Thermal transport in one-dimensional chains

Alessandra lacobucci

iacob@ceremade.dauphine.fr

CEREMADE-CNRS, Université Paris-Dauphine

“Computational Statistics and Molecular Simulation: A Practical Cross-Fertilization”

BIRS, Oaxaca, November 11-16, 2018

UPHINE | CEREMADE

U\IVFRSITF PARIS



Introduction

Transport phenomena

Transport phenomena are characterized by the general macroscopic relation
J=—aV¢
V¢ : forcing acting on the system

(¢ = temperature, electrical potential, concentration)

J :  response of the system
(current of energy, momentum, particle/mass)

« : transport coefficient
(thermal conductivity, mobility, viscosity)

Remarks:

1. The presence of currents characterizes out-of-equilibrium systems.
2. For small |V¢

3. From now on ¢ = T and dimension 1

, @ can be considered constant.
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Introduction

Outline

o Transport properties for small |V T|

— the computation of the thermal conductivity in a 1-D system,
the example of the Toda chain

o Properties of a system far from equilibrium

— the case of the forced rotor chain

@ Macroscopic diffusion in the forced rotor chain (work in progress)
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Transport properties in the linear regime



The linear response regime

Heat transport in one-dimension

Fourier's law

J(x,t) = —kVT(x,t) 2P = -k g, L = sys. length

where k, k; are the thermal conductivities.

o Validity of Fourier's law : lim Ilim Kk =k <
L—oco AT—0

@ Anomalous conductivity: x; ~ L%, with o > 0

Models: atom chains. Simple, but still complicated to study:

@ issues with analytical approaches
— nonlinear interactions
— very degenerate noise
— invariant measure unknown
@ issues with numerical approaches

— computational constraint (time step, finite comp. time, sys. size, ...)
— large relative error (large systems = small currents)
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The linear response regime

Microscopic model

(a; . py) (a, , p;)

q="20
p=0

° {(q,‘,p,‘),i:l,...,N}eRzN,I’I.:q

@ unitary masses

i~ di-1

@ first particle attached to a wall (go = 0, pp = 0), free/fixed BC on the right-end
N P-2 N

o H= -+ U(gi — gi— h U dels the int ti
;2 +§ (gi — gi—1) where U(r) models the interaction

@ T, = Tgp =T = equilibrium with u(dgdp) = e~ */T dgdp
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The linear response regime

The system dynamics

Hamiltonian dynamics in the bulk, Langevin dynamics at the boundaries

dqg; = p; dt,
dpi = (U'(qf+1 —q)—U(q - qf-l)) dt + 6,-,1( —Epidt 4+ /26T, dwl,t)+
i (= €pw dt + /26T AW, vi e [L,N].

— £ > 0 controls the coupling with the thermostats

— Existence and uniqueness of the invariant measure can be proved for a
certain class of U € ¢ ()

() Carmona (2007), Rey-Bellet (2006).
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The linear response regime

Computation of transport coefficients : two main approaches

Denoting by Jn(g:, pt) = Z,{\’:_llj,-(qt,pt)/(N — 1) the total average
instantaneous current

Non-equilibrium computation for AT < 1 (Iinear response regime)

Equilibrium computation based on the Green-Kubo formula

N—1)> [ _
KT = % / E,, (JN(q07p0)JN(qt:pt))dt7 pr oce T
0

Both approaches are theoretically equivalent (if both xky at and nf,'fT are
finite).
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The linear response regime

Computing Ky a7 (1/2)

o Approximation: (¢, p™) = (gmat, Pmat)

@ Integration scheme: analytic integration of the fluctuation-dissipation part

+ Strang splitting with Verlet scheme @ for the Hamiltonian part

o Currents computation at iteration m :
(r,' =q;, — q,'_l)

€ = %’2 + %(U(ri) — U(rI.H))

de.
local energy conservation : !

Q& = Ji—1,i — Jiji+1

energy on site J :

. . 1
instantaneaous energy current : Jii+1 = _§(p" + pI.H)U’(rI.H)

N—1
. 1 .
total average instantaneous current :  J, = N_1 E Jiji+1
i=1

@ Verlet (1967)
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The linear response regime

Computing Ky aT (2/2)

o Thermal conductivity : Computed by empirical average on M iterations

1 1 U
Hn,AT:E (M+1;JN>

o Statistical error

RN,AT’:KJrO(

1
w/(MAr)AT)

This means that MAt = O((AT) ™) and | have to keep AT < 1 to remain in
the linear response regime. ..
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The linear response regime

Example : ky a1 for the Toda chain

—br
-1
U(r) = % with b > 0 + stochastic perturbation of intensity

b=1, £=0.1
10

log,(¥)
O =N WA U T X0

A. lacobucci (CEREMADE)



Out of the linear response regime



Strong

The rotor model (3)

N interacting rotors + temperature gradient + constant force.

45 =0 J \ f T
Py =0 l “‘ 3 ) v/
(a; Py (a; » p;)
o ge€2rT, ppec Rwithi=0,...,N
or=q —qi—1,fori=2,....N,n=aq
@ equal unitary masses
o first rotor attached to a wall (go = 0, po = 0), free BC on the last rotor
N p2
=3 [% + Ula — ai-1)] with U(r) =1~
o H ;[2 + U(gi — gi—1)| wi (r) cosr

) lacobucci, Legoll, Olla, Stoltz (2011).
Oaxaca, November 13, 2018
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The system dynamics

Hamiltonian dynamics in the bulk, Langevin dynamics at the boundaries and
mechanical forcing at the right end (U’ (gn+1 — gn) = 0))

dqg; = p; dt

dp; = (U'(q/‘+1 —qi) — U'(qi — qi—1) + din F)df

Vi e [1,N],
+ 81 ( — €p1 dt + /26T WA )
+* 5i,N( —&py dt + \/2§7TRdWN,t)
@ Average stationary energy current
2
energy on site i : &=+ %(U(q; —qi—1) — U(gi41 — qf))
. dei . .
local energy conservation : ar = Ji—1,i — Ji,i+1
instantaneaous energy current @ j; i1 = f%(pl. +p )V (9, —q;)
1 N—1
total average current : JN = mE(ﬁ,Hl)
i=
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Strong forg

About the system

F=0 T.=Tr=Teq — equilibrium = stationary Gibbs measure

with 8= T '
T # Tr — finite thermal conductivity )
F#A0 Ti=Tk=T — out of equilibrium
— the stationary measure not explicitly known;
existence proved ® only for N < 4
— highly non-linear temperature profiles
F#£0 TL#Tr — forcing mechanisms not necessarily additive

(*) Giardina, Livi, Politi, Vassalli (2000), Gendelman and Savin (2000,2005),
Yang and Hu (2005), Das and Dhar, arXiv:1411.5247 (2014).
) Cuneo, Eckmann & Poquet (2015); Cuneo & Eckmann (2016); Cuneo & Poquet (2017)
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Strong forg

Highly non-monotonic " temperature” and momentum profiles

loc 5 . .
i = (p?) — (p7)?. Profiles for N = 1024, F = 1.6.
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The macroscopic diffusion model



Macroscopic description of the model (work in progress)

Total energy and total momentum are conserved by the dynamics.

We introduce
— e(x,t) and p(x,t), t € RT and x € [0,1], and B(x,t) = T~ }(x, t)

— u(x, t) internal energy. It holds (by thermodynamics)

_ p(x, t)?

u(x,t) = e(x, t) 5

and at fixed (x, t), by thermodynamics

_ 7’1(5) -1 u
ug) = (1-H) ren = s

where Iy, i are modified Bessel function of the first kind

— We thus obtain T(x, t).
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Strong

Evolution

@ It can be shown that e(x, t) and p(x, t) evolve following

o (P) —o(kema (0)) . ko= [Ko il

where K is the Onsager matrix, whose elements are Green-Kubo
coefficients.

o Setting KPP(8,0) = K1 and K*(3,0) = K>, it can be shown that
K™ (B, p) = K1 = Ki, K*(B,p) = Ko + p°Ki

KP(8,p) = K*(B,p) = pKi

The stationary problem

Ox (K1 0xp + pKi0xe) =0

Ox(p[K1 Oxp + pKiOxe] + K20<e) =0
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Strong forging

Numerical solution of the stationary problem

— Compute K1 and K> at equilibrium (........ )

— Solve the stationary problem with Dirichelet BC p(0,0) = p;, p(1,0) = prg,
T(0,0) = T, and T(1,0) = Tr by the following fixed point algorithm

1. find {p*"} solutions of the first equation for fixed {ek"~1};
2. find {ek’"} solutions of the second equation for fixed {pk’”};
3. compute {uk"} as ukn = eln — (pkom)2 /(2m);
4. find {ﬂk*”} by numerically inverting the function

h(Uppkn

UO (1 _ 1( Oﬂk )) +(25k,n)71 _ uk,n;

lo(Uo8%:1)
5. update {Klk’"} and {K;’"};
6. if both

et} - )=
K- (o) =

for a fixed £ go to 1, otherwise you have reached the steady state.

and
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Stationary profiles (1/2)

Ki(8) and Ka(8) form lubini et al (2016), T, = Tg = 0.2, p, = —1.0, pg = 1.0.

K@, K@), T=02, Ta=02, m=-10, pr=10
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Stationary profiles (2/2)

Strong

Ki1(B) and K»(B) form lubini et al (2016), T, = 0.2, Tg = 0.5, p, = —1.0, pg = 1.0.

KB, KB, TL=02, Ta=0S, pi=-10, pr=10, ncycles=1040
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