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Introduction

Challenges in mathematical Finance

High dimensional stochastic control problems often of a non-standard
type (hedging in markets with transaction costs or liquidity
constraints).

High-dimensional inverse problems, where models (PDEs, stochastic
processes) have to be selected to explain a given set of market prices
optimally.

High-dimensional prediction tasks (long term investments, portfolio
selection).

High-dimensional feature selection tasks (limit order books).

Task: understand, quantify and store the information of such
non-linear maps (input-output maps).
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Introduction

Approaches from Machine learning:

In order to approximate and store the information of non-linear maps ...

Basis regressions,

non-linear regressions of, e.g., neural networks,

feature extractions

... are performed.
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Introduction

Deep Networks in Finance

Recent ideas to use machine learning in Finance

Deep pricing: use neural networks to constitute efficient regression
bases in, e.g., the Longstaff Schwartz algorithm for pricing call-able
products like American options (e.g. recent works of Patrick
Cheridito, Calypso Herrera, Arnulf Jentzen, etc)
Deep hedging: use neural networks to approximate hedging strategies
in, e.g., hedging problems in the presence of market frictions (joint
work with Hans Bühler, Lukas Gonon, Ben Wood).
Deep filtering: use neural networks on top of well selected dynamical
systems to approximate laws of signals conditional on “noisy”
observation (e.g. recent joint projects with Lukas Gonon, Lyudmila
Grigoryeva, Juan-Pablo Ortega).
Deep calibration: use machine learning to perform a solution of
inverse problems (model selection) in Finance (joint work with Christa
Cuchiero, Andres Hernandez and Wahid Khosrawi-Sardroudi).
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Introduction

Neural Networks

Neural networks in their various topological features are frequently used to
approximate functions due ubiquitous universal approximation properties.
A neural network, as for instance graphically represented in Figure 1,

Figure: A 2 hidden layers neural network with 3 input and 4 output dimensions

just encodes a certain concatenation of affine and non-linear functions by
composition in a well specified order.
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Introduction

Neural Networks and Universal Approximation

Neural networks appeard in the 1943 seminal work by Warren
McCulloch and Walter Pitts inspired by certain functionalities of the
human brain aiming for articial intelligence (AI).
Arnold-Kolmogorov Theorem represents functions on unit cube by
sums and uni-variate functions (Hilbert’s thirteenth problem), i.e.

F (x1, . . . , xd) =
2d∑
i=0

ϕi

( d∑
j=1

ψij(xj)
)

Universal Approximation Theorems (George Cybenko, Kurt Hornik, et
al.) show that one hidden layer networks can approximate any
continuous function on the unit cube.
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Introduction

Neural networks and basis regression

Deep neural networks easily approximate wavelet basis, whence the
theory of all sorts of wavelet approximations of non-linear functions
applied. This can be used to explain the unreasonable effectiveness of
deep neural networks (Helmut Bölcskei, Philipp Grohs et al.)

However, the approach is static with respect to dimension of the
input space.

In dynamical or in very high dimensional situations the static theory
of universal approximation appears sometimes too rigid.

Take for instance time series analysis: there input has changing
length, output are time series characteristics.
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Introduction

The reservoir computing paradigm

Goal is to understand an input-output map by splitting it into a
composition of two maps. Input dimension can be changing.

the first map transforms by means of a generic dynamical system
(often with physical realization and, of course, with some relationship
to the input-output map) the input into features. The dynamical
system is called the reservoir.

on those features training is performed: in the simplest case just a
linear regression.

Obviously a complicated training is circumvented by using a generic
non-linear map – only the last layers needs to be trained.
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Introduction

Goal of this talk

show mathematical contexts where the paradigm of reservoir
computing appears.

develop a theory of reservoirs within Martin Hairer’s regularity
structures.
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Reservoir computing from a mathematical point of view

Applications

Many problems in Finance are of filtering nature, i.e. calculating
conditional laws of a true signal Xt+h, at some point in time t + h,
given some noisy observation (Ys)0≤s≤t .

Such problems often depend in a complicated, non-robust way on the
trajectory of Y , i.e. no Lipschitz dependence on Y : regularizations
are suggested by, e.g., the theory of regularity structures, and its
predecessor, rough path theory. By lifting input trajectories Y to
more complicated objects (later called models) one can increase
robustness to a satisfactory level (see, e.g., recent works of
Juan-Pablo Ortega, Lyudmila Grigoryeva, etc).

We shall apply the abstract theory of expansions as developed by
Martin Hairer in a series of papers to cristallize properties of
reservoirs.
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Reservoir computing from a mathematical point of view

A guiding mathematical example:

Consider a stochastic differential equation of diffusion type with smooth
vector fields

dXt =
d∑

i=0

Vi (Xt) ◦ dB i
t , X0 ∈ Rd

Rough path theory says that ...

Xt can be written as a non-linear Lipschitz function of the Brownian
path (Bs)0≤s≤t together with its (one-step) iterated integral∫ t
0 dBs ⊗ dBs (Lyons’ universal limit theorem).

Xt can be (almost) written as a linear map on the input signal’s full
signature up to time t, i.e. the collection of all iterated integrals.

Whence the signature can be considered a reservoir on which the
equation’s solution can be learned.
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Reservoir computing from a mathematical point of view

The model space

Let A ⊂ R be an index set, bounded from below and without accumulation
point, and let T =

⊕
α∈A Tα be a direct sum of Banach spaces Tα graded

by A. Let furthermore G be a group of linear operators on T such that, for
every α ∈ A, every Γ ∈ G , and every τ ∈ Tα, one has Γτ − τ ∈

⊕
β<α Tβ.

The triple T = (A,T ,G ) is called a regularity structure with model space
T and structure group G .

Given τ ∈ T , we will write ‖τ‖α for the norm of its Tα-projection.

Meaning: T represent abstractly expansions of “functions” at some
space-time point in terms of “model functions” of regularity α.
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Reservoir computing from a mathematical point of view

Some notation

Given a test function ϕ on Rd , we write ϕλx as a shorthand for

ϕλx (y) = λ−dϕ
(
λ−1(y − x)

)
.

Given r > 0, we denote by Br the set of all functions ϕ : Rd → R with
ϕ ∈ C r , its norm ‖ϕ‖C r ≤ 1 and supported in the unit ball around the
origin.
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Reservoir computing from a mathematical point of view

Models

Given a regularity structure T and an integer d ≥ 1, a model for T on Rd

consists of maps

Π: Rd → L
(
T ,D′(Rd)

)
Γ: Rd × Rd → G

x 7→ Πx (x , y) 7→ Γxy

such that Γxx = id, ΓxyΓyz = Γxz and ΠxΓxy = Πy for all x , y , z .
Furthermore, given r > | inf A|, for any compact set K ⊂ Rd and constant
γ > 0, there exists a constant C such that the inequalities∣∣(Πxτ

)
(ϕλx )

∣∣ ≤ Cλ|τ |‖τ‖α , ‖Γxyτ‖β ≤ C |x − y |α−β‖τ‖α ,

hold uniformly over ϕ ∈ Br , (x , y) ∈ K , λ ∈]0, 1], τ ∈ Tα with α ≤ γ, and
β < α.
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Reservoir computing from a mathematical point of view

Modeled distributions

The regularity structure allows to speak about abstract expansions at some
space time point. We can now introduce spaces of functions taking values
in abstract expansion (functions of expansion coefficients with respect to
some basis) and ask under which conditions we can actually associate a
generalized function to such coefficient functions.

Given a regularity structure T equipped with a model (Π, Γ) over Rd , the
space Dγ = Dγ(T , Γ) is given by the set of functions f : Rd →

⊕
α<γ Tα

such that, for every compact set K and every α < γ, the exists a constant
C with

‖f (x)− Γxy f (y)‖α ≤ C |x − y |γ−α

uniformly over x , y ∈ K .
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Reservoir computing from a mathematical point of view

The polynomial regularity structure

We choose T the polynomial ring in d (commutative) variables e1, . . . , ed ,
and A = N the natural grading. Abstract expansion are just Taylor
expansions at a point x ∈ Rd if we interpret the abstract polynomials as

Πxe
k(y) := (y − x)k

for a multi-index k ∈ Nd and x , y ∈ Rd . Of course Γhe
k :=

(
e + h

)k
and

Γx ,y := Γy−x .

With these definitions modeled distributions f ∈ Dγ (for γ ≥ 0 correspond
to Hölder functions of order γ (in the appropriate sense). Notice that this
is a derivative free definition of Hölder functions.
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Reservoir computing from a mathematical point of view

Rough paths as models

Consider the following abstract situation: let 0 < γ ≤ 1 be a degree of
roughness and E a (Banach) space where the rough path will take values
(think of Rd for simplicity). The index set A will be γN.

We define Tkγ = (E ∗)⊗k , i.e. the k fold tensor product of the space
of linear functionals on E .

The model space T =
⊕

α∈A Tα.

We also consider the predual T∗, i.e. the space of infinite series
T ((E )) in non-commutative variables from E .

This pairing comes with several intriguing algebraic structures: T∗ are
non-commutative infinite series in varaibles from E , whence an
algebra. We can consider the Lie algebra g generated by E in this
algebra and look at its exponential image G := exp(g).
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Reservoir computing from a mathematical point of view

Rough paths as models

Analytically speaking this corresponds to the collection of all infinite
series of the type∑

k≥0

∑
(i1,...,ik )∈{1,...,d}k

∫
0≤t1≤···≤tk≤t

dωi1(t1) . . . dωik (tk)ei1 . . . eik

for all possible finite variation curves ω taking values in E = Rd .

For every a ∈ G we define 〈a−1 ⊗ c , b〉 = 〈c , Γab〉, whence G acting
on T via adjoing left multiplication by the inverse.

Algebraically T∗ is a (formal closure of a) free algebra, T is a
commutative algebra with the shuffle product. By duality this yields a
Hopf algebra structure.

Elements from T may be considered as linear functionals on G ⊂ T∗.
The shuffle product of two such linear functionals just calculates the
unique linear functional whose restriction on G coincides with the
product!

Additionally we have that the Γ is a homomorphism for the shuffle
product.
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Reservoir computing from a mathematical point of view

Rough paths as models

Whence we have constructed a regularity structure (A,G ,T ): the
meaning of elements of T is to be abstract expansions of solutions of
controlled ODEs with respect to the control ω.

Models of the regularity structure are nothing else than Γst = ΓXst ,
i.e. group valued functions of two variables satisfying certain algebraic
relations, and Πsa(t) := 〈Xst , a〉, for times s, t, and hence precisely
geometric rough paths.

Notice that linear functionals on G , i.e. all possible elements from T ,
form a dense subset of all continuous functions on G (in an
appropriate topological sense).
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Reconstruction and generic dynamical systems

Reconstruction operator

The most fundamental result in the theory of regularity structures then
states that given a coefficient function f ∈ Dγ with γ > 0, there exists a
unique distribution Rf on Rd such that, for every x ∈ Rd , Rf equals
Πx f (x) near x up to order γ. More precisely, one has the following
reconstruction theorem, whose proof relies on results from wavelet analysis
(multi-resolution analysis, see Martin Hairer’s Inventiones article).

Let T be a regularity structure and let (Π, Γ) be a model for T on Rd .
Then, there exists a unique linear map R : Dγ → D′(Rd) such that∣∣(Rf − Πx f (x)

)
(ϕλx )

∣∣ . λγ‖f ‖Dγ , (1)

uniformly over ϕ ∈ Br and λ ∈]0, 1], and locally uniformly in x ∈ Rd .
Additionally the reconstruction operator is Lipschitz with respect to the
dependence on models (Π, Γ). Notice that models form a non-linear space.
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Reconstruction and generic dynamical systems

Besov models and Reconstruction on Besov spaces

All the previous constructions and results can be found in Martin Hairer’s
seminal paper ’Theory of regularity structures’ (2014).

Several extensions are of interest from a point of view of stochastic
analysis:

Hölder spaces are a special case of Besov spaces Bp,q (i.e. Hölder
spaces correspond to the case p = q =∞). From a point of view of
stochastic analysis, but also from a point of view of approximation
theory, Besov spaces with finite p, q are preferable (UMD properties,
reflexivity, etc).

Hairer-Labbé (2016) and Prömel-Teichmann (2016) developed the
Besov theory for modeled distributions for γ > 0. The equally
important case for γ < 0 is treated in Liu-Prömel-Teichmann (2018)
(important for explicit model construction).
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Reconstruction and generic dynamical systems

Besov models and Reconstruction on Besov spaces

Liu-Prömel-Teichmann (2018ab) provide furthermore discrete
characterizations of Besov rough paths, polish space valued Besov
maps and prove a universal limit theorem for Besov rough paths.

A full theory of Besov models and Besov modeled distributions is at
sight now. Advantages: insights from stochastic integration and
regularity structures can be benefitially combined.

All proofs rely in wavelet analysis and generalizations of it,
surprisingly even in the polish space valued case.
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Liu-Prömel-Teichmann (2018ab) provide furthermore discrete
characterizations of Besov rough paths, polish space valued Besov
maps and prove a universal limit theorem for Besov rough paths.

A full theory of Besov models and Besov modeled distributions is at
sight now. Advantages: insights from stochastic integration and
regularity structures can be benefitially combined.

All proofs rely in wavelet analysis and generalizations of it,
surprisingly even in the polish space valued case.

44 / 56



Applications

Many solutions of problems in stochastics can be translated to solving
fixed point equation on modelled distributions.

By applying the reconstruction operator the modeled distribution is
translated to a real world object, which then depends – by inspecting
precisely its continuities – in an at least Lipschitz way on the
underlying model, i.e. stochastic inputs.

The theory of regularity structures tells precisely how ’models’ have to
be specified such that stochastic inputs actually constitute models:
this yields a way to construct reservoirs.

Supervised learning: by creating training data (in appropriate input
format!) one can learn the input-output map.

Applications: solutions of stochastic differential equations (Friz,
Lyons, Victoir, etc), solutions of correlated filtering problems (Crisan,
Friz, etc), solutions of sub-critical stochastic partial differential
equations (Gubinelli, Hairer, Perkowski, etc), solutions of stochastic
optimization problems and stochastic games.
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Structure of non-linear solution maps

Consider a regularity structure (A,T ,G ) and a solution map (related to a
fixed problem, e.g. a prediction task) f :M→Dγ for some γ > 0. The
space M is a metric space of models on which f depends in a continuous
way (Notice that we are not dealing with re-normalization procedures here
where non-continuities of the solution map would have to be
re-normalized).

By the previous results and their respective proofs we know that the
re-constructed solution has the form

Z 7→ R(f (Z )) =
∑
n,x

〈Πx f (Z )(x), ψn
x 〉ψn

x

where convergence is understood in a respective Besov space topology.
The essential point is now to expand Z 7→ 〈Πx f (Z )(x), ψn

x 〉 with respect
to a reservoir, i.e. a dense subspace in the space of continuous functions
on M.
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Reservoir

Definition

A set of continuous functions (Rn)n≥0 such that
the linear span of (Rn)n≥0 is an algebra of continuous functions Res,
for every compact set K there is a dense subset L ⊂ K such that
Res |L is point separating on L,

is called a reservoir.

From Hambly-Lyons (2006) the signature of a rough path of order γ,
i.e. the set of all iterated integrals of order b 1γ c up to time t, spans a point
separating algebra on smooth paths without excursions (which are dense
with respect to the rough path topology) up to time t.

Whence signature is a reservoir for the previously introduced regularity
structure of rough paths.
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Existence of Reservoirs I

Theorem (Martin Hairer (2014))

Let H be a Zd
+-graded, commutative Hopf algebra with product ?,

coproduct ◦ and α = (αi ) ∈ Rd
>0 some coefficients, then

A := {〈α, k〉 | k ∈ Zd}

is a discrete set, Tβ =
⊕

β=〈k,α〉Hk , for γ ∈ A, defines a regularity
structure with structure group G = exp(g), where g is the Lie algebra of
primitive elements in H∗, acting via on T (as algebra morphisms)

〈l ◦ g , f 〉 = 〈l , Γg f 〉

for g ∈ G, l ∈ H∗ and f ∈ H (Notice that H∗ is the universal enveloping
algebra of g). Then the maps g 7→ 〈l , Γg f 〉 on G are closed under
multiplication, i.e. generate an algebra.
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Existence of Reservoirs II

The previous theorem and obvious ramifications beyond Hopf algebras of it
allow to write (non-linear) polynomial functions on G as restrictions of
linear ones, which in turn leads to an easily described algebra of functions
on models. The phenomenon appears when the elements of T have word
character with a not-necessarily globally defined commutative product ?
and a compatible co-product ∆ such that the acting group is a group of
primitive elements.

Since models will appear as maps x , y 7→ gx ◦ g−1y the point separating
property translates to the question whether a map (in a large class of
maps) of type x 7→ gx inG is already characterized by a finite number of
points on the respective graph.
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Existence of Reservoirs III

Theorem

Let (A,T ,G ) be a regularity structure and T∗ a pre-dual space of T ,
which is additionally an algebra (with product ◦), whose group of unitals
contains G as adjoints of left translations.
If the adjoint ∆ of ? satisfies

∆(g) = g ⊗ g,
∆(g1 ◦ g2) = ∆(g1) ◦∆(g2)

for unitals g , g1, g2 ∈ G, then

〈l ◦ g , f1〉〈l ◦ g , f2〉 = 〈l ◦ g , f1 ? f2〉

for all l , g ∈ G and fi ∈ T. Take (Π, Γ) a model of the regularity structure
and fix x , y ∈ Rd , then the span of l 7→ 〈l ◦ Γxy , f 〉 for l ∈ G, f ∈ T form
an algebra.
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Prediction Tasks

... in the future could be seen as follows:

consider certain noisy observations of a true signal and model their
structure by a corresponding regularity structure (this might be
necessary in since there is no reason why non-linear functions of noisy
objects should be well defined at all).

construct solutions of the optimal filter by solving a fixed point
equation on modelled distributions.

reconstruct the real world filter by the reconstruction operator, which
yields – under appropriate regularity conditions – a non-linear,
Lipschitz map from the space of observations (the ’models’) to the
optimal filter.

construct a reservoir and an efficient way how to compute its values
on the noisy signal.

learn the optimal filter by regressing on the reservoir.
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