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Take-home message

» Donsker & Varadhan: Monte Carlo sampling of nonnegative
random variables has an equivalent variational formulation.

» For path-dependent random variables the variational
formulation boils down to an optimal control problem.

» The numerical toolbox for solving optimal control problems
is different from the Monte Carlo toolbox.



Motivation: conformation dynamics of biomolecules
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Motivation: conformation dynamics of biomolecules

Given a Markov process X = (X;)¢>0, discrete or continuous in
time, we want to estimate probabilities p < 1, such as

p=P(r<T),

or rates, such as
k= (E[r])",

with 7 some random stopping time, or free energies
F=- IogE[e*W] ,

where W is some functional of X.



Outline
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Strategies for high-dimensional problems



Importance sampling of rare events
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lllustrative example: bistable system

» Overdamped Langevin equation

dX; = —VV(X,)dt + V2edB;
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» MC estimator of p. = P(7 < T)
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» Small noise asymptotics (Kramers)
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[Freidlin & Wentzell, 1984], [Berglund, Markov Processes Relat Fields 2013]



lllustrative example, cont'd

» Relative error of the MC estimator 6
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[Freidlin & Wentzell, 1984], [Berglund, Markov Processes Relat Fields 2013]



Optimal change of measure: zero variance

Pick another probability measure @ with likelihood ratio

dQ

LN
=ap

under which the rare event is no longer rare, such that
1o _
'D(T < T) = E[1{7<T}] ~ E Z 1{T[<T}SD 1(Ti)'
i=1

with 7; now being independent draws from Q.

Optimal (zero-variance) change of measure is infeasible:

90* _ dQ* _ 1{T<T}
dP E[lgcry]







Change of measure from nonequilibrium forcing

Extension g

Single molecule pulling experiments, figure courtesy of G. Hummer, MPI Frankfurt

In vitro/in silico free energy calculation from forcing:
F=—logE[e"].

Forcing generates a “nonequilibrium” path space measure Q with
typically suboptimal likelihood quotient ¢ = dQ/dP.

[Schlitter, J Mol Graph, 1994], [Hummer & Szabo, PNAS, 2001], Schulten & Park, JCP, 2004], ...



Variational characterization of free energy

Theorem (Donsker & Varadhan)
For any bounded and measurable function W it holds

—Iog]E[e_W] = <5“<2’L{EQ[W] + KL(Q, P)}

where KL(Q, P) > 0 is the relative entropy between Q and P:

i\
KL(Q, P) = /'°g( )dQ o<k

00 otherwise

Sketch of proof: Let ¢ = dQ/dP. Then
f|og/e*WdP: 7|og/e*W*‘°g?dQ g/(w+|og¢) dQ

[Boué & Dupuis, LCDS Report #95-7, 1995], [Dai Pra et al, Math Control Signals Systems, 1996]



Same same, but different. ..



Set-up: uncontrolled ( “equilibrium™) diffusion process

Let X = (Xs)s>0 be a diffusion process on R",
dXs = b(Xs,s)ds + o(Xs)dBs, X = x,

and
W(X) = / F(Xes) ds + g(X).

for suitable functions f, g and a a.s. finite stopping time 7 < co.

Aim: Estimate the path functional

P(x, t) = Ele” WX



Set-up: controlled (“nonequilibrium™) diffusion process

Now given a controlled diffusion process X" = (X!)s>0,
dX;' = (b(X{',s) + o(X)us)ds + o(X')dBs , X' = x,

and a probability @ < P on C([0,00)) with explicitly computable
likelihood ratio ¢ = dQ/dP (via Girsanov's Theorem).

Now: Estimate the reweigthed path functional

E[G_W(X)] — E[E_W(XU)((,D(XU))_I]



Variational characterization of free energies, cont'd

Theorem (H, 2012/2017)

Technical details aside, let u™ be a minimiser of the cost functional

1 T
J(u) :IE[W(X“)Jr 2/ \us]2ds}
t
under the controlled dynamics
dXd = (b(X!,s) + o(X)us)ds + o(X)dBs, X! =x.

The minimiser is unique with J(v*) = —log ¢(x, t). Moreover,

B(x,t) = e VXD (X)) (as).

[H & Schiitte, JSTAT, 2012], [Schiitte et al, Math Prog, 2012], [H et al, Entropy, 2017]



lllustrative example, cont'd

Probability of hitting the set C C R before time T:

1 TAT
_|OgP(7‘ < T) = minE|:4/ ’Ut|2 dt — |Oglac(Xf/\T) s
v 0
with 7 denoting the first hitting time of C under the dynamics

dX! = (u — VV(XY)) dt + V2¢ dB;
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[Zhang et al, SISC, 2014], [Richter, MSc thesis, 2016], [H et al, Nonlinearity, 2016]



A few remarks

» The Theorem is a variant of the Donsker—Varadhan principle
can be proved by both probabilistic and PDE arguments.

» If o7 > 0 the optimal control has gradient form, i.e.
uf = —20(X)TVF(X 1),

with F(x, t) = min{J(u): X} = x} being the value function.

» NFL Theorem: F = —log ) solves a nonlinear HJB equation,
F
—%t +H (x,F,VF,V?F) =0.

(Remark: In some cases F = F(x) will be stationary.)

» Generalizations include degenerate diffusions, Markov chains,
infinite time-horizon, non-exponential functionals .. ..

[H et al, Entropy, 2014]; cf. [Fleming, SIAM J Control, 1978], [Dupuis & Wang, Stoch, 2004]
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Strategies for high-dimensional problems



Two key facts about our control problem



Fact #1

Assuming that oo’ > 0 has a uniformly bounded inverse, the
optimal control is a feedback law that can be represented as

uf = o(X¢)) V(X t),
i=1

with coefficients ¢; € R and basis functions ¢; € CH0(R", [0, 00)).



Fact #2

Letting @ denote the probability (path) measure on C([0, c0))
associated with the tilted dynamics X", it holds that

J(u) = J(u*) = KL(Q, Q)
with Q* = Q(u*) and

dQ | *
KL(Q, Q") = {/'°g(do*>dQ fe<Q

00 otherwise

denoting the relative entropy (or: Kullback-Leibler divergence)
between Q and Q*.



Cross-entropy method for diffusions
Idea: seek a minimiser of J among all controls of the form

M
0 = O'(Xiu) Z Cl'v¢i(Xtu> t) ’ ¢i € (Rn7 [07 OO)) :

i=1

and minimise the Kullback-Leibler divergence

S(u) = KL(p, Q%)

over all candidate probability measures of the form pu = p(4).
Remark: unique minimiser is dQ* = ef " WdP = ¢~le=WdP.

[Zhang et al, SISC, 2014]; cf. [Oberhofer & Dellago, CPC, 2008]



Unfortunately, ...



Cross-entropy method for diffusions, cont'd

...this is a nasty, non-convex minimisation problem.

Feasible cross-entropy minimisation
Minimisation of the relaxed functional KL(Q*, ") is equivalent to
cross-entropy minimisation: minimise

d dQ*
CE(M):—/<Iong/;) d(f’ dP

over all admissible p = p(d), with dQ* e WdpP.

Note: KL(u, Q*)=0 iff KL(Q*, ) = 0, which holds iff 1 = Q.



Some remarks: algorithmic issues

» The cross-entropy minimisation can be recast as

max E [Io 1 e_W(Xﬁ)
max I {log ¢ (4)

where the log likelihood ratio log ¢(4) is quadratic in the
unknowns ¢ = (ci,...,cy) and can be explicitly computed.

» The necessary optimality conditions are of the form
Ac=(

with coefficients A = (A;;), ¢ = ((1,--.,{m) that are
computable by Monte Carlo.

» In practice, annealing and clever choice of basis functions ¢;
(e.g. global or local) greatly enhances convergence.

[Rubinstein & Kroese, Springer, 2004], [Zhang et al, SISC, 2014], [Badowski, PhD thesis, 2016]



Example |



Computing the mean first passage time (n = 1)
Minimise .

J(u; ) = E[aT“ + 1/ |ug|? dt]

4 Jo

with 7¢ = inf{t > 0: X} € [-1.1,—1]} and the dynamics

dX! = (uy — VV(XY)) dt + 272 dB,
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Skew double-well potential V and MFPT of the set S = [—1.1, —1] from FEM reference solution).



Computing the mean first passage time, cont'd

Gradient descent approach using a parametric ansatz

10
c(x) = ZC/V¢;(X), ¢i : equispaced Gaussians
i=1

with opt. control

E®

Biasing potential V + 2F and unbiased estimate of the limiting MFPT.

cf. [H & Schiitte, JSTAT, 2012], [Richter, MSc thesis, 2016]



Example Il (suboptimal control)



Conformational transition of butane in water (n = 16224)

Probability of making a gauche-trans transition before time T:
. 1 T 2 u
—logP(7¢ < T) =minE 2 |ue|* dt —log 1oc (X)) ],
v 0

with 7 = min{7¢, T} and 7¢ denoting the first exit time from the
gauche conformation “C" with smooth boundary 9C

gauche
4 K T [ps] P(r<T) Error Var Accel. T
( /&y 0.1 430x 1075 0.77x107°  3.53 x 1070 425
k,\u 1 0.2 1.21 x 1072 0.11 x 1073 2.50 x 1074 26.0
& 3 2 0.5 6.85 x 1073 0.38 x 1073 2.88 x 1073 13.0
trans 1.0 1.74 x 1072 0.08 x 1072 1.21 x 1072 7.0

IS of butane in a box of 900 water molecules (SPC/E, GROMOS force field) using cross-entropy minimisation

[Zhang et al, SISC, 2014], [H et al, Nonlinearity, 2016], [H et al, PTRF, 2018]



Alternatives to cross-entropy minimisation

» Minimise cost functional J(i(c)) by gradient descent:
D) = ) _ vy (0 (c("))> ,

with h, 0 as n — oc.
» Semi-explicit discretisation of FBSDE by least-squares MC

dXs = b(Xs, s)ds + o(Xs)dBs, X¢ = x
dYS = h(XS7 Y57 Zs)ds + Zs : d857 YT = g(XT)a

where t <s < T and
F(x,t) = Y: (as a function of the initial value x)
» Approximate policy iteration

[H & Schiitte, JSTAT, 2012], [Lie, PhD thesis, 2016], [Kebiri, Neureither & H, Proc IHP, 2018]



Take-home message (reloaded)

» Adaptive importance sampling scheme based on dual
variational formulation; resulting control problem features
short trajectories with minimum variance estimators.

» Variational problem: find the optimal perturbation by
cross-entropy minimisation, gradient descent or the alike.

» Approach can (or better: should) be combined with
dimension reduction prior to optimization.



Thank you for your attention!
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