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Two contexts



Context 1: Protein dynamics

Softwares allow to simulate protein dynamics (forward simulation):

. cPU .
input parameters ~~ a trajectory {z;,t > 0},

where z; € Z C R? (p > 1) includes distance/angle between amino acids,
energy levels, relative speeds, interactions with solvent, etc. at time t.

Some issues:
> analysis difficult (too many details)
> statistical problem

» computational problem: relevant processes have different characteristic
times

‘ coarse graining the dynamics

Stochastic (typically Markov) processes used to model protein trajectories
{Zt7 t> O}
{X;, t >0}, XieX,

where X is some high dimensional finite state-space.



Context 2: Computational methods is Bayesian statistics

Bayesian context: observed data Y described by a likelihood model fx with
parameter X € X C R? and a prior p on X.

Bayesian analysis: estimate quantities
m¢ :=E{s(X)| Y} = /XW(dXI Y)o(X),  w(dX]Y) o< p(dX)fx(Y).

Issue: E{¢(X)| Y} is often intractable.

‘ numerical integration

Many schemes (MC, Sequential MC, Importance-Sampling, etc.), focus is on
Markov chain Monte Carlo methods:

1 n
{Xe, kEN} st = ; d(Xk) — 7o (as)



A common denominator in two contexts

Analysis/interpretation of Molecular dynamics < understand the Markov
semi-group {P:, t > 0}

% —LPy Pix) = PuXe€ ),

and in particular its generator L.
= continuous time process, discrete state space

Inferring a parametric statistical model with MCMC < estimate how the
Markov kernel {P*, k € N}

P =pPkp. PKx, ) =P Xk € ),

transform recursively any measure o — poP s.t., for a large number of
applications k, ||(uoP*)¢ — wé|| =~ 0, for some metric || - ||.
= discrete time process, general state space
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Characterization of folded and unfolded conformations in
protein dynamic model



Analysis of protein dynamics

A key property for a protein dynamics model {X;, t > 0} is to identify folded
and unfolded states.
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Figure: Protein folding pathway of 1E0G obtained in Langevin dynamics simulations
(A. Liwo et al, PNAS, 2005)

= X is usually large, how to identify subsets F C X (resp. U C X) where the
protein is folded (resp. unfolded)?



How is it done in practice?

Assumption
The process {X;, t > 0} is u-reversible, i.e. {Lx,y), = (x,Ly)p.

Algorithm 1 mapping X = {1,2,...,d} —» {U, F}

1:

diagonalize £, get Sp(L£) = {A1, A2,...} the right eigenvectors &1, ®,, ...

s.t:
,C(D,':)\,‘CD,', A > A > A3 > -

calculate the ratio r = A3/
if ris large enough (eg r > 10) normalize the second right eigenvector:

®2(i) — min &, }

() ®, =
2 ®2 {max¢2—min¢2

for each i € X,
> set i€ Uif ®a(c71(i))<1/2
> set i € Fif dy(a71(i))>1/2

see eg V. Buchete (2008).
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Analysis of the second right eigenvectors for Alab peptides at 250K (top)
and 350K (bottom), X = {1,2,...,32}
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Intuition behind the algorithm

Assumption
L is the generator of a reducible process with absorbing states U and F
Then,
» L1y=0 L1F=0
(for all h> 0 and all x € X,
Prly(x) = [ Pa(x,dy)Lu(y) = [, Pa(x,dy)Lu(y) = Lu(x)).
> 0 € Sp(£) with multiplicity 2
> ¢1:ILUand b, = 1F

Question

If L is not reducible but “nearly” reducible, would it allow to justify the
algorithm?
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Metastability

Definition
Dynamical phenomenon characterized by the existence of “sub”-processes with
well-separated time scales.




Metastable processes: framework for analysis

» Work in Applied Maths and Stat. Phys.: M. Freidlin, A. Wendzell, A.
Bovier, F. Nier, S. Meyn, M. Slowik, A. Schilchting, etc.
> Focus is on the analysis of

> spectral properties
> convergence

of metastable reversible operators on discrete state space.
Different approaches:
> large deviation (path wise approach)

» potential theoretical approaches
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Framework

Definition (First hitting time)
For all A C X, define T4 := inf{t > 0, X; € A}

Definition (p-metastability)
If there exists a subset M C X and p < 1 s.t.

Vx e M,y e X\M, Py (’TM\{X} < TX) <pP,(tm <7y,
the process { X, t > 0} is said to be p-metastable w.r.t M.

Definition (Capacity)

V(A,B) C X, cap(A,B)= / dpLhas
A
where ha g is the equilibrium potential,

hA7B(X) = PX(TA < TB)ﬂm(X) + ILA(X) .
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Definition (Dirichlet form)
For any g, h € Ly(u)

E(g, h) == p(g-Lh)

—(1/2) / / H(dx) £(x, dy) (h(x) — h(y))(&(x) — &(y)-

Proposition (Variational principle)
A, B)= inf h
cap(A.B) = inf E(h)
where Hag = {h: X = [0,1], hja =1, hjg =0} and E(h) = E(h, h).

Proposition
For all x € X, A C X\{x},

P{7a < 7} = cap(x, A)/u(x) -
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Technical results (Bovier et al., 2004)

1/ Dirichlet problem (w. boundary cdts on two sets A and B):
(L—=MN)hag(x)=0,xZAUB,  hig(x)=1Ta(x),xc AUB
2/ Xo smallest eigenvalue such that
(L=X)f =0,x &M, fm #0
3/ Characterization of Sp(L)
A€ Sp(L)and A < Ao < detM(\) =0
{MN) by = LB pa 3 (), for all (x,y) € M?

4/ There exists M, a perturbation of M(A) (expending around
C?,y = hx,y - hi‘,y)v

My = E(h, hy) /b rv gy ll2ll By, a1 12
for all A € Sp(£), A < Ao, there is 0 € M s.t.

A=0(1+0(p)).
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Application to the protein dynamic setup

Assumptions

> Metastability, {X:, t > 0} is p-metastable wrt M = {U, F}.

> Non-degeneracy, there exists § < 1 s.t. § := p(A(U))/u(A(F)) where for
any M1 € M, A(M,) is the attractor of M,
AM1) = {x € X, Py (T, < 7) > P (TM\Ml < TX)}.

Proposition

Under those assumptions, we have:

_ _ wU) 2
=0, da = o £V, A(F))(1+O(p +5))

and the first two right eigenvectors satisfy:

Py{rv < 7e}lygqu,ry + Lyeu

#(A(F))

hr=1 ¢a(y) = +O(p* +9).
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Locally informed Markov chains
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Design of MCMC sampler

Suppose that n w-reversible Markov kernels are available:
Pi,Pyy ..., Py.

We know that for any | C {1,..., N} and any probability w on /,
Pu = Zkak, .
kel
is also m-reversible.
Question
Is there some choice of (w, ) “better” than other?

Examples

> Gibbs: full cdt's of w are samplable and Pi(x;, -) = n(- | x;)
» Metropolis-within-Gibbs



Related works

» Geometric ergodicity and hybrid Markov chains (Roberts and Rosenthal,
1997)

> Adaptive Gibbs sampler and related methods (Latuszyrky et al., 2013)
> On random-and systematic-scan samplers (Andrieu, 2016).

> etc.

The following question has been unexplored: does it make sense to consider a
state-dependant probability on /, ie

Po(x, ) =D wi(x)Pu(x, -)?

kel



Illustration with d = 2

Consider the following distribution on X = [0, 1] x [-100, 100]:

7(x1, x2) o< x1 % (1 + xq sin(x2/2)) .
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Assume a MwG sampler is used to sample from 7:
P, =wP; + (1 7UJ)P2,
i.e. P moves Xi through P; with proba. w (resp. for X3).

Question
How to choose w?
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[llustration with d = 2: convergence time to w

Let mx the distribution of Xy i.e. Tk = uP% where Xo ~ pu := unif(X).
Define the total variation distance

12

TV = |7 — 7l = (1/2) /x |m(x) — mk(x)]dx .

T T
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Locally informed MCMC

Proposition
If w is state-dependent, P, is in, genera/l, not m-invariant.

Let {Xk, k € N}, whose transition Xy — Xi 1 is given by
> draw | ~ w(Xk),
> draw X ~ P/()_(k, ),
> set X1 w.p. 1A w,()?)/w,()_(k) and Xiy1 = Xi otherwise,

Proposition
The transition kernel

Pu(x, ) = ZM(X)P:‘(X, HLAw()/wi(x)}

is w-invariant.

tit is iff Ex {3 e wk(X)Pu(x, A)} = m(A), for all A € X
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[llustration with d = 2: convergence time to w

Let 7 the distribution of Xj i.e. mx = ,quj where Xp ~ p := unif(X).

MwG w=0.001
. MwG w=0.5
MwG w=0.999
MwG w(x)

0 500 1000 1500 2000
k

with the local weight function set as

w(x) :=v1—x.
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Some “poor” asymptotic properties of P (1/2)

Proposition
Let:
> P1, P, ... be absolutely continuous kernels,

> wioc be state-independent and wnir be state-dependent proba. on

{1,...n}
> f € Ly(m) satisfying >, |cov(f(Xo), f(Xi))| < oo
Then,
V(f7 Pwu,,,-,r) S V(f7 PW/oc)7

where v(f, P) = limnoo(1/n)var{d>_;_; f(X«)}, Xo ~ 7 and Xi1 ~ P(Xk, ).
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Some “poor” asymptotic properties of P (2/2)

Let X = {1, 2,3} and consider:

» e =[(1—¢€)/2 (L—¢€)/2 €]

> {wunir(x)}; oc 1 and {wioe(x) }j oc m(j) Ly
Proposition
If e < 1/3, the spectral gap ~y of the two kernels satisfy:

1-2p 3 —be
1= p and Y(Punif, €) = € T

’Y(Ploca E) =

Corollary

The speed to convergence for ¢ < 1 is contrasting for the two methods:

sup ||uP" — 7| = Ce"'oge/l—; for P = Punir
HEM(X) Ce ") for p = Ploc

26

31



A “positive” limit example
Consider the distribution 7. on the hypercube X = {1,...,n}? s.t.
me(X) =€+ (1 —€)lxer,
where F is a path on the hypercube edges:

ANV AOD N ® OO

Proposition

Define Tioc (resp. Tunif ) the coupling time of Pioc (resp. Punis ), then when e = 0,

]Exl (Tloc) < (d/2)]Ex1 (Tunif) R x1=1.
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Study of limiting examples i.e. € — 0

p = 0.001

an
informed

0 200 400 600 800 1000 1‘0 2‘0 3‘0 4‘0 5‘0 5‘0 7‘0 8‘0 E;O 100
Figure: Left: empirical, d =7, p = 10~3 — Right: theoretical, d =2, p = 1071,

+ many other examples in Maire and Vankerkhoven (2018, arXiv) showing the
same convergence patterns for “filamentary distributions”.

Conjecture

In similar scenarios, Pjoc converges initially (much) faster than Pn¢ before
reaching a very slow asymptotic rate.

28 /31



Metastable behaviour of Pjyc
If x € F, Pioc(x, F) < 1and x € F, Pioc(x, F) < 1.
Definition (Poincaré inequality)
P satisfies a Poincarré inequality with constant k if:

kvary(f) < E(f).

Proposition (Schlichting and Slowik (2017))

For a p-metastable, m-reversible Markov chain on a discrete state space, with
M = Mji, My, the optimal Poincarré constant is
. cap(M, M)

=AM (AM)) O

Corollary

If X is discrete, m-reversible and p-metastable Markov chain, the Markov kernel
P contracts L3(w) such that:

1Peflla < e/ ||f]l2.
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Continue to seek...
The current framework to analyse metastability is not adequate:
> it would tell us only how "bad" our locally informed chain is
» most of the theory is concerned with discrete state space
» potential wells are supposed

= For locally informed MCMC, the metastability arises from the reversible
dynamic of P and is not a by-product of a multimodale stationary distribution.

Research alternatives:

» Decompose the L1 distance, say supp(u) = F:
1uP* = | < uPhy — mell + I — mrll + Pl — P
where PX is the reducible version of P. This would lead to:
|uP* — 7l < Ce™*/" + 2 + Pl — uP*|, € =n(F).

» bounding the last term from application of the Markov perturbation theory
(Johndrow and Mattingly, 2018, Medina-Aguayo et al., 2018)
under unif. ergodicity in V-norm of P and drift cdt of P (with same
function V):
= = 33C(L+ 1)k
Pl — P < XD

] log R/R



Concluding observations

A rigorous characterization of metastability in dynamical systems allows one to
use the rich literature on this subject.

» p-metastability, potential theoretic approach: variational approach =
bounds for p

» most results limited to cases where X is a finite state space

> improve the precision in the clustering algorithm to folding/unfolding in
protein dynamics.

For the analysis of MCMC algorithms:

> p-metastability may be used to show how inefficient a Markov chain is
(Poincaré inequality)

» some proof technics based on splitting the dynamics according the
metastable sets may be useful (Slowik and Schlichting)

> perturbation theory of V-ergodic Markov chains (Medina-Aguayo et al.,
Rudolf et al., Johndrow et al., etc) seems more readily applicable
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