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Reminders on forward variances

Forward variance V T
t are fair strikes of variance swaps :

payoff of Var swap over [t,T ] = 1
T − t

N∑
ti∈[t,T ]

(
log(Sti+1 )− log(Sti )

)2 − V T
t

where : ti = market opening days in [t,T ], and T − t is measured in years

The value of V T
t is set so that

pricet(var swap) = 0.
Take T2 > T1. By combining positions in var swaps over [t,T2] and [t,T1],
we construct the payoff

1
T2 − T1

∑
ti∈[T1,T2]

(
log(Sti+1 )− log(Sti )

)2 − V T1,T2
t

where
V T1,T2

t = (T2 − t)V T2
t − (T1 − t)V T1

t
T2 − T1

is the forward variance over [T1,T2].
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Forward variances can be traded

By entering in the opposite positions in variance swaps at a date t ′ ≥ t, we
remove the realized variance part.

We materialize a position depending only on forward variances :

portfolio value at T2 = V T1,T2
t′ − V T1,T2

t

The initial cost to construct this position was : zero

Otherwise said

pricet

(
V T1,T2

t′ − V T1,T2
t

)
= 0, ∀ t ≤ t ′ ≤ T1

Forward variances can be traded at zero cost.

I Under a pricing measure, the (V T1,T2
t )0≤t≤T1 have to be martingales
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Instantaneous forward variance ξT
t

Define instantaneous forward variance by

ξT
t = d

dT
(
(T − t)V T

t
)
, t < T

so that
V T

t = 1
T − t

∫ T

t
ξu

t du, t < T

and
V T1,T2

t = 1
T2 − T1

∫ T2

T1

ξu
t du, t < T1 < T2.

Note that if ∆ is small, then

V T ,T +∆
t ≈ ξT

t
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A class of models based on Gaussian processes

ξT
t = ξT

0 exp
(∫ t

0
K (T − s) · dWs −

1
2

∫ t

0
K (T − s) · ρK (T − s)ds

)
t ≤ T

I (ξT
0 )T≥0 is the initial forward variance curve – a market parameter.

I W is a Brownian motion in Rn with correlation matrix ρ, and∫ t

0
K (T − s) · dWs =

n∑
i=1

∫ t

0
Ki (T − s)dW i

s∫ t

0
K (T − s) · ρK (T − s)ds =

n∑
i,j=1

∫ t

0
Ki (T − s)ρi,jKj(T − s)ds

I Deterministic kernels Ki ∈ L2
loc(R+,R∗+).
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A class of models based on Gaussian processes
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For every T , (ξT
t )t≤T is the solution of the SDE
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t K (T − t) · dWt , t ≤ T

Does not belong to the affine family.

Interest for simulation/calibration : only Gaussian r.v. are involved.

Choice of kernels in practice : τ 7→ K (τ) decreasing.
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Parametric examples (I)

Bergomi’s model [Bergomi 05], [Dupire 93] with n = 1 factor
K (τ) = ω e−kτ

with ω, k > 0.

ξT
t = ξT

0 E
(
ω

∫ t

0
e−k(T−s)dWs

)
= ξT

0 E
(
ω e−k(T−t)

∫ t

0
e−k(t−s)dWs

)
= ξT

0 exp
(

K (T − t)Xt −
1
2

∫ t

0
K (T − s)2ds

)
where X is the OU process dXt = −k Xt + dWt .

I For every t, ξT
t = Φ(T − t,Xt) : the forward variance curve ξT

· is a function
of one single Markov factor X .

Bergomi’s n-factor model [Bergomi 05] is the n-dim extension :
Ki (τ) = ωi e−kiτ
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Parametric examples (II)

The rough Bergomi model of [Bayer, Friz, Gatheral 2016] :

K (τ) = ω

τ
1
2−H

, H ∈ (0, 1/2)

so that

ξT
t = ξT

0 exp
(
ω

∫ t

0

1
(T − s) 1

2−H
dWs −

1
2ω

2
∫ t

0

1
(T − s)1−2H ds

)

I Do not have a low-dimensional Markovian representation of the curve

T 7→ (ξT
t )T≥t

For the moment (in this presentation), nothing in this model is rough.

For every T , the processes

(ξT
t )t≤T are martingales
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Constructing a consistent model for St
Reminders : in a general stochastic volatility model

dSt = µStdt + σt St dW hist
t

Realized variance can be replicated with the underlying + a log-contract

I Indeed, by Itô’s formula applied to log(S)

1
T − t 〈log S〉[t,T ] = 1

T − t

∫ T

t
σ2

udu = 2
T − t

(
− log ST

St
+
∫ T

t

1
Su

dSu

)
Almost sure replication of 〈log S〉[t,T ]

I This yields (taking interest rates to be zero)

V T
t = pricet

(
1

T − t

∫ T

t
σ2

udu
)

= pricet

(
− 2

T − t log ST
St

)
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A consistent model for St
Given instantaneous forward variances ξT

t

The model
dSt = St

√
ξt

t dZt

where Z is a Brownian motion, is consistent with the given ξT
t

In the sense : the price of the log-contract in this model is

pricet

(
−2

T − t log ST
St

)
= E

[
1

T − t

∫ T

t
ξu

u du
∣∣∣Ft

]
= 1

T − t

∫ T

t
E [ξu

u |Ft ]du = 1
T − t

∫ T

t
ξu

t du

where Ft = FW ,Z
t

I Hedging of European options on S with underlying + forward variances
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Rough Bergomi model, again

To see what is rough in rough Bergomi

we have to look at the consistent model for S :

dSt = St
√
ξt

t dZt

The instantaneous volatility ξt
t of S is rough because

ξt
t = exp

(
ω x t

t −
1
2ω

2
∫ t

0

1
(t − s)1−2H ds

)
and

x t
t =

∫ t

0

1
(t − s) 1

2−H
dWs

is a Volterra process which admits a β-Hölder modification for β < H
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The VIX index

The VIX is the price of the log-contract with 30 days maturity written on
the SP500 :

VIXt :=

√
mkt pricet

(
− 2

∆ log St+∆
St

)
where ∆ = 30days

The value of VIX is quoted by the Chicago Option Exchange, by static
replication of the payoff log(S) :

VIXt =

√
2
∆

(∫ St

0

1
K 2 Pt(t + ∆,K)dK +

∫ ∞
St

1
K 2 Ct(t + ∆,K)dK

)
where Pt(T ,K) and Ct(T ,K) are market prices of put and call options on S,
observed at t.

Is VIX an implied volatility ? Yes, it is precisely the implied volatility of the
log-contract.
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History of VIX (2006-2011)
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VIX in a stochastic volatility model

In general, VIX and forward variances of variance swaps do not coincide

VIX2
t 6= V t+∆

t = 1
∆

∫ t+∆

t
ξu

t du

because the replication of variance swaps with log-contracts is only
approximate in practice.

Within a stochastic volatility model, on the contrary

VIX2
t = V t+∆

t = 1
∆

∫ t+∆

t
ξu

t du

because the replication of variance swaps with log-contracts is exact in this
case.
Consequence : in general, we will be able to calibrate a forward variance
model (St , ξ

·
t) to at most 2 of the 3 different markets :

I VIX market
I SP500 options market
I Variance swap market on SP500
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Pricing of VIX derivatives at t = 0
The price at t = 0 of a VIX option with payoff ϕ is

E [ϕ(VIXT)] = E
[
ϕ

(√
V T +∆

T

)]
= Ψ(0, ξ·0)

where

Ψ(0, x ·) = E

[
ϕ

((
1
∆

∫ T +∆

T
xu e

∫ T

0
K(u−s)·dWs − 1

2 h(0,T ,u)du
)1/2)]

and h(t,T , u) =
∫ T

t K (u − s) · ρK (u − s)ds.

If Markov repr (e.g. classical Bergomi),
∫ T

0 K (u − s) · dWs = K (u − T ) XT

Otherwise : finite point (ui )i=1,...,N quadrature formula + simulation of the
correlated Gaussian vector(∫ T

0
K (u1, s) · dWs , . . . ,

∫ T

0
K (uN , s) · dWs

)
; see A. Jacquier’s talk for rates of convergence.
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Term structure of volatility of volatility
I Denote

σ̂(t,T )

the at-the-money implied volatility of an option on the forward volatility
√

V T
t .

Proposition (ATM implied volatility of forward volatility)
The following asymptotics hold : for every T

σ̂(t,T ) −→
t→0

σ̂(0,T ) := 1
2
∫ T

0 ξu
0 du

√∫ T

0
ξu

0 K (u) · ρ
∫ T

0
ξu′

0 K (u′)du′

By choosing the kernels K , we can reach a prescribed target behavior of
σ̂(0,T )
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Term structure of volatility of volatility

I Black dots : target behavior for σ̂(0,T ), as a function of T (months).

I Very well described by a power law 1
T α , α ≈ 0.4− 0.5
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Term structure of volatility of volatility

Choice 1 : n = 1 power kernel K (u) = ω

u
1
2−H

Then, if u 7→ ξu
0 is constant,

σ̂(0,T ) = const.
T 1

2−H

which is exactly our target term-structure, when H ≈ 0.1.

Choice 2 : n = 2 exponential kernels

Ki (u) = ω e−ki u and d〈W 1,W 2〉t = ρ dt

with k1 � 1, k2 � 1.
The resulting behavior of σ̂(0,T ) is shown by the blue curves

I A model with fractional kernel reaches the target behavior with n = 1 factor
and two parameters ω,H.

I A classical Bergomi model does this with n = 2 factors and four parameters
k1, k2, ρ, ω.
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An extended class of forward variance models
As mentioned by Antoine, in the class of models above

The ξT
t are log-normal. Forward variances 1

∆
∫ T +∆

T ξu
T du are close to

log-normal.

Incapability of generate a reasonable smile for VIX options.

I Inspired by [Bergomi 2008], we set

ξT
t = ξT

0 f T (t, xT
t )

where xT
t denotes our Gaussian factor

xT
t =

∫ t

0
K (T − s) · dWs

and the f T (·, ·) are smooth functions to be determined.
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An extended class of forward variance models

I We need to impose some conditions on f T :

f T (t, x) ≥ 0

Initial condition ξT
0 ⇒ = f T (0, 0) = 1, ∀T

(ξT
t )0≤t≤T needs to be martingale :

dξT
t =

(
∂t f T (t, xT

t ) + 1
2K · ρK ∂xx f T (t, xT

t )
)

dt + ∂x f T (t, xT
t )dxT

t

Therefore, we require that the f T (·) solve the family of PDE

∂t f T (t, x) + 1
2K (T − t) · ρK (T − t)∂xx f (t, x) = 0, ∀(t, x) ∈ [0,T ]×R.
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An extended class of forward variance models

I A simple representation : any C1,2([0,T )× R) function f T with exponential
growth satisfying the PDE above can be written in terms of its terminal condition

f T (t, x) = E
[
f T (T , x +

√
h(t,T ,T ) G)

]
where G is a standard Gaussian random variable (and recall that
h(t,T ,T ) =

∫ T
t K (T − s) · ρK (T − s)ds).

Positive solutions f T (·, ·) are parametrized by positive final conditions
f T (T , ·)

We can generate several parametric families of solutions.
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Parametric choice 1 : polynomials

The terminal condition :
f T (T , y) = a(T )y2 + b(T )y + c(T )

leads to a quadratic Gaussian model

ξT
t = ξT

0 f T (t, xT
t ) = ξT

0

(
a(T )

[
(xT

t )2 − h(t,T )
]

+ b(T )xT
t + 1

)
where h(t,T ) =

∫ t
0 K (T − s) · ρK (T − s)ds

I We are free to choose a(T ), b(T ) s.t. 1− a(T )h(T ,T )− b(T )2

4a(T ) ≥ 0
(positivity condition).
Example : if b(T ) = 0, ξT

t has a χ2 distribution.

The more general terminal condition :

f T (T , y) =
n∑

k=0
aT

k y2k

leads to polynomial functions x 7→ f T (t, x).
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Parametric choice 2 : exponentials

The terminal condition :

f T (T , y) =
m∑

k=1
γk e ωk y where

m∑
k=1

γk = 1, m ∈ N

leads to a linear combination of Laplace transforms of a Gaussian r.v.

f T (t, x) =
m∑

k=1
γk e ωk x − 1

2 (ωk )2h(t,T )

I The class of models we started from corresponds to m = 1.

With this choice, forward variances
ξT

t = f T (t, xT
t )

are sums of log-normals which can be made very different from a single
log-normal
We have expressions and numerical methods for VIX derivatives similar to
the previous case (where m = 1).
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A simple version of the rough model where forward
variances are not log-normal
Rough model (n = 1,m = 2) : n = 1 gaussian factor, and m = 2 basis functions

f T (t, x) = (1− γT ) exp
(
ωT

1 x−1
2 (ωT

1 )2h(t,T )
)

+ γT exp
(
ωT

2 x−1
2 (ωT

2 )2h(t,T )
)

ξT
t = ξT

0 f T (t, xT
t )

xT
t =

∫ t

0
K (T − s)dWs , K (T − s) = 1

(T − s) 1
2−H

I This model depends on the global parameter

H

and on the four term-structure parameters

ξT
0 , γ

T , ωT
1 , ω

T
2

which we can use to fit an initial term-structure of VIX Futures and the smiles of
VIX options.
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Calibration to VIX market (m = 2 exponential fcts)

VIX Futures (left) and VIX implied volatilities (right) on 22 Nov 2017, T = 20 Dec

H = 0.1 (fixed) ξu
0 |T≤u≤T +∆ = 0.0145 γ = 0.689 ω1 = 2.074 ω2 = 0.215
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Non-parametric choices of f leading to exact calibration

are possible
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Conclusion & further directions

The consistent model for the SP500 :

dSt = St
√
ξt

t dZt

might be a good candidate for a joint calibration of VIX and SP500 options
I See the talk of J. Guyon at QuantMinds conference 2018 (former Global

Derivatives), taking place this week, for some considerations about the
feasibility of this joint calibration.

In summary :

I Volterra Gaussian processes offer a considerable flexibility in the modeling of
forward variances.

I Using more general functions than single exponentials allows to accomodate
smiles of options on VIX, while keeping the Gaussian framework.

I “Rough” power kernels inevitably make the pricing of VIX Futures & options
less tractable.

I Still accessible via Monte-Carlo + variance reduction.
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Thank you for your attention
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Direct modeling of VIX Futures
Instead of instantaneous forward variances ξT

t , we can apply the framework above
to model VIX Futures (FVIXi

t)t≤Ti directly :

FVIXi
t = FVIXi

0 f i(t, xTi
t
)

Ti = VIX maturities

We want VIX Futures processes to be martingales, hence the choices of f i (·)
above are possible.

This opens the way to non-parametric choices of f i :

I VIX option prices imply a distribution Pmkt(FVIXi
Ti
≤ K )

I Which we can exactly fit with the distribution of

FVIXi
Ti

= FVIXi
0 f i(Ti , xTi

Ti

)
by choosing a monotone terminal function f i (Ti , ·) (and using the fact
that xTi

Ti
is Gaussian).
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