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Objective

Let us be given a submanifold of Rd :

M =
{

q ∈ R
d , ξ(q) = 0

}

where ξ : Rd → R
m is a given smooth function (with m < d) such

that
G (q) = [∇ξ(q)]T ∇ξ(q) ∈ R

m×m

is an invertible matrix for all q in a neighborhood of M. The
objective is to sample the probability measure:

ν(dq) = Z−1
ν e

−V (q) σM(dq), Zν =

∫

M
e
−V (q) σM(dq) < ∞,

where σM(dq) is the Riemannian measure on M induced by the
scalar product 〈·, ·〉 defined in the ambient space R

d .



Motivation
Such problems arise in many contexts: constrained mechanical
systems with noise, statistics, ...

One example is computational statistical physics: free energy
calculations. If X ∼ ρ where ρ(dq) = Z−1

e
−V (q) dq, then

ξ(X ) ∼ ξ#ρ. Let us define A : Rm → R by:

e
−A(z)dz = ξ#ρ(dz).

Then, using the co-area formula,

∇A(0) = Eρ(f (X )|ξ(X ) = 0) =

∫

M
f (q)ν̃(dq)

where f = G−1∇ξ · ∇V − div(G−1∇ξ) and

ν̃(dq) = Z−1
ν̃ e

−Ṽ (q) σM(dq)

where Ṽ (q) = V (q) + ln detG(q)
2 .

−→ Thermodynamic integration.
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Step 1: the overdamped Langevin dynamics (1/3)

The constrained overdamped Langevin dynamics (Wt is a
d -dimensional Brownian motion):

{

dqt = −∇V (qt) dt +
√
2dWt +∇ξ(qt)dλt

dλt ∈ R
m such that ξ(qt) = 0

is ergodic with respect to ν. It can indeed be rewritten as:

dqt = Π(qt) ◦ (−∇V (qt) dt +
√
2dWt)

where ◦ denotes the Stratonovitch product and

Π(q) = Id−∇ξ(q)G−1(q)[∇ξ(q)]T

is the orthogonal projector from R
d to TqM. One can then use

the divergence theorem on manifolds to prove that its unique
invariant measure is ν [Ciccotti, TL, Vanden-Einjden, 2008].



Step 1: the overdamped Langevin dynamics (2/3)

Discretization of the constrained overdamped Langevin dynamics:

{

qn+1 = qn −∇V (qn)∆t +
√
2∆tGn +∇ξ(qn)λ

n

λn ∈ R
m such that ξ(qn+1) = 0

where Gn ∼ N (0, Id).

Remark: By choosing V = Ṽ , an approximation of ∇A(0) is given
by the average of the Lagrange multipliers:

lim
T→∞

lim
∆t→0

1

T

T/∆t
∑

n=1

λn = ∇A(0).



Step 1: the overdamped Langevin dynamics (3/3)

Time discretization implies a bias, which is of order ∆t. Let ν∆t

be the invariant measure for (qn)n≥0, then [Faou, TL, 2010]: for all
smooth function ϕ : M → R, ∃C , for small ∆t,

∣

∣

∣

∣

∫

M
ϕdν∆t −

∫

M
ϕdν

∣

∣

∣

∣

≤ C∆t.

The proof is based on expansions à la Talay-Tubaro.

How to eliminate the bias?

Metropolis-Hastings is not easy to apply since the probability to go
from qn to qn+1 does not have a simple analytical expression.

Idea: lift the problem to phase space in order to use the symmetry
up to momentum reversal of the constrained Hamiltonian
dynamics.



Step 2: the Langevin dynamics (1/8)
Extended measure in phase space:

µ(dq dp) = Z−1
µ e

−H(q,p) σT∗M(dq dp)

where H(q, p) = V (q) + |p|2

2 and σT∗M(dq dp) is the phase space
Liouville measure on

T ∗M =
{

(q, p) ∈ R
d × R

d , ξ(q) = 0 and [∇ξ(q)]T p = 0
}

.

The marginal of µ in q is ν. Indeed, the measure µ rewrites:

µ(dq dp) = ν(dq)κq(dp)

where

κq(dp) = (2π)
m−d
2 e

−
|p|2

2 σT∗
q M(dp)

with T ∗
qM =

{

p ∈ R
d , [∇ξ(q)]T p = 0

}

⊂ R
d .

Remark: Here and in the following, we assume for simplicity that
the mass tensor M = Id. It is easy to generalize the algorithm and
the analysis to the case M 6= Id.



Step 2: the Langevin dynamics (2/8)
The constrained Langevin dynamics (γ > 0 is the friction parameter)







dqt = pt dt

dpt = −∇V (qt) dt − γpt dt +
√
2γdWt +∇ξ(qt) dλt

ξ(qt) = 0

is ergodic with respect to µ. Notice that [∇ξ(qt)]
Tpt = 0.

It can be seen as the composition (operator splitting) of two
dynamics:

• the constrained Hamiltonian dynamics:






dqt = pt dt

dpt = −∇V (qt) dt +∇ξ(qt) dλt

ξ(qt) = 0.

• the Ornstein-Uhlenbeck process on momenta:










dqt = 0

dpt = −γpt dt +
√

2γdWt +∇ξ(qt) dλt

[∇ξ(qt)]
Tpt = 0.

.



Step 2: the Langevin dynamics (3/8)
Discretization of the Ornstein-Uhlenbeck process on momenta:
midpoint Euler leaves the measure κqn and thus µ invariant:







pn+1 = pn − ∆t

2
γ (pn + pn+1) +

√

2γ∆t G n +∇ξ(qn)λn,

∇ξ(qn)Tpn+1 = 0,

In the following, we denote one step of this dynamics by
ΨOU

∆t : T ∗M → T ∗M:

ΨOU
∆t (q

n, pn) = (qn, pn+1).

Remark: The projection is always well defined, and easy to
implement:

pn+1 = Π∗(qn)

(

(1−∆tγ/2)pn +
√
2γ∆t G n

1 + ∆tγ/2

)

where
Π∗(q) = Id−∇ξ(q)G−1(q)[∇ξ(q)]T

is the orthogonal projector from R
d to T ∗

qM.



Step 2: the Langevin dynamics (4/8)
Discretization of the constrained Hamiltonian dynamics (RATTLE):















































pn+1/2 = pn − ∆t

2
∇V (qn) +∇ξ(qn)λn+1/2,

qn+1 = qn +∆t pn+1/2,

ξ(qn+1) = 0, (Cq)

pn+1 = pn+1/2 − ∆t

2
∇V (qn+1) +∇ξ(qn+1)λn+1,

[

∇ξ(qn+1)
]T

pn+1 = 0, (Cp)

where λn+1/2 ∈ R
m are the Lagrange multipliers associated with

the position constraints (Cq), and λn+1 ∈ R
m are the Lagrange

multipliers associated with the velocity constraints (Cp).

In the following, we denote one step of the RATTLE dynamics by
ΨRATTLE

∆t : T ∗M → T ∗M:

ΨRATTLE
∆t (qn, pn) = (qn+1, pn+1).



Step 2: the Langevin dynamics (5/8)

Discretization of the constrained Langevin dynamics (Strang
splitting):















(qn, pn+1/4) = ΨOU
∆t/2(q

n, pn)

(qn+1, pn+3/4) = ΨRATTLE
∆t (qn, pn+1/4)

(qn+1, pn+1) = ΨOU
∆t/2(q

n+1, pn+3/4)

But there is still a bias due to time discretization...



Step 2: the Langevin dynamics (6/8)
Let us denote by

S(q, p) = (q,−p)

the momentum reversal map and

Ψ∆t(q, p) = S
(

ΨRATTLE
∆t (q, p)

)

.

Fundamental properties of RATTLE: for ∆t small enough,

• Ψ∆t (Ψ∆t(q, p)) = (q, p)

• Ψ∆ is a symplectic map, which thus preserves σT∗M

[Hairer, Lubich, Wanner, 2006] [Leimkuhler, Reich, 2004].

One can thus add a Metropolis Hastings rejection step to get
unbiased samples: if (q′, p′) = Ψ∆t(q, p), the MH ratio writes:

δΨrev

∆t
(q′,p′)(dq dp) e

−H(q′,p′) σT∗M(dq′ dp′)

δΨrev

∆t
(q,p)(dq′ dp′) e−H(q,p) σT∗M(dq dp)

= e
−H(q′,p′)+H(q,p).



Step 2: the Langevin dynamics (7/8)
Constrained Generalized Hybrid Monte Carlo algorithm ([TL, Rousset,

Stoltz 2012], constrained version of [Horowitz 1991]):


























































(qn, pn+1/4) = ΨOU
∆t/2(q

n, pn)

(q̃n+1, p̃n+3/4) = Ψ∆t(q
n, pn+1/4)

If Un ≤ e
−H(q̃n+1,p̃n+3/4)+H(qn,pn+1/4)

accept the proposal: (qn+1, pn+3/4) = (q̃n+1, p̃n+3/4)

else reject the proposal: (qn+1, pn+3/4) = (qn, pn+1/4).

p̃n+1 = −pn+3/4

(qn+1, pn+1) = ΨOU
∆t/2(q

n+1, p̃n+1)

where Un ∼ U(0, 1).
Remark: If ∆tγ/4 = 1, then pn+1/4 = Π∗(qn)(G n) ∼ κqn . One
thus obtains a constrained HMC algorithm, consistent with the
constrained overdamped Langevin discretized with a timestep
∆t2/2 (MALA).



Step 2: the Langevin dynamics (8/8)

Problem: RATTLE is only well defined and reversible for locally
small timesteps. Three possible difficulties:

• Ψ∆t(q, p) may not be defined;

• If Ψ∆t(q, p) is well defined, Ψ∆t (Ψ∆t(q, p)) may not be
defined;

• If Ψ∆t(q, p) and Ψ∆t (Ψ∆t(q, p)) are well defined, one may
have Ψ∆t (Ψ∆t(q, p)) 6= (q, p).



Step 3: the reverse projection check (1/8)
In order to introduce the ensemble where RATTLE is well defined,
let us rewrite the RATTLE dynamics as follows:















qn+1 = qn +∆t

[

pn − ∆t

2
∇V (qn)

]

+∆t∇ξ(qn)λn+1/2,

pn+1 = Π∗(qn)

(

pn − ∆t

2

(

∇V (qn) +∇V (qn+1)
)

+∇ξ(qn)λn+1/2

)

where

∆tλn+1/2 = Λ

(

qn, qn +∆t

[

pn − ∆t

2
∇V (qn)

])

.

The function Λ : D → R
m, where D is an open set of M× R

d is
the Lagrange multiplier function which satisfies:

∀(q, q̃) ∈ D, q̃ +∇ξ(q)Λ(q, q̃) ∈ M.

We will discuss later how to rigrously build such a Lagrange
multiplier function.



Step 3: the reverse projection check (2/8)

The function Λ is only defined on D and thus ΨRATTLE
∆t is only

defined on the open set:

A =

{

(q, p) ∈ T ∗M,

(

q, q +∆t M−1

[

p − ∆t

2
∇V (q)

])

∈ D
}

and likewise, Ψ∆t = S ◦ΨRATTLE
∆t is defined on A.

Proposition ([TL, Rousset, Stoltz 2018])

If Λ is C 1, then Ψ∆t : A → T ∗M is a C 1 local diffeomorphism,

locally preserving the phase-space measure σT∗M(dq dp).



Step 3: the reverse projection check (3/8)
Let us now introduce the RATTLE dynamics with momentum
reversal and reverse projection check: for any (q, p) ∈ T ∗M,

Ψrev
∆t (q, p) = Ψ∆t(q, p)1{(q,p)∈B} + (q, p)1{(q,p)6∈B}

where the set B ⊂ A ⊂ T ∗M is defined by

B =
{

(q, p) ∈ A, Ψ∆t(q, p) ∈ A and (Ψ∆t (Ψ∆t)(q, p)) = (q, p)
}

.

Proposition ([TL, Rousset, Stoltz 2018])

Let us assume that Λ is C 1 and satisfies the non-tangential

condition: ∀(q, q̃) ∈ D,

[∇ξ (q̃ +∇ξ(q)Λ(q, q̃))]T ∇ξ(q) ∈ R
m×m is invertible.

Then, the set B is the union of path connected components of the

open set A ∩Ψ−1
∆t(A). It is thus an open set of T ∗M. Moreover,

Ψrev
∆t : T ∗M → T ∗M is globally well defined, preserves globally

the measure σT∗M(dq dp) and satisfies Ψrev
∆t ◦Ψrev

∆t = Id.



Step 3: the reverse projection check (4/8)

Practically, Ψrev
∆t (q, p) is obtained from (q, p) ∈ T ∗M by the

following procedure:

(1) check if (q, p) is in A; if not return (q, p);

(2) when (q, p) ∈ A, compute the configuration (q1, p1) obtained
by one step of the RATTLE scheme;

(3) check if (q1,−p1) is in A; if not, return (q, p);

(4) compute the configuration (q2,−p2) obtained by one step of
the RATTLE scheme starting from (q1,−p1);

(5) if (q2, p2) = (q, p), return (q1,−p1); otherwise return (q, p).

The steps (3)-(4)-(5) correspond to the reverse projection check

[Goodman, Holmes-Cerfon, Zappa, 2017].



Step 3: the reverse projection check (5/8)

The reverse projection check is useful!

Here, V = 0 and the projection is defined as the closest point
to M. Notice that q′′ 6= q!



Step 3: the reverse projection check (6/8)

Assume for simplicity that ∃α > 0, {q ∈ R
d , ‖ξ(q)‖ ≤ α} is

compact. How to build admissible Lagrange multiplier functions?

• Theoretically, one can use the implicit function theorem to
build a function Λ(q, q̃) for q̃ in a neighborhood of q.

• Numerically, one can use the Newton algorithm to extend this
local construction and compute the Lagrange multipliers for q̃
far from q: perform a given number of iterations of the
Newton algorithm; the set D is defined as the configurations
for which convergence is obtained.

One can check that B is non empty with these Lagrange multiplier
functions.

Both constructions rely on the existence of a Lagrange multiplier
function Λ : Dimp → R

m where Dimp is an open subset of M×R
d

which contains {(q, q̃) ∈ M×M, [∇ξ(q)]T∇ξ(q̃) is invertible}.



Step 3: the reverse projection check (7/8)
The constrained GHMC algorithm writes:


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


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
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


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



(qn, pn+1/4) = ΨOU
∆t/2(q

n, pn)

(q̃n+1, p̃n+3/4) = Ψrev
∆t (q

n, pn+1/4)

If Un ≤ e
−H(q̃n+1,p̃n+3/4)+H(qn ,pn+1/4)

accept the proposal: (qn+1, pn+3/4) = (q̃n+1, p̃n+3/4)

else reject the proposal: (qn+1, pn+3/4) = (qn, pn+1/4)

p̃n+1 = −pn+3/4

(qn+1, pn+1) = ΨOU
∆t/2(q

n+1, p̃n+1)

where Un ∼ U(0, 1).

Proposition ([TL, Rousset, Stoltz 2018])

The Markov chain (qn, pn)n≥0 admits µ as an invariant measure.

To prove ergodicity, it remains to check irreducibility [Hartmann, 2008].



Step 3: the reverse projection check (8/8)

Remarks:

• In Ψrev
∆t , one can use any potential V ! Choosing the potential

V of the target measure is good to increase the acceptance
probability.

• If ∆tγ/4 = 1, one obtains a HMC (or MALA) algorithm. If
∆tγ/4 = 1 and V = 0 in Ψrev

∆t , this is a constrained random
walk MH algorithm [Goodman, Holmes-Cerfon, Zappa, 2017].

• In pratice, one can use K steps of RATTLE within Ψrev to get
less correlated samples. [Bou-Rabee, Sanz Serna]

• If Ψrev
∆t (q

n, pn+1/4) = Ψ∆t(q
n, pn+1/4) (reverse projection

check OK), one obtains a consistent discretization of the
constrained Langevin dynamics.

• Similar ideas can be used to enforce inequality constraints.

• It may be interesting for numerical purposes to consider non
identity mass matrices.



Numerical experiments (1/3)

Let M be the three-dimensional torus M = {q ∈ R
3, ξ(q) = 0}

where

ξ(q) =
(

R −
√

x2 + y2
)2

+ z2 − r2,

with 0 < r < R . Let us consider for ν = σT∗M the uniform
measure on M.
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Numerical experiments (2/3)

Let us now consider a double well case: ν = e
−VσT∗M where

V (x , y , z) = k(x2 − R2)2.

Typical trajectories for the GHMC dynamics (left ∆t = 0.05, right
∆t = 3):
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Numerical experiments (3/3)

Analysis of the efficiency (left mean residence duration, right:
non-reversibility rejection rate)
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The optimal timestep is of the order of 0.7. For such timesteps,
the rejections due to the non reversibility condition
(qn, pn) 6= Ψ∆t ◦Ψ∆t(q

n, pn) are of the order of 15-20%, the total
rejection rate being about 90%.
→ reverse projection check is useful to get efficient algorithms.



References

• G. Ciccotti, TL and E. Vanden-Eijnden, Projection of

diffusions on submanifolds: Application to mean force

computation, CPAM 61(3), 2008.

• E. Faou and TL, Conservative stochastic differential equations:
Mathematical and numerical analysis, Math. Comp. 78, 2009.

• A.M. Horowitz, A generalized guided Monte-Carlo algorithm.
Phys. Lett.B 268, 1991.

• TL, M. Rousset and G. Stoltz, Langevin dynamics with

constraints and computation of free energy differences, Math.
Comp. 81, 2012.

• TL, M. Rousset and G. Stoltz, Hybrid Monte Carlo methods

for sampling probability measures on submanifolds,
https://arxiv.org/abs/1807.02356.

• E. Zappa, M. Holmes-Cerfon and J. Goodman, Monte Carlo

on manifolds: sampling densities and integrating functions,
https://arxiv.org/abs/1702.08446.


	The constrained overdamped Langevin dynamics
	The constrained Langevin dynamics
	The reverse projection check
	Numerical experiments

