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Reminders on forward variances

@ Forward variance V,” are fair strikes of variance swaps :

N
1
payoff of Var swap over [t, T] = o Z (log(Se.,) — Iog(S,_,.))2 -V
tielt,T]

where : t; = market opening days in [t, T], and T — t is measured in years
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Reminders on forward variances

@ Forward variance V,” are fair strikes of variance swaps :

N
1
payoff of Var swap over [t, T] = o Z (log(Se.,) — Iog(S,_,.))2 -V
tielt,T]

where : t; = market opening days in [t, T], and T — t is measured in years
@ The value of V,T is set so that

price,(var swap) = 0.
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Reminders on forward variances

@ Forward variance V,” are fair strikes of variance swaps :
1 N 2
payoff of Var swap over [t, T] = E Z (log(St.,) — log(Ss))” — Vi
- tielt,T]
where : t; = market opening days in [t, T], and T — t is measured in years
@ The value of V, is set so that
price,(var swap) = 0.
@ Take T, > T;. By combining positions in var swaps over [t, T,] and [t, T1],
we construct the payoff

1
Tf Z (log(stiﬂ) - |0g(5t’_))2 _ VtThTZ
? ! ti€[T1,T2]

where
(- t)Vi> = (L — )V
T,— T

T, To _
V, =

is the forward variance over [Ty, T5].
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Forward variances can be traded

@ By entering in the opposite positions in variance swaps at a date t’ > t, we
remove the realized variance part.

@ We materialize a position depending only on forward variances :

. T e
portfolio value at To = V,," "2 — V"2
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Forward variances can be traded

@ By entering in the opposite positions in variance swaps at a date t’ > t, we
remove the realized variance part.

@ We materialize a position depending only on forward variances :

. T, T,
portfolio value at T, = V,,'"2 — V, »' 72

@ The initial cost to construct this position was :  zero

Otherwise said
price, (Vt,T"T2 — VtTl’Tz) =0, Vt<t' <T

Forward variances can be traded at zero cost.
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Forward variances can be traded

@ By entering in the opposite positions in variance swaps at a date t’ > t, we
remove the realized variance part.

@ We materialize a position depending only on forward variances :

portfolio value at T, = V)72 — /7
@ The initial cost to construct this position was :  zero

Otherwise said
price, (Vt,T"T2 — VtTl’Tz) =0, Vt<t' <T
Forward variances can be traded at zero cost.

» Under a pricing measure, the (VtTl’TZ)QStST1 have to be martingales
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Instantaneous forward variance &/

@ Define instantaneous forward variance by

d
&T=ﬁ((T—t)VtT), t<T
so that
1 T
VthT t/ £ du, t<T
- t
and

VT17T2 _ 1 E
t

= — vd t< T T>.
T, — Ty Tlgt u, shs i

@ Note that if A is small, then

VtT, T+A ~ 5;}'
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A class of models based on Gaussian processes

t 1 t
é}TZEJGXP(/O K(T—S)'dWs—E/O K(T—s)-pK(T—s)ds) t<T
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A class of models based on Gaussian processes

t 1 t
§tTZ§JeXP</O K(T—S)'dWs—E/O K(T—S)-pK(T—s)ds) t<T

» (&7)7>0 is the initial forward variance curve — a market parameter.

» W is a Brownian motion in R" with correlation matrix p, and

t n t
/K(T—s)-dW5:Z/ Ki(T —s)dW,
0 -1 Jo

/t K(T —s)-pK(T —s)ds = i /tK;(T—s)p,-,jKj(T—s)ds
0 0

ij=1

» Deterministic kernels K; € L (R, R%).
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A class of models based on Gaussian processes

t 1 t
é}TZEJGXP(/O K(T—S)'dWs—E/O K(T—s)-pK(T—s)ds) t<T
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A class of models based on Gaussian processes

t 1 t
é}T:fJeXP</O K(T—S)'dWs—E/O K(T—S)-pK(T—s)ds) t<T

@ Forevery T, (¢]):<1 is the solution of the SDE

¢ =& K(T—1)-dW,,  t<T
@ Does not belong to the affine family.

@ Interest for simulation/calibration : only Gaussian r.v. are involved.

Choice of kernels in practice : 7 +— K(7) decreasing.
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Parametric examples (1)

@ Bergomi's model [Bergomi 05], [Dupire 93] with n =1 factor
K(r)=we ¥

with w, k > 0.

t
=g e (v [ eHTam)
0

t
= §oT€ (w e—k(T—t)/ e—k(t—s)dWS)
0

1 t
=&l exp (K(T —t)X; — 5/ K(T — s)2ds)
0
where X is the OU process dX; = —k X; + dW;.

» Forevery t, ¢/ = ®(T — t, X;) : the forward variance curve ¢ is a function
of one single Markov factor X.
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Parametric examples (1)

@ Bergomi's model [Bergomi 05], [Dupire 93] with n =1 factor
K(r)=we ¥
with w, k > 0.

t
Goe(o f[rrom)
0
t
— gg'g (w e—k(T—t)/ e—k(t—s)dWS)
0

=¢&J exp (K(T— )X — ;/Ot K(T—s)2ds)

where X is the OU process dX; = —k X; + dW;.

» Forevery t, ¢/ = ®(T — t, X;) : the forward variance curve ¢ is a function
of one single Markov factor X.

@ Bergomi's n-factor model [Bergomi 05] is the n-dim extension :
Ki(T) = wje 57

Volatility derivatives & forward variance models S. De Marco




Parametric examples (II)

@ The rough Bergomi model of [Bayer, Friz, Gatheral 2016] :
w

1 )
rz—H

K(r) = H e (0,1/2)

so that
t 1 1 t 1
T _ T 12 s
& =& exp (w/o (T_S);fHdWS v /o (T_5)1—2Hds>

» Do not have a low-dimensional Markovian representation of the curve

T (&)1
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Parametric examples (II)

@ The rough Bergomi model of [Bayer, Friz, Gatheral 2016] :
w

1 )
rz—H

K(r) = H e (0,1/2)

so that
t 1 1 t 1
T _ T 2
é-t = fo exp (w/o mdws - EOJ ‘/O (7-—5)1_2Hds>

» Do not have a low-dimensional Markovian representation of the curve

T-F9(§Z)T2t

@ For the moment (in this presentation), nothing in this model is rough.
For every T, the processes

(¢])e<T are martingales
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Constructing a consistent model for S;

Reminders : in a general stochastic volatility model

dSt = Mstdt+ Ot St thhiSt

@ Realized variance can be replicated with the underlying + a log-contract
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Constructing a consistent model for S;

Reminders : in a general stochastic volatility model

dSt = Mstdt+ Ot St thhiSt

@ Realized variance can be replicated with the underlying + a log-contract

> Indeed, by 1t6's formula applied to log(S)

1 1 L 2 Sr 1
708 T—t/t Tudll Tt( %5 T/ s,

Almost sure replication of (log S)(:, 1)

» This yields (taking interest rates to be zero)

1 T 2 S
VtT = price, <T—t /t 05du> = price, <T—t log 5:)
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A consistent model for S;
Given instantaneous forward variances &/

@ The model
dS, = S /€ dZ,

where Z is a Brownian motion, is consistent with the given &
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A consistent model for S;

Given instantaneous forward variances &/

@ The model
dS, = S /€ dZ,

where Z is a Brownian motion, is consistent with the given &

In the sense : the price of the log-contract in this model is

, -2 St I L
prlcet(ﬁlog?t)—lﬁl[ﬁ/t fudu‘}—t}
S S P PP Sy Py
- | Bl = g [ ea

w,z
where F; = F;
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A consistent model for S;
Given instantaneous forward variances &/

@ The model
dS, = S /€ dZ,

where Z is a Brownian motion, is consistent with the given &

In the sense : the price of the log-contract in this model is

, -2 St I L
prlcet(ﬁlog?t)—lﬁl[ﬁ/t fudu‘}—t}
_ L M= [ e
- | Bl = g [ ea

w,z
where F; = F;

» Hedging of European options on S with underlying + forward variances
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Rough Bergomi model, again

@ To see what is rough in rough Bergomi

we have to look at the consistent model for S :

dSt - St \/gdzt

The instantaneous volatility f of S is rough because

t t 1 2 ! 1
gt:exp LUXt—EUJ ; mds

t 1
xt = — dW,
‘ /0 (t—s):=H 7

is a Volterra process which admits a 5-Holder modification for 5 < H

and
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The VIX index

@ The VIX is the price of the log-contract with 30 days maturity written on
the SP500 :

2 S
VIX; = \/mkt price, (_A log ?A> where A = 30days
t
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The VIX index

@ The VIX is the price of the log-contract with 30 days maturity written on
the SP500 :

2
VIX; = \/mkt price, (_A log S?A) where A = 30days
t

@ The value of VIX is quoted by the Chicago Option Exchange, by static
replication of the payoff log(S) :

S [eS)
2 ‘1 1
VIX: = \/A (/0 Wpt(t+ A, K)dK +l WCt(t + A, K)dK>

where P¢(T, K) and C¢(T, K) are market prices of put and call options on S,

observed at t.
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The VIX index

@ The VIX is the price of the log-contract with 30 days maturity written on
the SP500 :

2
VIX; = \/mkt price, (_A log S?A) where A = 30days
t

@ The value of VIX is quoted by the Chicago Option Exchange, by static
replication of the payoff log(S) :

S [eS)
2 ‘1 1
VIX: = \/A (/0 Wpt(t+ A, K)dK +l WCt(t + A, K)dK>

where P¢(T, K) and C¢(T, K) are market prices of put and call options on S,
observed at t.

@ Is VIX an implied volatility 7
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The VIX index

@ The VIX is the price of the log-contract with 30 days maturity written on
the SP500 :

2 S
VIX; = \/mkt price, (_A log ?A) where A = 30days
t

@ The value of VIX is quoted by the Chicago Option Exchange, by static
replication of the payoff log(S) :

S [eS)
2 ‘1 1
VIX: = \/A (/0 Wpt(t+ A, K)dK +l WGt(t + A, K)dK>

where P¢(T, K) and C¢(T, K) are market prices of put and call options on S,
observed at t.

@ Is VIX an implied volatility 7 Yes, it is precisely the implied volatility of the
log-contract.
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History of VIX (2006-2011)
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Sept. 15, 2008
Lehman Brothers

files for bankruptey.

Sept. 7, 2008
WS, Treasury takes
over morigage
giants Fannie Mae
and Freddie Mac.

May &, 2010
In the so-called
“flash crash”, the
Dow falls almost
1,000 points in
minutes.

Aug. 5, 2011
S&P downgrades
the U.S. debt from
AAA to

Nov. 23, 2010
Standard & Poor's doamgrades Ireland’s
credit rating from Afi- to A

2008
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2009 2010



VIX in a stochastic volatility model
@ In general, VIX and forward variances of variance swaps do not coincide
1 t+A
VIX? # VA = X / €4 du
t

because the replication of variance swaps with log-contracts is only
approximate in practice.
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VIX in a stochastic volatility model

@ In general, VIX and forward variances of variance swaps do not coincide
) 1 t+A
VIX? £ VA = X / £ du
t

because the replication of variance swaps with log-contracts is only
approximate in practice.

@ Within a stochastic volatility model, on the contrary
) 1 t+A
VIX? = VA = X / £ du
t

because the replication of variance swaps with log-contracts is exact in this
case.
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VIX in a stochastic volatility model

@ In general, VIX and forward variances of variance swaps do not coincide
1 t+A
VIX? # VA = X / €4 du
t

because the replication of variance swaps with log-contracts is only
approximate in practice.

@ Within a stochastic volatility model, on the contrary
) 1 t+A
VIX? = VA = X / £ du
t

because the replication of variance swaps with log-contracts is exact in this
case.

@ Consequence : in general, we will be able to calibrate a forward variance
model (S, &;) to at most 2 of the 3 different markets :
> VIX market
» SP500 options market
» Variance swap market on SP500
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Pricing of VIX derivatives at t = 0
The price at t = 0 of a VIX option with payoff ¢ is

E[o(VIXy)] = E [w(\/mﬂ .
(o memn

and h(t, T,u) = ftT K(u—s)-pK(u— s)ds.

where

V(0,x)=E
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Pricing of VIX derivatives at t = 0
The price at t = 0 of a VIX option with payoff ¢ is

Blvi) =& [o(\V2)| = v
(o))

and h(t, T,u) = ftT K(u—s)-pK(u— s)ds.

where

v(0,x)=E

@ If Markov repr (e.g. classical Bergomi), fOT K(u—s)-dW;=K(u—T) Xt
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Pricing of VIX derivatives at t = 0

The price at t = 0 of a VIX option with payoff ¢ is

E [p(VIX1)] = E {gp(\/mﬂ _vo.c)
(B[ el - eng) )
T

K(u—s)- pK(u—s)ds.

where

v(0,x)=E

and h(t, T,u) =[]

t
@ If Markov repr (e.g. classical Bergomi), fOT K(u—s)-dW;=K(u—T) Xt

@ Otherwise : finite point (u;)i=1,.. ny quadrature formula + simulation of the
correlated Gaussian vector

(/OTK(ul,s).dWs,...,/OTK(uN,s).dWS>

~ see A. Jacquier's talk for rates of convergence.
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Term structure of volatility of volatility

» Denote
6(t, T)

the at-the-money implied volatility of an option on the forward volatility v/ V,".

Proposition (ATM implied volatility of forward volatility)
The following asymptotics hold : for every T

1 T T ,
0 S0

@ By choosing the kernels K, we can reach a prescribed target behavior of
(0, T)
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Term

structure

of volatility of volatility

180%
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] « Benchmark 180% « Benchmark
e Rho = -70% 160% - == Rho = -70%
1 = Rho = 0% == Rho = 0%
140% -

o —— Rho = +70% == Rho = +70%
o} 120% -
] 100% -
1 80% |
1 60% -

T T T 1 40% T T T 1
0 12 24 36 48 60 0 3 6 9 12

> Black dots : target behavior for (0, T), as a function of T (months).

» Very well described by a power law
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Term structure of volatility of volatility

@ Choice 1 : n =1 power kernel K(u) = —*
u?2
Then, if u— & is constant,
R const.
600, T)= Tih

which is exactly our target term-structure, when H ~ 0.1.
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Term structure of volatility of volatility

@ Choice 1 : n =1 power kernel K(u) = —*
u?2
Then, if u— & is constant,
R const.
600, T)= Tih

which is exactly our target term-structure, when H ~ 0.1.

@ Choice 2 : n = 2 exponential kernels
Ki(u)=we X  and d(W!, W?), = pdt

with ki < 1, kp > 1.
The resulting behavior of (0, T) is shown by the blue curves
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Term structure of volatility of volatility

@ Choice 1 : n =1 power kernel K(u) = —*
u?2

Then, if u— & is constant,

R const.
600, T)= Ti-H
which is exactly our target term-structure, when H ~ 0.1.

@ Choice 2 : n = 2 exponential kernels
Ki(u) = we ki and d(W, W?), = pdt
with ki < 1, kp > 1.
The resulting behavior of (0, T) is shown by the blue curves

» A model with fractional kernel reaches the target behavior with n =1 factor
and two parameters w, H.

» A classical Bergomi model does this with n = 2 factors and four parameters
kla k27 p,w.
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An extended class of forward variance models

As mentioned by Antoine, in the class of models above

f T+A

T H 1 u
@ The &, are log-normal. Forward variances % [+ = £%du are close to

log-normal.

@ Incapability of generate a reasonable smile for VIX options.

Volatility derivatives & forward variance models S. De Marco



An extended class of forward variance models

As mentioned by Antoine, in the class of models above

f T+A

T : 1 u
@ The &, are log-normal. Forward variances % [+ = £%du are close to

log-normal.

@ Incapability of generate a reasonable smile for VIX options.

» Inspired by [Bergomi 2008], we set

& =& fT(t.x")

where x,” denotes our Gaussian factor
t
X :/ K(T —s)-dW,
0

and the f7(-,-) are smooth functions to be determined.
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An extended class of forward variance models

» We need to impose some conditions on f7 :

@ fT(t,x)>0
@ Initial condition ¢ = =f7(0,0)=1,VT

@ (&])o<t<T needs to be martingale :
1
del = (ath(t,xtT) + KoK 8XXfT(t,xtT)>dt O FT(t,x] )dx
Therefore, we require that the £ (-) solve the family of PDE

0 FT (£, %) + %K(T —t) pK(T = D0uf(t,x) =0, ¥(t,x) € [0, T]xR.
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An extended class of forward variance models

» A simple representation : any C12([0, T) x R) function fT with exponential
growth satisfying the PDE above can be written in terms of its terminal condition

FT(t,x)=E [fT(T,x + (T, T) G)}

where G is a standard Gaussian random variable (and recall that
h(t, T,T) = ft T —5s)- pK(T — s)ds).

@ Positive solutions f7(-,-) are parametrized by positive final conditions
fT(Tv )

@ We can generate several parametric families of solutions.
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Parametric choice 1 : polynomials

@ The terminal condition :

FI(T.y)=a(T)y* + b(T)y + c(T)

leads to a quadratic Gaussian model

& =, X:) =& (a( T) () = h(t, T)] + B(T)xT +1)
where h(t, T) fo ) pK(T — s)ds

» We are free to choose a(T), b(T)s.t. 1 —a(T)h(T,T) - % >0
(positivity condition).
@ Example : if b(T) =0, ¢/ has a x? distribution.
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Parametric choice 1 : polynomials

@ The terminal condition :

FI(T.y)=a(T)y* + b(T)y + c(T)

leads to a quadratic Gaussian model

&l = fT(exT) = & (aT) ()2 = h(e, T)] + B(T)x +1)
where h(t, T) = [ K(T —s)- pK(T — s)ds

» We are free to choose a(T), b(T)s.t. 1 —a(T)h(T,T) - % >0
(positivity condition).
@ Example : if b(T) =0, ¢/ has a x? distribution.

@ The more general terminal condition :
n
FI(T.y)=> al y*
k=0

leads to polynomial functions x +— 7 (t, x).
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Parametric choice 2 : exponentials

@ The terminal condition :

m m
fT(T,y):ZWk ewky where szl, meN
k=1 k=1
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Parametric choice 2 : exponentials

@ The terminal condition :
m m
fT(T,y):ZWk ewrr where szl, meN
k=1 k=1
leads to a linear combination of Laplace transforms of a Gaussian r.v.
m
FI(t,x) = Z’Yk X~ 3(w)*h(tT)
k=1

» The class of models we started from corresponds to m = 1.
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Parametric choice 2 : exponentials

@ The terminal condition :
m m
fT(T,y):ZWk ewrr where szl, meN
k=1 k=1

leads to a linear combination of Laplace transforms of a Gaussian r.v.

FT (8 %) = 3y v~ bonhe.T)
k=1

» The class of models we started from corresponds to m = 1.

@ With this choice, forward variances
& =f(t,x")
are sums of log-normals which can be made very different from a single
log-normal

@ We have expressions and numerical methods for VIX derivatives similar to
the previous case (where m = 1).
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A simple version of the rough model where forward
variances are not log-normal

Rough_model (n=1,m =2) : n =1 gaussian factor, and m = 2 basis functions
1 1
FT(6x) = (L= exp (wf x—5(w] h(e, T)) +77 exp(w] x—5(w] h(e, T))
ft = EOTfT(taXt )

t
xtT:/ K(T — s)dWs, K(T —s)= !
0

(T —s): "
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A simple version of the rough model where forward
variances are not log-normal

Rough_model (n=1,m =2) : n =1 gaussian factor, and m = 2 basis functions
1 1
FT(6x) = (L= exp (wf x—5(w] h(e, T)) +77 exp(w] x—5(w] h(e, T))
ft :fo fT(taXt )

t
xj:/ K(T — s)dW, K(T —s)= 1
0

» This model depends on the global parameter

H

and on the four term-structure parameters

T T T T
6077 , Wi, W

which we can use to fit an initial term-structure of VIX Futures and the smiles of
VIX options.
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Calibration to VIX market (m = 2 exponential fcts)
VIX Futures (left) and VIX implied volatilities (right) on 22 Nov 2017, T = 20 Dec

Term structure of VIX Futures VIX smiles, T=0.08
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H=0.1 (fixed) &|7<u<ria =0.0145 ~=0.689 w;=2074 w,=0.215
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Non-parametric choices of f leading to exact calibration

are possible
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Conclusion & further directions

@ The consistent model for the SP500 :
dSt - St\/gdzt
might be a good candidate for a joint calibration of VIX and SP500 options

» See the talk of J. Guyon at QuantMinds conference 2018 (former Global
Derivatives), taking place this week, for some considerations about the
feasibility of this joint calibration.
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Conclusion & further directions

@ The consistent model for the SP500 :

dSt - St\/gdzt
might be a good candidate for a joint calibration of VIX and SP500 options

» See the talk of J. Guyon at QuantMinds conference 2018 (former Global
Derivatives), taking place this week, for some considerations about the
feasibility of this joint calibration.

In summary :

» Volterra Gaussian processes offer a considerable flexibility in the modeling of
forward variances.

» Using more general functions than single exponentials allows to accomodate
smiles of options on VIX, while keeping the Gaussian framework.

> “Rough” power kernels inevitably make the pricing of VIX Futures & options
less tractable.

» Still accessible via Monte-Carlo 4+ variance reduction.
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Thank you for your attention
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Direct modeling of VIX Futures

Instead of instantaneous forward variances ¢!, we can apply the framework above
to model VIX Futures (FVIX}),<7, directly :

FVIX| = FVIX{ f/(t, %) T; = VIX maturities
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Direct modeling of VIX Futures

Instead of instantaneous forward variances ¢!, we can apply the framework above
to model VIX Futures (FVIX}),<7, directly :

FVIX| = FVIX{ f/(t, %) T; = VIX maturities

@ We want VIX Futures processes to be martingales, hence the choices of f/(-)
above are possible.
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Direct modeling of VIX Futures

Instead of instantaneous forward variances ¢!, we can apply the framework above
to model VIX Futures (FVIX}),<7, directly :

FVIX| = FVIX{ f/(t, %) T; = VIX maturities

@ We want VIX Futures processes to be martingales, hence the choices of f/(-)
above are possible.

@ This opens the way to non-parametric choices of ' :
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Direct modeling of VIX Futures

Instead of instantaneous forward variances ¢!, we can apply the framework above
to model VIX Futures (FVIX}),<7, directly :

FVIX| = FVIX{ f/(t, %) T; = VIX maturities

@ We want VIX Futures processes to be martingales, hence the choices of f/(-)
above are possible.

@ This opens the way to non-parametric choices of ' :
> VIX option prices imply a distribution P™K(FVIX'. < K)
» Which we can exactly fit with the distribution of

FVIXT = FVIX{ f/(T;, x1)

by choosing a monotone terminal function f/(T;,-) (and using the fact
that X-,-,—— is Gaussian).
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