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Objective

Let us be given a submanifold of R¥:
M= {qer?, &(q) =0}

where ¢ : R? — R™ is a given smooth function (with m < d) such
that
G(q) = [VE(9)]" VE(q) € R™™

is an invertible matrix for all g in a neighborhood of M. The
objective is to sample the probability measure:

v(dg) = 27 e VD o\ (da),  Z, = /M V1) 5 4 (dg) < oo,

where o((dq) is the Riemannian measure on M induced by the
scalar product (-,-) defined in the ambient space RY.



Motivation

Such problems arise in many contexts: constrained mechanical
systems with noise, statistics, ...

One example is computational statistical physics: free energy
calculations. If X ~ p where p(dg) = Z~1e=V(9) dg, then
£(X) ~ &xp. Let us define A: R™ — R by:

e AP dz = Exp(dz).
Then, using the co-area formula,
VAWD) = B[00 =0) = [ fla)r(da
where f = G71V¢ - VV — div(G~1V¢) and

7(dq) = Z;* e V(9 0 p4(dg)

) Indet G
where V(q) = V(q) + ef(q).

— Thermodynamic integration.
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Step 1: the overdamped Langevin dynamics (1/3)

The constrained overdamped Langevin dynamics (W is a
d-dimensional Brownian motion):

dg; = —VV(q¢) dt +V2dW; + VE(qr)d A,
dXt € R™ such that {(q:) =0

is ergodic with respect to v. It can indeed be rewritten as:
dgr = N(q¢) o (=VV(qe) dt + \/§th)
where o denotes the Stratonovitch product and
N(q) = 1d — VE(q) 6~ () [VE(QNT

is the orthogonal projector from RY to T4M. One can then use
the divergence theorem on manifolds to prove that its unique
invariant measure iS ¥ [Ciccotti, TL, Vanden-Einjden, 2008].



Step 1: the overdamped Langevin dynamics (2/3)

Discretization of the constrained overdamped Langevin dynamics:

q" = q" — VV(q")At + V2ALG, + VE(qn)\"
A" € R™ such that £(g"1) =0

where G, ~ N(0,1d).

Remark: By choosing V = V, an approximation of VA(0) is given

by the average of the Lagrange multipliers:

1 T/At

li lim — "= VA(0).
T AtD0 T nz::l A VA(0)



Step 1: the overdamped Langevin dynamics (3/3)

Time discretization implies a bias, which is of order At. Let va;
be the invariant measure for (g")n>0, then (Faou, v, 2010: for all
smooth function ¢ : M — R, 3C, for small At,

‘/ deAt—/ pdv
M M

The proof is based on expansions a la Talay-Tubaro.

< CAt.

How to eliminate the bias?

Metropolis-Hastings is not easy to apply since the probability to go
from q" to g"*1 does not have a simple analytical expression.

Idea: lift the problem to phase space in order to use the symmetry
up to momentum reversal of the constrained Hamiltonian
dynamics.



Step 2: the Langevin dynamics (1/8)

Extended measure in phase space:

1(dg dp) = Z;*e H@P) 5. \((dq dp)

where H(q,p) = V(q) + @ and o1+ (dq dp) is the phase space
Liouville measure on

7'M ={(q.p) € R x R, £(q) = 0 and [VE(q)]” p = 0}.

The marginal of 1 in g is v. Indeed, the measure u rewrites:

1(dq dp) = v(dq) rq(dp)

where
lp|?

m—d _ |p|”
Kq(dp) = (2m) 2 e 2 o7y Mm(dp)

with TyM = {p e RY, [VE(q)) T p =0} c RY.

Remark: Here and in the following, we assume for simplicity that
the mass tensor M = Id. It is easy to generalize the algorithm and
the analysis to the case M # Id.



Step 2: the Langevin dynamics (2/8)

The constrained Langevin dynamics (v > 0 is the friction parameter)

dq: = pt dt
dp: = =V V(q¢) dt — vyp; dt + /2vdW; + VE(q:) d ¢
£(gr) =0

is ergodic with respect to p. Notice that [V&(q:)]” p: = 0.
It can be seen as the composition (operator splitting) of two
dynamics:
e the constrained Hamiltonian dynamics:
dq: = pr dt
dp: = =V V(qr) dt + VE(qe) dAe
£(g:) = 0.
e the Ornstein-Uhlenbeck process on momenta:
dqt =0
dp: = —ypr dt + /2ydW; 4+ VE(qr) d
[VE(qe)] pe = 0.



Step 2: the Langevin dynamics (3/8)
Discretization of the Ornstein-Uhlenbeck process on momenta:
midpoint Euler leaves the measure kg and thus y invariant:

At
ptt=p" —77( "+ p") + /278 G 4 VE(q) A7
V(") pmt =0,

In the following, we denote one step of this dynamics by
WY T*M — T*M:

VRY(q",p") = (", p").

Remark: The projection is always well defined, and easy to
implement:

pn+1 — I—I*(qn) (1 — At7/2)pn tv 2’}/At G"
1+ Aty/2

where
M*(q) = 1d — V&(q) G (q)[VE(a)]
is the orthogonal projector from RY to TIM.



Step 2: the Langevin dynamics (4/8)
Discretization of the constrained Hamiltonian dynamics (RATTLE):

n n At n n n
pTH2 = p" = =-VV(q") + VE(@M) AT,
qn+1 _ qn —|—Atp"+1/2,

£(q") =0, (Cq)
pn+1 _ pn+1/2 _ %VV(q”H) + vf(qn+1))\n+1’

n T n
[Ve(@™ )] p™t =0, (Cp)

where \"t1/2 € R™ are the Lagrange multipliers associated with
the position constraints (Cg), and A"l € R™ are the Lagrange
multipliers associated with the velocity constraints (Cp,).

In the following, we denote one step of the RATTLE dynamics by
WRATTLE . T AL 5 T* M

WZ’;‘TTLE(C]", pn) — (qn—i-l’pn-i-l)‘



Step 2: the Langevin dynamics (5/8)

Discretization of the constrained Langevin dynamics (Strang
splitting):

(q", p™ %) =wRY(q", p")
(qn+1’ pn+3/4) — \URATTLE(q ’pn+1/4)
(g™, p"h) = WRY(q" ™, P

But there is still a bias due to time discretization...



Step 2: the Langevin dynamics (6/8)
Let us denote by
5(q,p) = (q,—p)

the momentum reversal map and

Vai(g,p) =S (‘UZ?TTLE(q,pD :

Fundamental properties of RATTLE: for At small enough,
* Var(Vae(a,p)) = (q,p)
o WA is a symplectic map, which thus preserves o7+

[Hairer, Lubich, Wanner, 2006] [Leimkuhler, Reich, 2004].
One can thus add a Metropolis Hastings rejection step to get
unbiased samples: if (¢, p) = Va:(q, p), the MH ratio writes:

rev( o/ pf —H(q/,p/) * ! !
Syser(q',p)(dq dp) e T4 ) gy

_ a.p)
dysey (q,p)(dq’ dp’) e=H(@P) o1 1 (dq dp)




Step 2: the Langevin dynamics (7/8)
Constrained Generalized Hybrid Monte Carlo algorithm (i7e, Rousset,

Stoltz 2012], constrained version of [Horowitz 1991]):

(q", P"HM) ‘UAt/z(q ")
(Eln+1> ﬁn+3/4) ‘Um(q ’pn+1/4)

H: Un g e_H(E’n+17ﬁn+3/4)+H(qn7pn+1/4)

accept the proposal: (", p"t3/4) = (g1, pr3/4)

else reject the proposal: (g™, p"™3/4) = (g", p"T1/4).

ﬁn—l—l — _pn+3/4

(qn+1 pn-l-l) — \'UA /2(qn+1 ~n+1)
) t )
where U" ~ 1/(0,1).
Remark: If Aty/4 =1, then p"/4 = 1*(q")(G") ~ fign. One
thus obtains a constrained HMC algorithm, consistent with the

constrained overdamped Langevin discretized with a timestep
At?/2 (MALA).




Step 2: the Langevin dynamics (8/8)

Problem: RATTLE is only well defined and reversible for locally
small timesteps. Three possible difficulties:

e WUa(g, p) may not be defined;

o If Wai(g, p) is well defined, Wa: (War(g, p)) may not be
defined;

o If War(g,p) and Var (War(g, p)) are well defined, one may
have Wa: (Vai(q; P)) # (4, p).



Step 3: the reverse projection check (1/8)

In order to introduce the ensemble where RATTLE is well defined,
let us rewrite the RATTLE dynamics as follows:

At
qn+1 — qn + At |:pn _ 7v\/(qn):| +AtV§(q”) )\n+1/27

p"tt =1*(q") (p" — % (VV(g") + VV(g"™™) + Vé(q") A”“”)

where
At
AtATL/2 — A <q", q" + At [p” — Vv(q")D .

The function A : D — R™, where D is an open set of M x R is
the Lagrange multiplier function which satisfies:

Y(q,4) € D, §+ VE(9)N\(q, §) € M.

We will discuss later how to rigrously build such a Lagrange
multiplier function.



Step 3: the reverse projection check (2/8)

The function A is only defined on D and thus \IJZ’;‘TTLE is only
defined on the open set:

A= {(q,p) € T"M, <q,q—|—At M1 [p— %VV(q)D € D}

and likewise, Yoy = So \Ug‘t‘TTLE is defined on A.

Proposition ([TL, Rousset, Stoltz 2018])

If\is Ct, then Wp,: A— T*M is a C local diffeomorphism,
locally preserving the phase-space measure o1+ (dq dp).



Step 3: the reverse projection check (3/8)

Let us now introduce the RATTLE dynamics with momentum
reversal and reverse projection check: for any (g,p) € T*M,

rev

at(4,P) = Var(q,p)1i(qp)es} + (9: P)Li(q.0)2B)
where the set B C A C T* M is defined by

B = {(q, p) € A, Vae(q.p) € Aand (Wae (Var)(g,p)) = (g, p)}-

Proposition ([TL, Rousset, Stoltz 2018])

Let us assume that \ is C1 and satisfies the non-tangential
condition: ¥(q, §) € D,

[VE(G+ VE(QIMNg, §))]T VE(q) € R™™ s invertible.

Then, the set B is the union of path connected components of the
open set AN WLL(A). It is thus an open set of T*M. Moreover,
VAL : T"M — T*M is globally well defined, preserves globally
the measure o1+ r(dq dp) and satisfies WY o WY = Id.



Step 3: the reverse projection check (4/8)

Practically, VXY (q, p) is obtained from (g, p) € T*M by the
following procedure:

(1) check if (g, p) is in A; if not return (g, p);

(2) when (g, p) € A, compute the configuration (g', p!) obtained
by one step of the RATTLE scheme;

(3) check if (g1, —p?) is in A; if not, return (g, p);

(4) compute the configuration (g2, —p?) obtained by one step of
the RATTLE scheme starting from (g', —p!);

(5) if (g%, p?) = (g, p), return (g, —p'); otherwise return (q, p).

The steps (3)-(4)-(5) correspond to the reverse projection check

[Goodman, Holmes-Cerfon, Zappa, 2017].



Step 3: the reverse projection check (5/8)

The reverse projection check is useful!

¢ =q+ VE(q)A(q,q)

[

Here, V = 0 and the projection is defined as the closest point
to M. Notice that ¢” # q!



Step 3: the reverse projection check (6/8)

Assume for simplicity that Ja > 0, {g € R?, ||€(q)|| < a} is
compact. How to build admissible Lagrange multiplier functions?
e Theoretically, one can use the implicit function theorem to

build a function A(q, §) for G in a neighborhood of q.

e Numerically, one can use the Newton algorithm to extend this
local construction and compute the Lagrange multipliers for g
far from q: perform a given number of iterations of the
Newton algorithm; the set D is defined as the configurations
for which convergence is obtained.

One can check that B is non empty with these Lagrange multiplier
functions.

Both constructions rely on the existence of a Lagrange multiplier
function A : Diymp — R™ where Dy, is an open subset of M x R4
which contains {(q, §) € M x M, [V&(q)]TVE(§) is invertible}.



Step 3: the reverse projection check (7/8)
The constrained GHMC algorithm writes:

((q",p" ) = WgY(a". ")

(an+1 ﬁn+3/4) \UreV( n’pn+1/4)
If Un < =M@ 5"/ ) +H(q",p"t /%)
P

else reject the proposal: (q”+1,p”+3/4) = (q”,p”+1/4)
ﬁn-i-l — _pn+3/4

\(qn—i-l’pn-i-l) ‘UAt/2( n+1 ﬁn-i-l)

accept the proposal: ("1, p"t3/4) = (§Mtt, prt3/4y

)

where U" ~ 1/(0,1).

Proposition ([TL, Rousset, Stoltz 2018])

The Markov chain (q", p")n>0 admits p as an invariant measure.

To prove ergodicity, it remains to check irreducibility [Hartmann, 2008).



Step 3: the reverse projection check (8/8)

Remarks:

In WY, one can use any potential V! Choosing the potential
V of the target measure is good to increase the acceptance
probability.

If Aty/4 =1, one obtains a HMC (or MALA) algorithm. If
Aty/4=1and V =0in WY, this is a constrained random
Walk MH a|g0rlthm [Goodman, Holmes-Cerfon, Zappa, 2017].

In pratice, one can use K steps of RATTLE within W' to get
|eSS Correlated Samp|eS [Bou-Rabee, Sanz Serna]

If WY(q", p"t/4) = Wa(q", p"+1/#) (reverse projection
check OK), one obtains a consistent discretization of the
constrained Langevin dynamics.

Similar ideas can be used to enforce inequality constraints.

It may be interesting for numerical purposes to consider non
identity mass matrices.



Numerical experiments (1/3)
Let M be the three-dimensional torus M = {q € R3, £(q) = 0}

where )
&a) = (R-V+y2) +22- 1,

with 0 < r < R. Let us consider for v = g1+ the uniform

measure on M.
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“partial reverse check” = do not check Wa; 0o Wa; = Id = BIAS!



Numerical experiments (2/3)

v

Let us now consider a double well case: v =e™ " o1+ Where

V(x,y,z) = k(x*> — R?)2,
Typical trajectories for the GHMC dynamics (left At = 0.05, right

At = 3):
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mean residence duration

Numerical experiments (3/3)

Analysis of the efficiency (left mean residence duration, right:
non-reversibility rejection rate)
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The optimal timestep is of the order of 0.7. For such timesteps,
the rejections due to the non reversibility condition

(g",p") # VaroVar(q", p") are of the order of 15-20%, the total
rejection rate being about 90%.

— reverse projection check is useful to get efficient algorithms.
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