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Bayesian Prediction

Distribution of interest is:

p(yT+1|y1:T ) =
∫

θ
p(yT+1, θ|y1:T )dθ

=
∫

θ
p(yT+1|y1:T , θ)p(θ|y1:T )dθ

= Eθ|y [p(yT+1|y1:T , θ)]

(Marginal) predictive = expect. of conditional predictive

Conditional predictive reflects the assumed DGP

As does the posterior: p(θ|y1:T ) ∝ p(y1:T |θ)× p(θ)
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Implementing Bayesian Prediction

In the usual case where Eθ|y1:T
[p(yT+1|y1:T , θ)] cannot be

evaluated analytically

Take M draws from p(θ|y1:T ) (via a Markov chain Monte Carlo
algorithm, say)

And estimate p(yT+1|y1:T ) as
1 either:

p̂(yT+1|y1:T ) =
1
M

M

∑
i−1
p(yT+1|y1:T , θ

(i ))

2 or: p̂(yT+1|y1:T ) constructed from draws of y (i )T+1 simulated

from p(yT+1|y1:T , θ
(i ))

i.e. MCMC ⇒ exact Bayesian prediction

(up to simulation error)
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Achilles Heels!

1 What happens when we can’t generate an MCMC chain because
p(θ|y1:T ) is inaccessible?

⇒ exact Bayesian prediction not feasible

Frazier, Maneesoonthorn, Martin and McCabe:
“Approximate Bayesian Forecasting”, IJF, 2018

2 What happens when we acknowledge that the DGP used to
construct p(yT+1|y1:T ) misspecified?

This impinges on p(yT+1|y1:T ) via its two components:

p(yT+1|y1:T ) =
∫

θ
p(yT+1|y1:T , θ)p(θ|y1:T )dθ and

The conditional predictive: p(yT+1|y1:T , θ)

and p(θ|y1:T ) ∝ p(y1:T |θ)× p(θ)
In what sense does p(yT+1|y1:T ) remain the gold standard?
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A New Paradigm for Bayesian Prediction

Appropriate for the realistic setting in which the true DGP is
unknown

The ideas are still evolving!

Define P as the class of conditional predictives that we
believe could have generated the data

With elements:
P(yT+1|y1:T , ·) ∈ P

where P(yT+1|y1:T , ·) conditions on data: y1:T , and on some
unknowns

David Frazier, Ruben Loaiza Maya and Gael Martin, Department of Econometrics and Business Statistics, Monash University, Melbourne, BIRS workshop, Oaxaca, Nov. 2018, Note that this is a modified version of the talk given ()Model-Acentric, Focused Bayesian Prediction 5 / 27



A New Paradigm for Bayesian Prediction

In principle, P may be a class of:

distributions, P(yT+1|y1:T , θ) say, associated with a given
parametric model

weighted combinations of predictives associated with different
parametric models

non-parametric conditional distributions

Define a prior over the elements of P : Π[P(yT+1|y1:T , ·)]

The essence of the idea:
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Focused Bayesian Prediction (FBP)

Update the prior:
Π[P(yT+1|y1:T , ·)]

to a posterior:
Π[P(yT+1|y1:T , ·)|y1:T ]

According to predictive performance over some ‘test’set, T

⇒ Π[P(yT+1|y1:T , ·)|y1:T ] is ‘focused’on elements of P with
high predictive accuracy ⇔ small loss

Different (problem-specific) measures of loss ⇒ different
posteriors
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Focused Bayesian Prediction (FBP)

First attempt....

Define a proper scoring rule: S(P(yT+1|y1:T , ·), yT+1)

with expectation, under the truth, F (yT+1|y1:T ), as:

S(P,F ) = EF [S(P(yT+1|y1:T , ·), yT+1)]

The map P 7→ −S(P,F ) defines a loss function over the
models in P

Aim is to focus on the elements of P that minimize this loss
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Focused Bayesian Prediction (FBP)

Partition the sample: y1, y2, ...., yT into:

A training set: D = {yt ; 1 ≤ t ≤ τ}
A test set: T = {yt ; τ + 1 ≤ t ≤ τ + n = T}

Fit P on D ⇒ P̂(yt+1|y1:t , ·) (when necessary)

Use T (and expanding D) to compute:

Sn(P,F ) =
1
n

n−1
∑
i=0

S(P̂(y(τ+i)+1|y1:(τ+i), ·), y(τ+i)+1)

as an estimate of S(P,F )

David Frazier, Ruben Loaiza Maya and Gael Martin, Department of Econometrics and Business Statistics, Monash University, Melbourne, BIRS workshop, Oaxaca, Nov. 2018, Note that this is a modified version of the talk given ()Model-Acentric, Focused Bayesian Prediction 9 / 27



Focused Bayesian Prediction (FBP)

Using short-hand:

P = P(yT+1|y1:T , ·) ∈ P ; F = F (yT+1|y1:T );

Simplest form of FBP Algorithm:

1. Draw P i from Π[P], i = 1, 2, ...,N
2. Compute P̂ i using D and P i
3. Compute s = Sn(P̂ i ,F ) over test set T
3. For each i = 1, 2, ...,N accept P̂ i if s ≥ εn

Different choices for εn ⇒ different aversion to loss
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Focused Bayesian Prediction

This likelihood-free algorithm produces i .i .ḋ . draws from a
‘posterior’for P, given y1:T : Πεn [P|y1:T ]

where the replacement of a likelihood function with an
alternative loss function

And - hence - the use of ‘posterior’

Is similar in spirit to Bissiri et al. (JRSS(B), 2016):

"A general framework for updating belief distributions"

But applied to prediction rather than inference
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Focused Bayesian Prediction

Further refinements certainly possible

E.g. via addition of an approximate Bayesian computation
(ABC) step

⇒ draws P i (s.t. s ≥ εn) are weighted according to their
ability to produce simulated values (zT+1) that ‘match’the
observed values (yT+1) in test period

according the given score (or loss)

or, maybe, according to an additional score (or loss)
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Preliminary Theoretical Results

Theorem 1: ‘Posterior’Concentration:

Define:

P∗ = argmax
P∈P
S(P,F ) with ε∗ = S(P∗,F )

For εn → ε∗; δn → 0 (and under other conditions):

Πεn [|S(P,F )− S(P∗,F )| > δn|y1:T ] →n→∞
0

⇒ distribution of the expected score of P ∈ P concentrates
onto the maximum expected score possible under F

David Frazier, Ruben Loaiza Maya and Gael Martin, Department of Econometrics and Business Statistics, Monash University, Melbourne, BIRS workshop, Oaxaca, Nov. 2018, Note that this is a modified version of the talk given ()Model-Acentric, Focused Bayesian Prediction 13 / 27



Preliminary Theoretical Results

‘Posterior’concentration (in terms of P) would then be
defined as:

Πεn [ρ (P,P
∗) > δn|y1:T ] →n→∞

0

For some functional metric, ρ, (like total variation)

⇒ posterior of P concentrates onto element of P that:

maximizes the expected score ⇔ minimizes loss in P

Proof on the drawing board.....
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Preliminary Theoretical Results

So the distribution of S(P,F ) concentrates onto S(P∗,F )

(⇒ ‘loosely speaking’that P concentrates onto P∗)

with P∗ determined by the choice of score (or loss) function, the
choice of P , and by the true F

How does the ‘posterior’of P relate to the true F?

Define:

Eεn [P|y1:T ] =
∫
PPdΠεn [P|y1:T ]

= the ‘posterior’mean of P
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Preliminary Theoretical Results

Theorem 2: Predictive Merging. As n→ ∞ and εn → ε∗

(a) If F ∈ P (i.e. when the true predictive is in the class) we do
recover it:

ρ2TV (Eεn [P|y1:T ],F ) →n→∞
0

i.e. (squared) total variation distance of Eεn [P|y1:T ] from the
true predictive → 0
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Preliminary Theoretical Results

Theorem 2: Predictive Merging. As n→ ∞ and εn → ε∗

(b) If F /∈ P (so under mis-specification):

lim
n→∞

ρTV (Eεn [P|y1:T ],F ) ≤ 2ρHellinger (P
∗,F )

P∗ = predictive distribution that maximizes the expected
score ⇔ is closest to F in this sense

⇒ the bound is the (H) distance between F and the P∗ that is
closest to F in this score

Actual magnitude of the bound is (of course) affected by P
and the chosen score (or loss)
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Illustrative Example 1: Financial Asset Return

Let lnSt = log of an asset price

Let P define a class of parametric predictives, Pθ, associated
with a stochastic volatility model

d lnSt =
√
VtdBSt

dVt = (θ1 − θ2Vt) dt + θ3
√
VtdBvt

with θ = (θ1, θ2, θ3)′

The true DGP, F , is a stochastic volatility model with random
jumps:

d lnSt =
√
VtdBSt + ZtdNt︸ ︷︷ ︸

= g (θ0,4,θ0,5....)

dVt = (θ0,1 − θ0,2Vt) dt + θ0,3
√
VtdBvt

θ0 = (θ0,1, θ0,2, θ0,3, ...)′ = true parameter (vector)
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Exact but mis-specified predictive?

If we were to simply adopt the (implied) mis-specified SV
model for

yt = lnSt − lnSt−1 = return at time t

and produce the conventional exact Bayesian predictive:
p(yT+1|y1:T )

What would we find?

p(θ|y1:T ) (under regul.) concentrates onto pseudo-true θ, θ∗

where θ∗ is close to θ0 (in KL-based sense)

⇒

lim
T→∞

p(yT+1|y1:T ) = p(yT+1|y1:T , θ
∗) = what??
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Exact but mis-specified predictive?

P is misspecified

θ∗ 6= θ0

Minimizing KL divergence ≡ maximizing log score in sample

No guarantee of out-of-sample performance

In particular, with respect to some other score/loss

FBF ensures (in principle) accurate out-of-sample
performance according to any given score/loss

David Frazier, Ruben Loaiza Maya and Gael Martin, Department of Econometrics and Business Statistics, Monash University, Melbourne, BIRS workshop, Oaxaca, Nov. 2018, Note that this is a modified version of the talk given ()Model-Acentric, Focused Bayesian Prediction 20 / 27



Focused Bayesian Prediction

Five loss functions considered:

Three scores:
1 Log score
2 Continuous rank probability score (CRPS)
3 CRPS for lower tail (appropriate for a financial return)

Two ‘auxiliary predictive’-based losses

Adopting the flavour of auxiliary model-based ABC

Drovandi et al. (2011, 2015, 2018); Creel and Kristensen
(2015); Drovandi (2018); Martin, McCabe, Frazier,
Maneesoonthorn and Robert (2018)
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Auxiliary predictive-based loss function

What do we know about prediction?

Simple parsimoneous models often forecast better than
complex, highly parameterized (but incorrect) models....

⇒ Pick a simple parsimoneous ‘auxiliary predictive’:
q(yT+1|y1:T , β)

And select p(yT+1|y1:T , θ
i ) (from P) such that their predictive

performance closely matches that of q(yT+1|y1:T , β) over the
test period
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Auxiliary predictive-based loss function

i.e. select p(yT+1|y1:T , θ
i ) such that:

1
n

n−1
∑
i=0

∣∣∣p(y(τ+i)+1|y1:(τ+i), θ
i )− q(y(τ+i)+1|y1:(τ+i), β̂)

∣∣∣
< the lowest (α%, say) quantile

i.e. such that loss (defined by this predictive difference) is small

Choose q(yT+1|y1:T , β) to be a generalized autoregressive
conditionally heteroscedastic (GARCH) model

with Student t errors (work-horse of empirical finance)

with normal errors (expected to be a poorer ‘benchmark’)
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Numerical results

For each of the 5 posteriors:

Estimate: Eεn [P|y1:T ] =
∫
PPdΠεn [P|y1:T ]

by taking the sample average of the selected P

Roll the whole process forward (with expanding T )

Compute, over 200 (truely) out-of-sample periods:

Median:

log scores; CRPS scores; tail-weighted CRPS scores

Compare with results for exact (MCMC) mis-specified:
p(yT+1|y1:T )
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Numerical results

The loss function based on matching the Student t GARCH
(auxiliary) predictive yields the most accurate predictive -
according to all measures of predictive accuracy

The loss function based on the (raw) CRPS score is second
best - according to all measures of predictive accuracy

The loss function based on matching the normal GARCH
(auxiliary) predictive does not - as anticipated - perform well

The exact but mis-specified predictive is beaten by FBP in
all cases.....

So we are gaining in terms of predictive accuracy via FBP

Numerical results influenced (however) by simulation error (in
MCMC and the particle filtering used to produce P̂)
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Illustrative Example 2: No Simulation Error

True model (F ): Gaussian AR(4) with stochastic volatility

Predictive class (Pθ ∈ P): Gaussian AR(1) with constant
volatility

Exact (misspecified) p(yT+1|y1:T ) has closed-form

As does Pθ

⇒ has enabled large values for:

Draws from Π [P ] (50,000)
Test period, n (5000 +)
Out-of-sample evaluations (5000)

Very clear (and significant) ranking of CRPS-based FBP
over exact (mis-specified) Bayes

According to (the mean of) all three out-of-sample scores
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Probability Integral Transform (PIT)

Defining the cumulative predictive distribution evaluated at
(observed) yoT+1 as:

uT+1 =
∫ y oT+1

−∞
p (yT+1|y1:T ) dyT+1

for exact (mis-specified) p (yT+1|y1:T )

Under H0 : "p (yT+1|y1:T ) matches the true F”:

uiT+1, i = 1, 2, ..., 5000, are i .i .d .U (0, 1)

H0 rejected for exact Bayes
H0 rejected for LS-based FBP
H0 not rejected for CRPS-based FBP
Early days....more theoretical and numerical results to come......

David Frazier, Ruben Loaiza Maya and Gael Martin, Department of Econometrics and Business Statistics, Monash University, Melbourne, BIRS workshop, Oaxaca, Nov. 2018, Note that this is a modified version of the talk given ()Model-Acentric, Focused Bayesian Prediction 27 / 27


