Ω)

|Du|(Ω) +
1

2τ
‖u − u0‖2

L2 .

The Euler-Lagrange equation is

u1 − u0

τ
∈ −∂|Du1| = div

(
Du1

|Du1|

)
.

The PDE associated with the L2 gradient descent of the functional u 7→ |Du| is

∂tu = div

(
Du

|Du|

)
, on (0,T )× Ω, u|t=0 = u0

with boundary condition
∇u · ν = 0 on ∂Ω.

Studied by Andreu, Ballester, Caselles and Mazón (2001), Bellettini, Caselles and Novaga (2002),
Evans and Spruck (1992), ...

Studies of the TV gradient flow with other Hilbertian norms have been popular, in particular, the
H−1 norm (Giga and Giga, 2010).
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The total variation Wasserstein gradient flow

We consider the fourth-order nonlinear evolution equation

∂tρ+ div
(
ρ ∇div

( ∇ρ
|∇ρ|

))
= 0, on (0,T )× Ω, ρ|t=0

= ρ0,

supplemented by the zero-flux boundary condition

ρ∇div
( ∇ρ
|∇ρ|

)
· ν = 0 on ∂Ω,

Applications and numerical solvers:

Burger, Franek & Schönlieb. Regularized regression and density estimation based on
optimal transport. 2012.

Düring & Schönlieb. A high-contrast 4th order PDE from imaging: numerical solution by
ADI splitting. 2012.

Benning & Calatroni & Düring & Schönlieb. A primal-dual approach for a total variation
Wasserstein flow. 2013.
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Relation to the TV Wasserstein variational problem: JKO scheme

Due to the work of Jordan, Kinderlehrer and Otto for the Fokker-Planck equation,

∂tρ+ div
(
ρ ∇(−E ′(ρ))

)
= 0, on (0,T )× Ω, ρ|t=0

= ρ0,

with zero-flux boundary condition can be obtained, at the limit τ → 0+, of the JKO Euler
implicit scheme:

ρτ0 = ρ0, ρ
τ
k+1 ∈ argmin

{ 1

2τ
W 2

2 (ρτk , ρ) + E(ρ), ρ ∈ BV(Ω) ∩ P2(Ω)
}

where P2(Ω) is the space of Borel probability measures Ω with finite second moment and W2 is
the quadratic Wasserstein distance:

W 2
2 (ρ0, ρ1) := inf

γ∈Π(ρ0,ρ1)

{∫
Rd×Rd

|x − y |2dγ(x , y)
}
,

Π(ρ0, ρ1) denoting the set of transport plans between ρ0 and ρ1 i.e. the set of probability
measures on Rd × Rd having ρ0 and ρ1 as marginals.
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This talk

In this talk, we present a study of solutions to the variational problem and its gradient flow.

1 Properties of the JKO iterates:

1 a maximum principle.
2 establish the optimality conditions.
3 regularity of the level sets.
4 analysis for step function initial data.

2 Convergence of the JKO scheme as τ → 0 in 1D, for strictly positive initial density ρ0.
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Some notation and definitions

Given an open subset Ω of Rd and ρ ∈ L1(Ω),

the total variation of ρ is given by

J(ρ) := |Dρ|(Ω) = sup
{∫

Ω
div(z)ρ : z ∈ C1

c (Ω), ‖z‖L∞ ≤ 1
}

and BV(Ω) is by definition the subspace of L1(Ω) consisting of those ρ’s in L1(Ω) such that
J(ρ) is finite.

By defining

Γd :=
{
ξ ∈ Ld (Ω) : ∃z ∈ L∞(Ω,Rd ), ‖z‖L∞ ≤ 1, div(z) = ξ, z · ν = 0 on ∂Ω

}
we have that Γd is closed and convex in Ld (Ω) and J : Ld/(d−1) → [0,∞) is its support
function:

J(µ) = sup
ξ∈Γd

∫
Ω
ξµ, ∀µ ∈ L

d
d−1 (Ω).

the subdifferential of J at ρ is

∂J(ρ) =

{
ξ ∈ Γd :

∫
Ω
ξρ = J(ρ)

}
.

6 / 24



Some examples in 1D

Let

Φ(ρ) :=
1

2τ
W 2

2 (ρ0, ρ) + J(ρ), ∀ρ ∈ BV(Rd ) ∩ P2(Rd ).

A sufficient optimality condition: ρ1 is the minimizing solution if there exists z ∈ C1(Rd ;Rd )
with ‖z‖L∞ ≤ 1, div(z) ∈ Ld and J(ρ1) =

∫
Rd div(z)ρ1 such that

ϕ

τ
≥ −div(z), with equality ρ1-a.e.

where ϕ is a Kantorovich potential from ρ1 to ρ0.
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Characteristic function

Let ρ0 := 1
2α0

χ[−α0,α0]. Then, ρ1 := 1
2α1

χ[−α1,α1] where
α2

1(α1−α0)

τ
= 3.

α1α00−α0−α1

Setting ρτ (t) = ρτk+1 for t ∈ (kτ, (k + 1)τ ],

ρτ converges to ρ(t, .) = 1
2α(t)

χ[−α(t),α(t)] with α(t) = (α3
0 + 9t)1/3 in

L∞((0,T ), (P2(R),W2)) and in Lp((0,T )× R) for any p ∈ (1,∞).

Moreover, ρ solves the continuity equation ∂tρ+ (−ρzxx )x = 0 where

z(t, x) = −
α′(t)

6α(t)
x3 +

3

2α(t)
x , x ∈ [−α(t), α(t)].
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Instantaneous creation of discontinuities

Let ρ0 = (1− |x |)+. Then one can show that

ρ1(x) =

{
1− β/2 if |x | < β,

(1− |x |)+ if |x | ≥ β,

for β ∈ (0, 1).

1

10-1

This example shows that discontinuities may appear at the very first iteration of the TV-JKO
scheme.
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One step of the JKO flow

Let Ω ⊂ Rd be a convex open bounded subset.

Pac(Ω) the set of Borel probability measures on Ω that are absolutely continuous with
respect to the Lebesgue measure

Given ρ0 ∈ Pac(Ω) and τ > 0, we consider one step of the TV-JKO scheme:

inf
ρ∈Pac(Ω)

{ 1

2τ
W 2

2 (ρ0, ρ) + J(ρ)
}
. (Pτ )

Existence of solutions follows by the direct method of the calculus of variations.

Since J is convex and ρ 7→W 2
2 (ρ, ρ0) is strictly convex whenever ρ0 ∈ Pac(Ω)

(Santambrogio, 2015), the minimizer is in fact unique, and in the sequel we denote it by ρ1.
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Maximum principle

Theorem (Carlier & P. 2017)

Let ρ0 ∈ Pac(Ω) ∩ L∞(Ω) and let ρ1 be the solution of (Pτ ), then ρ1 ∈ L∞(Ω) with

‖ρ1‖L∞(Ω) ≤ ‖ρ0‖L∞(Ω).

TOOL 1 – BV estimate by De Philippis, Mészáros, Santambrogio & Velichkov (2016): given
µ ∈ Pac(Ω) ∩ BV(Ω), and G : R+ → R ∪ {+∞}, proper convex l.s.c., the solution of

ρ̂ ∈ argminρ∈Pac(Ω)

{1

2
W 2

2 (µ, ρ) +

∫
Ω
G(ρ(x))dx

}
is BV with the bound J(ρ̂) ≤ J(µ).

Choose

G(ρ) :=

{
0 if ρ ∈ K ,

+∞ otherwise,
K := {ρ ∈ Pac(Ω) : ρ ≤ ‖ρ0‖L∞(Ω)}

Let ρ̂1 = argminρ∈KW
2
2 (ρ1, ρ). Then, J(ρ̂1) ≤ J(ρ1). Is W2(ρ̂1, ρ0) ≤W2(ρ1, ρ0)?
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Maximum principle
Tool II: generalized geodesics
Given µ, µ0 and µ1 in Pac(Ω), and denoting by T0 (respectively T1) the optimal transport
(Brenier) map between µ and µ0 (respectively µ1), the generalized geodesic with base µ joining
µ0 to µ1 is by definition the curve of measures:

µt := ((1− t)T0 + tT1)#µ, t ∈ [0, 1].

Lemma (Ambrosio, Gigli & Savaré (2008))

Suppose that K is a nonempty subset of Pac(Ω) such that: for µ0 ∈ K, µ1 ∈ Pac(Ω),
µ̂1 ∈ argminµ∈KW

2
2 (µ1, µ) implies that the generalized geodesic joining µ0 to µ̂1 with base µ1

remains in K.
Then,

W 2
2 (µ0, µ̂1) + W 2

2 (µ1, µ̂1) ≤W 2
2 (µ0, µ1).

•
µ0 • µ1

•
µ̂1

K

Proposition (Minimum principle in 1D, Carlier & P. 2017)

Assume that d = 1, that Ω is a bounded interval and that ρ0 ≥ α > 0 a.e. on Ω then the
solution ρ1 of (Pτ ) also satifies ρ1 ≥ α > 0 a.e. on Ω.
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Optimality condition

By considering directly the first order condition of Φ, one can see that there exists a Kantorovich
potential ϕ from ρ1 to ρ0 such that

τ−1
∫
ϕµ ≤ J(µ)

for all µ ∈M(X ) such that Supp(µ) ⊂ Supp(ρ1) =: Ω1, and with equality when µ = ρ1.

Problems:

Assuming that ∂Ω1 is Lipschitz, one deduce that on Ω1, τ−1ϕ = div(z) with ‖z‖L∞ ≤ 1.

How should we define div(z) outside of Ω1? Which function space does it belong to?
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Entropic approximation

Given h > 0 we consider the following approximation of (Pτ ):

inf
ρ∈P(Ω)

{ 1

2τ
W 2

2 (ρ0, ρ) + J(ρ)+hE(ρ)
}

(Eh)

where

E(ρ) :=

∫
Ω
ρ(x) log(ρ(x))dx .

(Eh) admits a unique solution ρh and since J(ρh) is bounded, up to a subsequence, ρh converges

as h→ 0 a.e. and strongly in Lp(Ω) for every p ∈ [1, d
d−1

) to ρ1 the solution of (Pτ ).

Lemma

There is an αh > 0 such that ρh ≥ αh a.e.. In particular, βh := h log(ρh) is uniformly bounded
from below and is bounded in Lp(Ω) for any p ≥ 1. Moreover, max(0, βh) converges to 0
strongly in Lp .
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The optimality condition

We then have the following characterization for ρh:

Proposition (Carlier & P. 2017)

There exists zh ∈ L∞(Ω,Rd ) such that div(zh) ∈ Lp(Ω) for every p ∈ [1,+∞), ‖zh‖L∞ ≤ 1,
zh · ν = 0 on ∂Ω, J(ρh) =

∫
Ω div(zh)ρh and

ϕh

τ
+ div(zh) = −h log(ρh), a.e. in Ω

where ϕh is the Kantorovich potential between ρh and ρ0.

By taking the limit as h→ 0:

Theorem (Carlier & P. 2017)

If ρ1 solves (Pτ ), there exists ϕ a Kantorovich potential between ρ0 and ρ1 (in particular id−∇ϕ
is the optimal transport between ρ1 and ρ0), β ∈ L∞(Ω), β ≥ 0 and z ∈ L∞(Ω,Rd ) such that

ϕ

τ
+ div(z) = β,

and

βρ1 = 0, ‖z‖L∞ ≤ 1, J(ρ1) =

∫
Ω
div(z)ρ1, z · ν = 0 on ∂Ω.
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Variational curvatures and regularity of level sets
div(z) ∈ L∞ implies boundary regularity of the level sets of ρ1:

Anzellotti (1983): We can interpret z · Dρ1 as a Radon measure and |Dρ1| = −z · Dρ1.

Barozzi, Massari, Tamanini (1975-1995): A set of finite perimeter E ⊂ Ω ⊂ Rd is said to
have variational mean curvature g ∈ L1(Ω) precisely when E minimizes

min
F⊂Ω

Per(F ) +

∫
F
g .

If, in addition, g ∈ Lp(Ω) with p ∈ (d ,+∞], then the reduced boundary ∂∗E is a

(d − 1)-dimensional manifold of class C1,α with α ≥ p−d
2p

and Hs((∂E \ ∂∗E) ∩ Ω) = 0 for

all s > d − 8.

Chambolle, Goldman & Novaga (2015): pointwise geometric meaning to z · DχE . If d = 2
or d = 3, if g = −div(z) ∈ Ld (Ω) is a variational mean curvature for the set E , then any
point x ∈ ∂∗E is a Lebesgue point of z and z(x) = ν∂E (x).
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Variational curvatures and regularity of level sets
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Regularity of the level set boundaries

For every level set Ft = {ρ1 > t} with t ≥ 0,

Per(Ft) =

∫
Ft

div(z) and Ft ∈ argmin
G⊂Ω

{
Per(G)−

∫
G
div(z)

}
.

So, −div(z) is a variational mean curvature of Ft .

Theorem (Carlier & P. 2017)

If ρ1 solves (Pτ ), then for every t > 0, the level set Ft = {ρ1 > t} has the property that its

reduced boundary, ∂∗Ft is a C1, 1
2 hypersurface and (∂Ft \ ∂∗Ft) ∩ Ω has Hausdorff dimension

less than d − 8.
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Step functions remain step functions

Theorem (Carlier & P. 2017)

Let d = 1, Ω = (a, b) and ρ0 be a step function with at most N-discontinuities i.e.:

ρ0 :=
N∑
j=0

αjχ[aj , aj+1), a0 = a < a1 · · · < aN < aN+1 = b,

then the solution ρ1 of (Pτ ) is also a step function with at most N discontinuities.

Reduce the problem to the case ρ0 > α > 0 a.e.

There exists z ∈W 3,∞ such that |z| ≤ 1 such that J(ρ1) =
∫ b
a z ′ρ1 = −

∫ b
a z · Dρ1.
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Step functions remain step functions

ρ1 z

T (x) = x − ϕ′(x) = x + τz ′′(x) is the optimal transport from ρ1 to ρ0. So, T (x) = x
whenever z ′′(x) = 0. Since z achieves its extremal values on A := Supp(Dρ1), z ′ = 0 on A.
So, z ′′ = 0 on the limit points of A.

Decompose µ = Dρ1 into its atomic and nonatomic parts, then

µ =
∑
x∈J

µ({x})δx + µ̃.

Ã = Supp(µ̃) is the limit points of A =⇒ T (x) = x on Ã =⇒ ρ0 = ρ1 on Ã.
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19 / 24



Step functions remain step functions

ρ1 z

T (x) = x − ϕ′(x) = x + τz ′′(x) is the optimal transport from ρ1 to ρ0. So, T (x) = x
whenever z ′′(x) = 0. Since z achieves its extremal values on A := Supp(Dρ1), z ′ = 0 on A.
So, z ′′ = 0 on the limit points of A.

Decompose µ = Dρ1 into its atomic and nonatomic parts, then

µ =
∑
x∈J

µ({x})δx + µ̃.

Ã = Supp(µ̃) is the limit points of A =⇒ T (x) = x on Ã =⇒ ρ0 = ρ1 on Ã.
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Convergence of the TV-JKO scheme in 1D

Let Ω = (0, 1) and let ρ0 ∈ Pac (Ω) ∩ BV (Ω) with ρ0 ≥ α > 0 a.e. on Ω.

Fix T and for small τ , define

ρτ0 = ρ0, ρ
τ
k+1 ∈ argmin

{ 1

2τ
W 2

2 (ρτk , ρ) + J(ρ), ρ ∈ BV ∩ Pac((0, 1))
}

for k = 0, . . .Nτ with Nτ := [T
τ

].

Since ρ0 is uniformly bounded from above (as an element of BV ) and away from 0,

M := ‖ρ0‖L∞ ≥ ρτk ≥ α.

Define piecewise constant interpolation:

ρτ (t, x) = ρτk+1(x), t ∈ (kτ, (k + 1)τ ], k = 0, . . .Nτ , x ∈ (0, 1).
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Convergence of the TV-JKO scheme in 1D

Definition

A weak solution of

∂tρ+
(
ρ
( ρx

|ρx |

)
xx

)
x

= 0, (t, x) ∈ (0,T )× (0, 1), ρ|t=0
= ρ0,

is a ρ ∈ L∞((0,T ),BV((0, 1))) ∩ C0((0,T ), (P,W2)) such that there exists
z ∈ L∞((0,T )× (0, 1)) ∩ L2((0,T ),H2 ∩ H1

0 ((0, 1))) with

‖z(t, .)‖L∞ ≤ 1 and J(ρ(t, .)) =

∫ 1

0
zx (t, x)ρ(x)dx , for a.e. t ∈ (0,T ),

and ρ is a weak solution of

∂tρ− (ρzxx )x = 0, ρ|t=0
= ρ0, ρzxx = 0 on (0,T )× {0, 1}.

i.e. for every u ∈ C1
c ([0,T )× [0, 1])∫ T

0

∫ 1

0
(∂tu ρ− (ρzxx )ux )dxdt = −

∫ 1

0
u(0, x)ρ0(x)dx .

21 / 24



Convergence of the TV-JKO scheme in 1D

Theorem (Carlier & P. 2017)

There exists a vanishing sequence of time steps τn → 0 such that the sequence ρτn converges
strongly in Lp((0,T )× (0, 1)) for any p ∈ [1,+∞) and in C0((0,T ), (P([0, 1]),W2)) to
ρ ∈ L∞((0,T ),BV((0, 1))) ∩ C0((0,T ), (P([0, 1]),W2)), a weak solution of

∂tρ+
(
ρ
( ρx

|ρx |

)
xx

)
x

= 0, (t, x) ∈ (0,T )× (0, 1), ρ|t=0
= ρ0,

The proof is fairly standard, let us make some remarks:

By construction, one has

1

2τ

Nτ∑
k=0

W 2
2 (ρτk , ρ

τ
k+1) ≤ J(ρ0), sup

t∈[0,T ]
J(ρτ (t, .)) ≤ J(ρ0).

Using the Aubin-Lions Compactness Theorem of Savaré and Rossi (2003), refinement of
Arzèla Ascoli and fact that BV (0, 1) compactly embeds into Lp((0, 1)) for all p ∈ [1,∞),

ρτ → ρ a.e. in (0,T )× (0, 1) and in Lp((0,T )× (0, 1)), ∀p ∈ [1,+∞)

and
sup

t∈[0,T ]
W2(ρτ (t, .), ρ(t, .))→ 0 as τ → 0,

for some limit curve ρ ∈ C0, 1
2 ((0,T ), (P([0, 1]),W2)) ∩ Lp((0,T )× (0, 1)). By the uniform

bounds on the JKO iterates, M ≥ ρ ≥ α.
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Convergence of the TV-JKO scheme in 1D

for each k = 0, . . . ,Nτ , there exists zτk ∈W 2,∞((0, 1)) such that

‖zτk ‖L∞ ≤ 1, zτk (0) = zτk (1) = 0, J(ρτk ) =

∫ 1

0
(zτk )xρ

τ
k ,

and T τk+1 = id + τ(zτk+1)xx is the optimal transport T τk+1 from ρτk+1 to ρτk .

W 2
2 (ρτk , ρ

τ
k+1) =

∫ 1

0
(x − T τk+1(x))2ρτk+1(x)dx

= τ2
∫ 1

0
(zτk+1)2

xxρ
τ
k+1(x)dx ≥ ατ2

∫ 1

0
(zτk+1)2

xxdx

Let zτ be the piecewise constant interpolation of zτk . We thus get an L2((0,T ),H2((0, 1))
bound

C ≥ ‖zτ‖L2((0,T ),H2((0,1))).

So, there exists z ∈ L∞((0,T )× (0, 1))∩ L2((0,T ),H2((0, 1))) with ‖z‖L∞ ≤ 1 such that

I ρτ zτxx ⇀ ρzxx in L1((0,T )× (0, 1)).
I zτ ⇀ z in L2((0,T ),H2((0, 1))), and weakly ∗ in L∞((0,T )× (0, 1)).
I J(ρ(t, ·)) =

∫ 1
0 zx (t, x)ρ(x)dx for a.e. t ∈ (0,T ).

By standard computations, let u ∈ C1
c ([0,T )× [0, 1]) then∫ T

0

∫ 1

0
∂tu ρ

τ − (ρτ zτxx )uxdxdt = −
∫ 1

0
u(0, x)ρ0(x)dx + Rτ (u).

Taking the limit concludes this proof.
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Summary

We discussed some properties of the JKO iterates:

1 a maximum principle (and a minimum principle in 1D).

2 establish the optimality conditions.

3 regularity of the level sets.

4 analysis for step function initial data.

Thanks to the minimum principle, we have convergence of the JKO scheme as τ → 0 in 1D, for
strictly positive initial density ρ0.

Preprint on arXiv: On the total variation Wasserstein gradient flow and the TV-JKO scheme.

Thank you for your attention.
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