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Problem specification

o Target distribution on RY

_ y(x)dx
m(dx) = —

where 7 : RY — R can be evaluated pointwise and

Z:/Rdfy(x)dx

is unknown
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Problem specification

o Target distribution on RY

_ y(x)dx
m(dx) = —

where 7 : RY — R can be evaluated pointwise and

Z:/Rdfy(x)dx

is unknown
o Problem 1: Obtain consistent estimator of 7(y) 1= [, ¢(x) w(dx)

o Problem 2: Obtain unbiased and consistent estimator of Z
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Motivation: Bayesian computation

o Prior distribution 7y on unknown parameters of a model
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Motivation: Bayesian computation

o Prior distribution 7y on unknown parameters of a model

o Likelihood function L : RY — R, of data y
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Motivation: Bayesian computation

o Prior distribution 7y on unknown parameters of a model
o Likelihood function L : RY — R, of data y
» Bayes update gives posterior distribution on R?

r(dx) = Wo(x)é(x) dx,

where Z = [, mo(x)L(x) dx is the marginal likelihood of y
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Motivation: Bayesian computation

Prior distribution my on unknown parameters of a model

Likelihood function L : RY — R, of data y

Bayes update gives posterior distribution on R?

m(dx) = w,

where Z = [, mo(x)L(x) dx is the marginal likelihood of y

() and Z are typically intractable
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Monte Carlo methods

o Typically sampling from 7 is intractable, so we rely on Markov
chain Monte Carlo (MCMC) methods
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Monte Carlo methods

o Typically sampling from 7 is intractable, so we rely on Markov
chain Monte Carlo (MCMC) methods

o MCMC constructs a w-invariant Markov kernel
K:RY x B(]Rd) — [0,1]
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Monte Carlo methods

o Typically sampling from 7 is intractable, so we rely on Markov
chain Monte Carlo (MCMC) methods

o MCMC constructs a w-invariant Markov kernel
K:R9 x B(]Rd) — [0,1]

o Sample Xy ~ mg and iterate X, ~ K(X,_1,-) until convergence
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Monte Carlo methods

Typically sampling from 7 is intractable, so we rely on Markov
chain Monte Carlo (MCMC) methods

o MCMC constructs a w-invariant Markov kernel
K:R9 x B(]Rd) — [0,1]

Sample Xy ~ 7o and iterate X, ~ K(X,—1,-) until convergence

o MCMC can fail in practice, for e.g. when 7 is highly multi-modal
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Annealed importance sampling

e If mg and 7 are distant,
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Annealed importance sampling

o If mg and 7 are distant, define bridges

mo(x)L(x) M dx
T, (dx) = Wa o T, v Ty T

with0=Xg< A1 <...<Ay=15s0
that my =7
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Annealed importance sampling

o If mg and 7 are distant, define bridges

_ 7TO(X)L(X))\M dX . . . . . .
T, (dx) = W’ To T cee Ty T
with0=Xg< A1 <...<Ay=15s0
that my =7
o Initialize Xy ~ 7o and move X, ~ Kn(Xm—1,) for m=1,..., M,

where K, is ), -invariant
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Annealed importance sampling

o If mg and 7 are distant, define bridges

WO(X)L(X))\’" dX L] . L] L] L] L]
T, (dx) = T Z0w) To T, vo Tag_y T

with0=Xg< A1 <...<Ay=15s0
that my =7

o Initialize Xy ~ 7o and move X, ~ Kn(Xm—1,) for m=1,..., M,
where Ky, is my, -invariant

» Annealed importance sampling constructs w : (RY)M+1 — R, so

that
n(p) = = W;éfyy&%}:nﬂ)l’ Z = E[w(Xom)

Jeremy Heng Flow transport



Annealed importance sampling

o If mg and 7 are distant, define bridges

WO(X)L(X))\’" dX L] L] L] L] L] L ]
7T>\m(dX) = W, To Ty, e T T1

with0=Xg< A1 <...<Ay=15s0
that my =7

o Initialize Xy ~ 7o and move X, ~ Kn(Xm—1,) for m=1,..., M,
where Ky, is my, -invariant

» Annealed importance sampling constructs w : (RY)M+1 — R, so
that
E [(p(XM)W(X();M)]
(p) = . Z=E[w(X
(90) E[W(XOM)] [ ( OM)]

o AIS (Neal, 2001) and SMC samplers (Del Moral et al., 2006) are
considered state-of-the-art in statistics and machine learning
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Jarzynski nonequilibrium equality

o Consider M — oo,
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Jarzynski nonequilibrium equality

o Consider M — oo, i.e. define the curve
of distribution {7 }¢epo,1)
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Jarzynski nonequilibrium equality

o Consider M — oo, i.e. define the curve
of distribution {7 }¢epo,1)

7-['O(X)L(X))\(t) dX o Tt ™

me(dx) = 2() )

where A : [0,1] — [0,1] is a strictly
increasing C! function
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Jarzynski nonequilibrium equality

o Consider M — oo, i.e. define the curve
of distribution {7} +c0,1]

7-[_D(X)L(X))\(t) dX o Tt ™

m(dx) = 2() ,

where A : [0,1] — [0,1] is a strictly
increasing C! function

o Initialize Xy ~ 7o and run time-inhomogenous Langevin dynamics

1
dX; = SVlogme(X,)dt + dW,, t €[0,1]
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Jarzynski nonequilibrium equality

o Consider M — oo, i.e. define the curve
of distribution {7} +c0,1]

7-[-D(X)L(X))\(t) dX o Tt ™

m(dx) = 2() ,

where A : [0,1] — [0,1] is a strictly
increasing C! function

o Initialize Xy ~ 7o and run time-inhomogenous Langevin dynamics
1
dXt = EV |Og Ft(Xt)dt + th, te [0, 1]

o Jarzynski equality (Jarzynski, 1997; Crooks, 1998) constructs
w: C([0,1],RY) — R, so that
E [¢(X1)w(Xp,1)]

)= "¢ [w(Xpo,11)]

Z=E [W(X[O,l])]
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Jarzynski nonequilibrium equality

o Consider M — oo, i.e. define the curve
of distribution {7} +c0,1]

7-[-D(X)L(X))\(t) dX o Tt ™

m(dx) = 2() ,

where A : [0,1] — [0,1] is a strictly
increasing C! function

o Initialize Xy ~ 7o and run time-inhomogenous Langevin dynamics
1
dXt = EV |Og Wt(Xt)dt + th, te [0, 1]

o Jarzynski equality (Jarzynski, 1997; Crooks, 1998) constructs
w: C([0,1],RY) — R, so that

E [o(X1)w(Xp,1)]
E [w(Xjo,)]

o To what extent is this state-of-the-art in molecular dynamics?

m(p) = Z =E [w(Xq1)]
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Optimal dynamics

¢ Dynamical lag |[Law(X;) — 7| impacts variance of estimators
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Optimal dynamics

¢ Dynamical lag |[Law(X;) — 7| impacts variance of estimators

o Vaikuntanathan & Jarzynski (2011) considered adding drift
f:10,1] x R? — R? to reduce lag

1
dXt = f(t,Xt)dt + EV Iog Wt(Xt)dt + th, te [0, 1],X0 ~ T
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Optimal dynamics

¢ Dynamical lag |[Law(X;) — 7| impacts variance of estimators
o Vaikuntanathan & Jarzynski (2011) considered adding drift

f:10,1] x R? — R? to reduce lag
1
dX, = F(t, X)dt + SV logme(X:)de + dWs, € [0,1], X ~ g

o An optimal choice of f results in zero lag, i.e. X; ~ m; for t € [0, 1],
and zero variance estimator of Z
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Optimal dynamics

Dynamical lag ||Law(X;) — 7¢|| impacts variance of estimators

Vaikuntanathan & Jarzynski (2011) considered adding drift
f:10,1] x R? — R? to reduce lag

1
dXt = f(t,Xt)dt + EV |0g ﬂ't(Xt)dt + th, te [0, 1],Xo ~ T

An optimal choice of f results in zero lag, i.e. X; ~ 7 for t € [0,1],
and zero variance estimator of Z

Any optimal choice f satisfies Liouville PDE

=V - (me(x)F(t, x)) = O¢me(x)
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Optimal dynamics

Dynamical lag ||Law(X;) — 7¢|| impacts variance of estimators

Vaikuntanathan & Jarzynski (2011) considered adding drift
f:10,1] x R? — R? to reduce lag

1
dXt = f(t,Xt)dt + EV |0g7rt(Xt)dt + th, te [0, 1],Xo ~ T

An optimal choice of f results in zero lag, i.e. X; ~ 7 for t € [0,1],
and zero variance estimator of Z

Any optimal choice f satisfies Liouville PDE

=V - (me(x)F(t, x)) = O¢me(x)

Zero lag also achieved by running deterministic dynamics

dX; = f(t, Xt)dt, Xo ~ o
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Time evolution of distributions

o Time evolution of 7; is given by
deme(x) = N (t) (log L(x) — I) me(x),

where

I, = ﬁ% log Z(t) = Ex, [log L(X;)] < oo
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Time evolution of distributions

o Time evolution of 7; is given by
deme(x) = N(t) (log L(x) — I) me(x),

where
Iy = 14 log Z(t) = E,, [log L(X:)] < o0
! N(t) dt ! ‘

o Integrating recovers path sampling (Gelman and Meng, 1998) or
thermodynamic integration (Kirkwood, 1935) identity

log <%> = /01 N(t)l; dt.
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Liouville PDE

o Dynamics governed by ODE

dXt = f(t, )(t)dt7 XO ~ T
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Liouville PDE

o Dynamics governed by ODE
dXt = f(t, )(t)dt7 XO ~ T
o For sufficiently regular f, ODE admits a unique solution

t— Xy, te][0,1]
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Liouville PDE

o Dynamics governed by ODE
dXt = f(t, )(t)dt7 XO ~ T
o For sufficiently regular f, ODE admits a unique solution

t— Xy, te][0,1]
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Liouville PDE

o Dynamics governed by ODE
dX; = f(t, Xy)dt, Xo~ mo
o For sufficiently regular f, ODE admits a unique solution
t— X, te]0,1]
inducing a curve of distributions

{7t := Law(X;), t € [0,1]}
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Liouville PDE

o Dynamics governed by ODE
dX; = f(t, Xy)dt, Xo~ mo
o For sufficiently regular f, ODE admits a unique solution
t— Xy, te][0,1]
inducing a curve of distributions
{7t := Law(X;), t € [0,1]}
satisfying Liouville PDE

-V (7~['tf) = 8{7’{}, 7?0 = 7o
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Defining the flow transport problem

o Set 7, = m¢, for t € [0,1] and solve Liouville equation
-V (7th) = 3t7rt, (L)

for a drift f... but not all solutions will work!
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Defining the flow transport problem

o Set 7, = m¢, for t € [0,1] and solve Liouville equation
-V (7th) = atﬂ't, (L)
for a drift f... but not all solutions will work!

o Validity relies on following result:
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Defining the flow transport problem

o Set 7, = m¢, for t € [0,1] and solve Liouville equation
-V (7th) = 0t7rt, (L)
for a drift f... but not all solutions will work!

o Validity relies on following result:

Theorem. Ambrosio et al. (2005)

Under the following assumptions:

Eulerian Liouville PDE <= Lagrangian ODE
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Defining the flow transport problem

o Set #; = m, for t € [0,1] and solve Liouville equation
-V (Tl'tf) = atﬂ't, (L)
for a drift f... but not all solutions will work!

o Validity relies on following result:

Theorem. Ambrosio et al. (2005)

Under the following assumptions:

Al f is locally Lipschitz;

Eulerian Liouville PDE <= Lagrangian ODE
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Defining the flow transport problem

o Set #; = m, for t € [0,1] and solve Liouville equation
-V (Tl'tf) = atﬂ't, (L)
for a drift f... but not all solutions will work!

o Validity relies on following result:

Theorem. Ambrosio et al. (2005)

Under the following assumptions:

Al f is locally Lipschitz;
A2 fol fRd [f(t, x)|me(x) dx dt < oo;
Eulerian Liouville PDE <= Lagrangian ODE
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Defining the flow transport problem

o Set #; = m, for t € [0,1] and solve Liouville equation
-V (Tl'tf) = atﬂ't, (L)
for a drift f... but not all solutions will work!

o Validity relies on following result:

Theorem. Ambrosio et al. (2005)

Under the following assumptions:

Al f is locally Lipschitz;
A2 fol fRd [f(t, x)|me(x) dx dt < oo;
Eulerian Liouville PDE <= Lagrangian ODE

o Define flow transport problem as solving Liouville (L) for f that
satisfies [Al] & [A2]
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lll-posedness and regularization

o Under-determined: consider m; = N((0,0), k) for t € [0,1],
f(x1,x2) = (0,0) and f(x1,x2) = (—x2, x1)

are both solutions
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lll-posedness and regularization

o Under-determined: consider m; = N'((0,0), k) for t € [0,1],
f(Xl,X2) = (0,0) and f(Xl,XQ) = (—X2,X]_)

are both solutions

o Regularization: seek minimal kinetic energy solution

1
argming {/ / |f(t, x)|?me(x) dx dt : f solves Liouville}
0 Jrd

£ = Vo where —V - (1:V) = Oy
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lll-posedness and regularization

o Under-determined: consider m; = N'((0,0), k) for t € [0,1],
f(Xl,X2) = (0,0) and f(X]_,XQ) = (—X2,X]_)

are both solutions

o Regularization: seek minimal kinetic energy solution

1
argming {/ / |f(t, x)|?me(x) dx dt : f solves Liouville}
0 Jrd
£L f* = Vi where — V- (meV) = Oy

o Analytical solution available when distributions are (mixtures of)
Gaussians (Reich, 2012)
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Flow transport problem on R

o Minimal kinetic energy solution

— f_ Orme(u) du

me(x)

f(t,x) =
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Flow transport problem on R

o Minimal kinetic energy solution

— f_ Orme(u) du

me(x)

f(t,x) =

o Checking Liouville

=V - (mf) = O /_X Om(u) du = Oymre(x)
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Flow transport problem on R

o Minimal kinetic energy solution

— f_ Orme(u) du

me(x)

f(t,x) =

o Checking Liouville
-V (7th) = 8)(/ 3t7rt(u) du = 5‘t71't(X)

Al For f to be locally Lipschitz, assume
mo, L € CHR,R,) = f € C}([0,1] x R, R)
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Flow transport problem on R

o Minimal kinetic energy solution

— f_ Orme(u) du

me(x)

f(t,x) =

o Checking Liouville
LV (o) = s / Oyre(u) du = Dye(x)

Al For f to be locally Lipschitz, assume
mo, L € CHR,R,) = f € C}([0,1] x R, R)

A2 For integrability of fol Jro [F(t, x)|me(x) dx dt < o0, necessarily

—0as |x| = o

I f|(E %) = ‘/ Oyre(u) du

since ffooo Ome(u)du=0
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Flow transport problem on R

o Minimal kinetic energy solution

— f_ Orme(u) du

me(x)

f(t,x) =

o Checking Liouville
LV (o) = s / Oyre(u) du = Dye(x)

Al For f to be locally Lipschitz, assume
mo, L € CHR,R,) = f € C}([0,1] x R, R)

A2 For integrability of fol Jro [F(t, x)|me(x) dx dt < o0, necessarily

—0as |x| = o

I f|(E %) = ‘/ Oyre(u) du

since ffooo Ome(u)du=0
o Optimality: f = Vy holds trivially
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Flow transport problem on R

o Re-write solution as

ey = MOIRL) — 1/1)

me(x)

where I} = B, [1(_ o0 x log L(X;)] and F; is CDF of m;
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Flow transport problem on R

o Re-write solution as

ey = MIRL) — I/1)

me(x)

where I} = B, [1(_ o0 x log L(X;)] and F; is CDF of m;

o Speed is controlled by \'(t) and 7,(x)
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Flow transport problem on R

o Re-write solution as

F(t,x) = Dk {f:t((xx))— /1)

where I} = B, [1(_ o0 x log L(X;)] and F; is CDF of m;
o Speed is controlled by A'(t) and 7,(x)

o Sign is given by difference between F.(x) and I}/I; € [0,1]
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Flow transport problem on R d > 1

o Multivariate solution for d = 3
X1
(meu) (£, x13) = — / Bermy(in, x2, x3) dly
oo N
+g1(t,x1)/ atﬂt(ul,XQ,Xg,) dUl
_Oo: X2
(meh)(t, x1:3) = — g1 (¢, Xl)/ / Ome(un, U2, x3) duo
o o o0 o0
+ g1(t, x1)&(t, Xz)/ / O¢me(un, U, x3) duyn
— 00 — 00
(o) oo X3
(mef3)(t, x1:3) = — g1(t, x1)gs(t, X2)/ / / Ome(u, tn, uz) dus3
— 00 — 00 — 00

where g1, 8, € C2([0,1] x R, [0, 1])
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Flow transport problem on R d > 1

o Checking Liouville
O (meh1)(t, x1:3) = — Oemre(x1, X2, X3)

o
+g]/_(t,X1)/ 8t7rt(U1,X2,X3) dU1
oo
6X2(7th2)(t,X1;3) = - g]/_(ta Xl)/ 8t7Tt(U]_,X2,X3) du1:2
—00
+g1/(taX1)g§(t7X2)/ / Orme(u1, U, x3) duro

B (e ) (£, x03) = — g4(8,x1)g3(t %) / / Dere(u, s, x3) duz

Jeremy Heng Flow transport



Flow transport problem on R d > 1

o Checking Liouville
O (TeF1)(t, x1:3) = — Oeme(x1, X2, X3)

+g]/_(t,X1)/ a1’7'['1’(ulvx27x3) dU1
o~
O, (meh)(t, x1:3) = _g]/_(taxl)/ Ome(ur, X2, x3) duo
—o0
~|—g]/_(t,X1)g£(t,X2)/ / 8t7rt’(l-llauZyX3) duyn
RSy
O (me3) (1, x1:3) = —g{(f,xl)gﬁ(t,xz)/ / O¢me(uy, U, x3) duyp

o Taking divergence gives telescopic sum

3
=V - (mef)(t,xa3) = — > O (mef)(t, xa:3) = Orme(x1:3)

i=1
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Flow transport problem on R d > 1

Al For f to be locally Lipschitz, assume

mo, L € CH(RY,R,) = f € C*([0,1] x RY RY)

Jeremy Heng Flow transport



Flow transport problem on R d > 1

Al For f to be locally Lipschitz, assume

mo, L € CH(RY,R,) = f € C*([0,1] x RY RY)

A2 For integrability of fol Jro [F(t, x)|me(x) dx dt < o0, necessarily
|ef|(t,x)] = 0 as |x| = oo
if {g;} are non-decreasing functions with tail behaviour

gi(t,x;)) >0 asx; = —oo,
gi(t,x;) > 1 asx; — o0
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Flow transport problem on R d > 1

Al For f to be locally Lipschitz, assume

mo, L € CH(RY,R,) = f € C*([0,1] x RY RY)

A2 For integrability of fol Jro [F(t, x)|me(x) dx dt < o0, necessarily
|ef|(t,x)] = 0 as |x| = oo
if {g;} are non-decreasing functions with tail behaviour

gi(t,x;)) >0 asx; = —oo,
gi(t,x;) > 1 asx; — o0

o Choosing g;(t,x;) = F:(x;) as marginal CDF of 7, allows f to
decouple if distributions are independent
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Approximate Gibbs flow transport

o Solution involved integrals of increasing dimension as it tracks
increasing conditional distributions

(X1 |x2:d), Te(X2[3:d)s - - - Te(Xd), xi €R
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Approximate Gibbs flow transport

o Solution involved integrals of increasing dimension as it tracks
increasing conditional distributions

7rt‘(X].|X2:d)7 7rt(X2|3:d)a R 77Tt(Xd)7 Xij S R
o Trade-off accuracy for computational tractability: track full

conditional distributions

me(Xi|x=i), xi € RY
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Approximate Gibbs flow transport

o Solution involved integrals of increasing dimension as it tracks
increasing conditional distributions

7rt(X1|X2:d)7 7rt(X2|3:d)a R 77Tt(Xd)7 Xij S R

o Trade-off accuracy for computational tractability: track full
conditional distributions

me(Xi|x=i), xi € RY

o System of Liouville equations
s mib ) ) b = demellx).

each defined on (0,1) x R%
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Approximate Gibbs flow transport

e For d; =1, solution is

— [ Oeme(uilx—;) du;

me(xi|x—i)

Fi(tv x) =
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Approximate Gibbs flow transport

e For d; =1, solution is

— [ Oeme(uilx—;) du;

ﬁ(t,X) = 7Tt(Xi|X—i)

o If mo, L € CHRY,Ry) and lim|y| 00 L(x) = 0, the ODE
dXe = F(t, Xp)dt, Xo ~ mo

admits a unique solution on [0, 1], referred to as Gibbs flow
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Approximate Gibbs flow transport

e For d; =1, solution is

— [7 Oeme(uilx_;) du;

7Tt(X,'|X_,')

F,-(t,x) =

o If mo, L € CHRY,Ry) and lim|y| 00 L(x) = 0, the ODE
dX, = f(t, X;)dt, Xo~ mo
admits a unique solution on [0, 1], referred to as Gibbs flow

o For d; > 1, can often exploit analytical tractability of me(xi|x—;) to
solve for f;(t, x); or apply multivariate extension
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Approximate Gibbs flow transport

For d; = 1, solution is

— [7 Oeme(uilx_;) du;

7Tt(X,'|X_,')

F,-(t,x) =

If mo, L € CH(RY,Ry.) and lim|y| 00 L(x) = 0, the ODE
dX, = f(t, X;)dt, Xo~ mo

admits a unique solution on [0, 1], referred to as Gibbs flow

For d; > 1, can often exploit analytical tractability of 7:(x;|x_;) to
solve for f;(t, x); or apply multivariate extension

Otherwise, analogous to Metropolis-within-Gibbs, split into one
dimensional components and apply above
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Error control

o Define local error

e(x) = |0eme(x) + V - (me(x)F(t, x))‘

Orme(x) — Zatﬂ't(xilx—i)ﬂ-t(x—i)
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Error control

o Define local error

e(x) = |0eme(x) + V - (me(x)F(t, x))‘

Orme(x) — Z Orme(Xi|x_i)me(x_i)

o Gibbs flow exploits local independence:

me(x) = Hﬂt(x;) = e(x)=0
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Error control

o Define local error

e:(x) = |0em(x) + V- (m()f(£,%))|

Derre(x) — Z Ao (xi|x_i)me(x_)

o Gibbs flow exploits local independence:

me(x) = Hm(x;) — g(x) =0

o If Gibbs flow induces {7 }c[o,1] With 7o = mo

t t
e — el < t / leul2 dus - exp (1 + / IV - F () du)
0 0
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Numerical integration of Gibbs flow

o Previously, we considered the forward Euler scheme

Ym = Ym-1+ At f(tm—lv Ym—l) = <|>m(Ym—l)
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Numerical integration of Gibbs flow

o Previously, we considered the forward Euler scheme

Ym =Ym-1+ At f(tm—la Ym—l) = <|>m(Ym—l)

o To get Law(Y},), we need Jacobian determinant of ®,, which
typically costs O(d®) for d; = 1
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Numerical integration of Gibbs flow

o Previously, we considered the forward Euler scheme
Ym = Ym-1+ At f(tmflv mel) = (Dm(ymfl)

o To get Law(Y},), we need Jacobian determinant of ®,, which
typically costs O(d?) for d; = 1

o In contrast, this scheme mimicking a systematic Gibbs scan

Yl = Ym-1[i] + At F(tm_1, Y[l : i — 1], Ym_1[i : p])
Ym= (Dm,d ©-:-0 q>m,l()/m—l)

is also order one, and costs O(d)
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Mixture modelling example

o Lack of identifiability induces m on R* with 4! = 24 well-separated
and identical modes
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Mixture modelling example

o Lack of identifiability induces m on R* with 4! = 24 well-separated
and identical modes
o Gibbs flow approximation

t =0.0006 t =0.0058

PRI I




Mixture modelling example

o Proportion of particles in each of the 24 modes

1234567 8 9101112131415161718192021222324
Mode

0.0

=

0.0

w

0.0

N

0.0

purg

Proportion of particles

0.0

o
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Mixture modelling example

o Proportion of particles in each of the 24 modes

1234567 8 9101112131415161718192021222324
Mode

0.0

=

0.0

w

0.0

N

Proportion of particles

0.0

purg

0.0

o

o Pearson’s Chi-squared test for uniformity gives p-value of 0.85
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Cox point process model

ESS%

o Effective sample size % in dimension d

d=100 d =225
100 Wmm—-::::::::mmn 100
s o uﬂ Saai ] ) 75 "
1 My i
25 HHWWW 25
Oo.bo 025 050 075 1.00 Oo.bo 025 050 075 1.00
time time

method ¢ AIS ¢ GF-SIS ¢ GF-AIS

method ¢ AIS ¢ GF-SIS ¢ GF-AIS
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Cox point process model

ESS%

o Effective sample size % in dimension d
o AIS: AIS with HMC moves

d=100 d =225
100 ‘“"'"*":::;::'“*'"" 100
75 **ﬂ i 75 ’%
50 +f++++++ % 50
25 HHW*WW 25
Oo.bo 025 050 075 1.00 Oo.bo 025 050 075 1.00
time time

method ¢ AIS ¢ GF-SIS ¢ GF-AIS

method ¢ AIS ¢ GF-SIS ¢ GF-AIS

ESS%

d =400

100

75

50

25

o . B i . .
0.00 025 050 0.75 1.00

time

method ¢ AIS ¢ GF-SIS ¢ GF-AIS
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Cox point process model

o Effective sample size % in dimension d
o AIS: AIS with HMC moves
o GF-SIS: Gibbs flow

d=100 d=225 d =400
100[ vompsssmazzzzgeesarossntossomsee 100 100
. l-l-l-outuuu..””” \
75 75 75
*
2 ﬂﬂ 2 ﬁ 2
@ 50 f++ @ 50 @ 50
w +++++H w w
25 Hﬁ%ﬁ% 25 25
ol ‘ ‘ ‘ ‘ ol ‘ ‘ ‘ ‘ ol ‘ ‘ ‘ |
000 025 050 075 1.00 000 025 050 075 1.00 000 025 050 075 1.00
time time time
method ¢ AIS ¢ GF-SIS + GF-AIS method ¢ AIS ¢ GF-SIS + GF-AIS method ¢ AIS ¢ GF-SIS + GF-AIS
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Cox point process model

o Effective sample size % in dimension d
o AIS: AIS with HMC moves
o GF-SIS: Gibbs flow
o GF-AIS: Gibbs flow with HMC moves
d=100 d =225 d =400
100 T 100 100
75 K W T 75 ’% 75
2 i 2 2
@ 50 +f++++++ @ 50 @ 50
25 HHW*WW 25 25
0 0 0
0.00 025 050 075 1.00 0.00 025 050 075 1.00 0.00 025 050 075 1.00
time time time
method ¢ AIS ¢ GF-SIS + GF-AIS method ¢ AIS ¢ GF-SIS + GF-AIS method ¢ AIS ¢ GF-SIS + GF-AIS
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o Heng, J., Doucet, A., & Pokern, Y. (2015). Gibbs Flow for
Approximate Transport with Applications to Bayesian Computation.
arXiv preprint arXiv:1509.08787.

o Updated article and R package coming soon!
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