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m A well known problem in mathematics:

For a given modular tensor category (MTC) C, find a
mathematical structure ? such that its “Drinfeld center”
gives C, i.e. €~ Z(?).

It is crucial to the problem of extending a 2+1D Reshetikhin-Turaev
TQFT (defined by €) down to points (i.e. a 0-1-2-3 TQFT).
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m A well known problem in mathematics:

For a given modular tensor category (MTC) C, find a
mathematical structure 7 such that its “Drinfeld center”
gives C, i.e. €~ Z(?).

It is crucial to the problem of extending a 2+1D Reshetikhin-Turaev
TQFT (defined by €) down to points (i.e. a 0-1-2-3 TQFT).

= For a modular tensor category M, we have € ~ M X M ~ Z(M).
C~Z(7) = V€ =7. It certainly reminds us “v/—1", “VA”, etc.
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Partial results:

m When C is non-chiral, i.e. € = Z(M) for a spherical fusion category
M, the TQFT can be extended to points, to each of which we
assign M. Such a TQFT is called a Turaev-Viro TQFT.

fusion category = semisimple, finitely many simple objects, finite
dimensional hom spaces
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Partial results:

m When C is non-chiral, i.e. € = Z(M) for a spherical fusion category
M, the TQFT can be extended to points, to each of which we
assign M. Such a TQFT is called a Turaev-Viro TQFT.

fusion category = semisimple, finitely many simple objects, finite
dimensional hom spaces

m When C is chiral, (solution: non-semisimple or finite — infinite)

Freed-Hopkins-Lurie-Teleman, 2009

André Henriques, 2017: the Drinfeld center of the category of
positive energy representations of the based loop group is
equivalent to the category of positive energy representations of
the free loop group.
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Partial results:

m When C is non-chiral, i.e. € = Z(M) for a spherical fusion category
M, the TQFT can be extended to points, to each of which we
assign M. Such a TQFT is called a Turaev-Viro TQFT.

fusion category = semisimple, finitely many simple objects, finite
dimensional hom spaces

m When C is chiral, (solution: non-semisimple or finite — infinite)

Freed-Hopkins-Lurie-Teleman, 2009

André Henriques, 2017: the Drinfeld center of the category of
positive energy representations of the based loop group is
equivalent to the category of positive energy representations of
the free loop group.

For a generic MTC, there is no clue from the mathematical side.
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Clues from physics for C = Z(?):

Physical meaning of a unitary modular tensor category C:

In physics, a 241D topological order, which is a quantum phase at
zero temperature of a gapped manybody systems (such as Fractional
Quantum Hall Systems), is described by a pair (€, ¢), where

m Cis a unitary modular tensor category (UMTC) C,

objects in C are topological excitations (also called anyons);
morphisms are observables (i.e. instantons) on 0+1D world
line supported on the excitation.

m c is a real number called chiral central charge.

What is the physical meaning of Drinfeld center?

Let us first look at the case, in which € is non-chiral. In this case,
the topological order (C,0) has gapped boundaries.
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Gapped boundaries of a 2+1D topological order (€,0): ¢ = UMTC.

m A gapped boundary is described by a unitary fusion category M.
[Kitaev-K.:11, K.:13]

objects in M are topological boundary excitations;
morphisms are observables on 0+1D world line (i.e.
instantons).
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Gapped boundaries of a 2+1D topological order (€,0): ¢ = UMTC.
m A gapped boundary is described by a unitary fusion category M.

[Kitaev-K.:11, K.:13]
objects in M are topological boundary excitations;
morphisms are observables on 0+1D world line (i.e.
instantons).

m Boundary-bulk relation:
Z(M) = C; [Kitaev-K.:11, K.13]
Two boundaries M and N share the same bulk as their Drinfeld
center iff they are Morita equivalent [Miger:01 Etingof-Nikshych-Ostrik:08].

Z(L)=zZ(M) = Z(\N) =€

i ———

L M N
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When C is chiral, the topological order (C, c) has a chiral gapless
boundary which is topologically protected.

In 2015, without knowing what a gapless boundary is,
K.-Wen-Zheng provide a physical proof of the boundary-bulk
relation, i.e. bulk = the center of the boundary:

Z(L)=Z(M) = Z(N) =¢
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When C is chiral, the topological order (C, c) has a chiral gapless
boundary which is topologically protected.

In 2015, without knowing what a gapless boundary is,

K.-Wen-Zheng provide a physical proof of the boundary-bulk
relation, i.e. bulk = the center of the boundary:

Z(L)=Z(M) = Z(N) =¢

Our mother nature provides a solution to the equation C = Z(?)
when C is chiral! Only thing remains to do is to read her book.
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More precisely, what we need to do is to

find a mathematical description of all possible
observables on a fully chiral gapless boundary of a 2+1D
topological order (€, c)
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More precisely, what we need to do is to

find a mathematical description of all possible
observables on a fully chiral gapless boundary of a 2+1D
topological order (C, c)

Had physicists already done that?

It was known to physicists that what appear on a gapless boundary
is a “chiral conformal field theory” without being very precise
[Witten:89, wen:00's, .]. 1 he goal of this talk is to make this statement
precise.
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{ek Spdn Hall efles 0N Chuandurm Span Hall #iTes
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{mb Npan Hall afle N Quantum Sgpin Hall #fles

Time axis is missing. “Time is also a phase of matter.”
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Observables on the 141D world sheet of a gapless boundary of a
topological order (C, ¢):

Monodromy-free chiral fields ¢(z) lives on the 1+1D world sheet.

All such chiral fields has OPE, thus form an algebraic structure
called “chiral algebra = vertex operator algebra (VOA)", denoted by
U = the infinity dimensional space of all chiral fields [witten:89,wen:00].
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Basic ingredients of a chiral algebra = VOA:

U: the space of monodromy-free chiral fields:

= Z d)nz_n_l;

nez
sz~ ¥ NS e
k<Ny. s

o(z1)9(22) ~ ¥(22)p(21):;

a sub-VOA (T) C U, T(z) = X ey L(n)z~ 2.

c
12(m3 — mM)dmtn,0-
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Observables on the 141D world sheet of a gapless boundary of
(€, ¢) includes

a VOA;

Are there any more observables ?
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Ax = a boundary CFT

LV

When a bulk excitation a € € is moved to the boundary, it creates a
“boundary excitation” x, (or a chiral vertex operator by (wen:o0's])
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Ax = a boundary CFT

D

When a bulk excitation a € € is moved to the boundary, it creates a
“boundary excitation” x, (or a chiral vertex operator by (wen:o0's])

The chiral fields living on the world line supported on x are
(potentially) different from those in U. We denote the space of all
these chiral fields by A,. These (potentially with monodromy) chiral
fields has OPE, which forms an open-string VOA [k-Huang03], together
with some additional structures, they form a boundary CFT [cardy:5019].
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Ax = a boundary CFT

D

When a bulk excitation a € € is moved to the boundary, it creates a
“boundary excitation” x, (or a chiral vertex operator by (wen:o0's])

The chiral fields living on the world line supported on x are
(potentially) different from those in U. We denote the space of all
these chiral fields by A,. These (potentially with monodromy) chiral
fields has OPE, which forms an open-string VOA [k-Huang03], together
with some additional structures, they form a boundary CFT [cardy:5019].

A1 = U, where 1 is the trivial boundary condition.
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ey

A, = BCFT
Ax
R . bulk CFT rFMx,y
aeC| .
t— 0# 0\ A, = BCFT

>

Il

- ¥
>

1

(-

Anomaly-free principle: A 1+1D boundary-bulk conformal field theory
realized by a 1d lattice Hamiltonian model with boundaries should satisfy
the mathematical axioms of a boundary-bulk (or open-closed) CFT of all
genera, including modular invariance, Cardy condition, etc.
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Boundary fields OPE was rigorously defined as an open-string VOA
(a non-commutative generalization of a VOA) [Huangk.03] :

B(n) = Ypeq nri " € A

é(r2)  Y(n)

o
=)

wlote) ~ 2N ker

no commutativity: 1(r1)@(r2) = ¢(r2)(rn).
a subalgebra (T) C Ay, where T(z) =Y, ., L(n)z"2.
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£=0 ‘:\E ¢ Ax.: Mx,x
\\A
X TF Ml,x
Ai=U !

It is possible that the boundary condition is changed from x to y on
the world line at t = t; > 0.

We use M, , to denote the space of defect fields (boundary
condition changing operators, chiral vertex operators) between two
boundary CFT's.

We have x = My x and A, = M, .
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F M1«

defects fields can be fused (OPE): M, , ®c My, — M ;.
associativity of OPE: M, ,, ®c M, ; ®c My, — My
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We obtain a categorical structure X*:

objects of X*: boundary conditions (in CFT), x,y, z;
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We obtain a categorical structure X*:

objects of X*: boundary conditions (in CFT), x,y, z;

morphisms: homy:(x,y) = My, (boundary CFT's and walls);
(Ml,l = U, Mx,x = Ax)
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We obtain a categorical structure X*:

objects of X*: boundary conditions (in CFT), x, y, z;

morphisms: homy:(x,y) = My, (boundary CFT's and walls);
(Ml,l = U, Mx,x = Ax)

composition map: M, , ® M, , — M, , (OPE of defect fields)

Liang Kong
How to take a square root of a modular tensor category?



We obtain a categorical structure X*:

objects of X*: boundary conditions (in CFT), x, y, z;

morphisms: homy:(x,y) = My, (boundary CFT's and walls);
(Ml,l = U, Mx,x = Ax)

composition map: M, , ® M, , — M, , (OPE of defect fields)

X* is almost a “category enriched by boundary CFT’s and walls".
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We obtain a categorical structure X*:

objects of X*: boundary conditions (in CFT), x, y, z;

morphisms: homy:(x,y) = My, (boundary CFT's and walls);
(Ml,l = U, Mx,x = Ax)

composition map: M, , ® M, , — M, , (OPE of defect fields)

X* is almost a “category enriched by boundary CFT’s and walls".

The missing structure:
® identity morphism id, = 1|y : 1=V = A, = M, .

This is determined by the chiral symmetry of the boundary.
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e
The chiral symmetry V (a VOA) of the boundary:

Compatibility among U, A,, M, ,. Note that ¢, : U = A, or M,
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e
The chiral symmetry V (a VOA) of the boundary:

Compatibility among U, A,, M, ,. Note that ¢, : U = A, or M,

L, preserves OPE's, i.e. an open-string VOA homomorphism.
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e
The chiral symmetry V (a VOA) of the boundary:

Compatibility among U, A,, M, ,. Note that ¢, : U = A, or M,

L, preserves OPE's, i.e. an open-string VOA homomorphism.

Conformal symmetric condition (minimal requirement): V = (T)
and ¢,|v are injective and path independent.
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The chiral symmetry V' (a VOA) of the boundary:

p(z)eVcU
Y2_.-m7 %
1" 71:
’ X + M :
............. ; .- il

Compatibility among U, A,, M, ,. Note that ¢, : U = A, or M,

t; preserves OPE's, i.e. an open-string VOA homomorphism.

Conformal symmetric condition (minimal requirement): V = (T)
and ¢,|v are injective and path independent.

V-symmetric condition: ¢,,|v are injective and path independent.
(T) € V C U in general.
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V-symmetric condition:

V — A, is a path independent injective OSVOA homomorphism;
V ®c My, — My, is path independent and define a V-module
structure on M, ,,

i.e. Mx,y € Mody.
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p(z)eVcCU
Y2_ =77 %
S m
ll X + Mx7y
............. i - @ O
\~ t = 0 4 Ax tl Ay t

V-symmetric condition:
V — A, is a path independent injective OSVOA homomorphism;

V ®c My, — M, is path independent and define a V-module
structure on M, ,, i.e. M, € Mody.

V-action commutes with the fusion M, , ®c M, — M, ..
= M, , ®c My, = M, is an intertwining operator of V/
(a morphism M, , ® M, — M,_, in Mody if Mody is monoidal).
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We obtain a categorical structure X*:

objects of X*: boundary conditions ( “excitations”), x, y, z;
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We obtain a categorical structure X*:
objects of X*: boundary conditions ( “excitations”), x, y, z;

morphisms: homy:(x,y) = My, € Mody;
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We obtain a categorical structure X*:
objects of X*: boundary conditions ( “excitations”), x, y, z;
morphisms: homy:(x,y) = My, € Mody;
identity morphism idy, = ty,|v 1 1=V = Ay = M,
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We obtain a categorical structure X*:
objects of X*: boundary conditions ( “excitations”), x, y, z;
morphisms: homy:(x,y) = My, € Mody;
identity morphism idy, = ty,|v 1 1=V = Ay = M,

composition map: M, , ® M, , — M, , is a morphism in
MOd\/.

satisfying the axioms similar to those of an ordinary category.
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We obtain a categorical structure X*:
objects of X*: boundary conditions ( “excitations”), x, y, z;
morphisms: homy:(x,y) = My, € Mody;
identity morphism idy, = ty,|v 1 1=V = Ay = M,

composition map: M, , ® M, , — M, , is a morphism in
MOd\/.

satisfying the axioms similar to those of an ordinary category.
X* is a category enriched in Mody/, or an Mody-enriched category.

Assumption: V is a rational VOA. In particular, it means that
Mody is a modular tensor category (MTC). Huangos

Liang Kong
How to take a square root of a modular tensor category?



®: (X, x)=x'x=x"®@xand My, @ My, = Mugyx, s,
satisfying some obvious properties.
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®: (X, x)=x'x=x"®@xand My, @ My, = Mugyx, s,
satisfying some obvious properties.

® upgrades X* to an Mody-enriched monoidal category, a notion
which was introduced only recently [Batanin-Markl:12,

Morrison-Penneys:17].
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Theorem (K.-Zheng, 2017)

All observables on a gapless boundary of a 241D topological order
(C, ) can be described by a pair (V,X*), where

V' is a rational VOA (chiral symmetry);
X* is an Mod/ -enriched monoidal category.

Note that U = A; = My 3 is a data in X,
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Theorem (K.-Zheng, 2017)

All observables on a gapless boundary of a 241D topological order
(C, ) can be described by a pair (V,X*), where

V' is a rational VOA (chiral symmetry);
X* is an Mod/ -enriched monoidal category.

Note that U = A; = My 3 is a data in X,

We would like to give an example of such gapless boundaries.
Before we do that, we first recall some results of boundary-bulk
CFT’s.
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Boundary-bulk (open-closed) CFT with a chiral symmetry V:

Example: € = Mody, Z(€) = C X € Mige]

Aboundary =1=Ve Gv Abulk - Z(l) = EB,I* X .

[..., Frohlich-Felder-Fuchs-Schweigert:01]

Vx € €, Aboundary = [X,X] = x @ x*, Z([x,x]) = Z(1) = @;i* K.

[Fuchs-Runkel-Schweigert:04, K.:06, K.-Runkel:07,08]

[x,y] =y ® x* defines a V-symmetric wall between boundary
CFT's [x,x] and [y, y] [Frohiich-Fuchs-Runkel-Schweigert:06].
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Ay—Uy]

i 92 x]
vx Myy=[1.x] = x

A = U=V

A canonical gapless boundary (V, C#) of the topological order (€, c):
“boundary excitations” = bulk excitations = C; V = U, Mody = C;
My, = [x,y] =y @ x* for x,y € Mody = C;
ide : V=1 [x,x] = x® x* is given by the duality map;
v.z2l@xyl=z0y" @ y@x" = z@x" = [x,2].

.y 1@yl =y ©x* @y xS gy xt @
X ®@x,y @yl
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Definition (K.-Zheng, 2017)

Let Cf be a monoidal category enriched over B. A half-braiding for an object x € € is
an enriched natural isomorphism by : x ® — — — ® x between enriched endo-functors
of @ such that it defines a half-braiding in the underlying monoidal category €. The
Drinfeld center of € is a category Z(C*) enriched over B defined as follows:

m an object is a pair (x, bx), where x € C and by is a half-braiding for x;
= hom ey ((x, bx), (v, by)) is the intersection of the equalizers of the diagrams
homg (x, ¥) = homey (x ® z,z ® y) depicted below for all z € C*

®o(id,®1d)
homey (x,y) ————— homgi(z ® x,z ® y)

®o(Id®idZ)l l—obxyz

by, ;o0—
homes (x ® z,y ® 2) AR home: (x ® 2,z ® y);

= the composition law o is induced from that of Cf.
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Theorem (K.-Zheng, 2017)
Z(Gﬁ) =C.

Boundary-bulk relation holds for the canonical gapless boundary!
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Morrison-Penneys’s canonical construction: [2017]
Let B be a braided monoidal category and M a monoidal category. Let f : B — Z(M)
be a braided oplax-monoidal functor. Then we have a functor
®:BXM— Z(M) x M — M. There is a canonical construction of a B-enriched
monoidal category M¥ from the pair (B, M):

= objects in M are objects in M, i.e. Ob(M!) := Ob(M);

m For x,y € M, homys(x,y) := [x,y] in B (or in B);

m idy : 13 — [x, x] is the morphism in B canonically induced from the unital

action 1 ® x ~ x;

o:[y,z] ® [x,y] = [x, 2] is the morphism canonically induced from the action
(2deky)ox=lyzZloy =z

®: ¥,y ]®[x,y] = [ ® x,y’ ® y] is the morphism in B canonically induced
from the action

(X, y'Toxy) ©x @ x = ¢m([x, ¥y 1@ [x,y]) @ X' ® x
= (X', ¥']) ® o ([x, ¥]) @ X' @ x

1d®by_((y]) o’ OTdx
— M oK YD @ X @ dnellx,y]) @ x = ¥ @ y.
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More general gapless boundaries of the 2+1D bulk phase (C, ¢):

(v, B)

(V,B) Rp.oM - A

(V, B Rp,e) M = (V,B,M) = (V, M)

where MF is the enriched monoidal category determined the pair (B, M)
via the canonical construction. [Morrison-Penneys:17]

Corollary (K.-Zheng, 2017)
Boundary-bulk relation: Z(M*) = Z(B, M) = €.
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Remark: The mathematical description of a gapped boundary, i.e.
a unitary fusion category M, is automatically included in that of a
gapless edge, i.e. (V,B,M), as a special case with V = C and

B = H, where C is viewed as the trivial VOA with zero central
charge.

M = (C, H, M).

Therefore, we have obtained a unified mathematical theory of both
gapped and gapless boundaries of 2+1D topological orders.
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We argue that all gapless/gapped boundarys are obtained in this
way.

(v, B)

Boundaries of (€, ¢) are classified by triples (V, B, M), where
V is rational VOA such that B = Mody is a UMTC;

M is a unitary fusE)n category equipped with a braided
equivalence ¢y : BX C — Z(M).

or equivalently, by a pair (V, A), where A is a Lagrangian algebra
in Mody X C.
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A gapless/gapped boundary of a given bulk (€, ¢) is described by a
triple (V, B, M). We have boundary-bulk relation:

Z(B, M) = C; [K-Zheng, 2017]

Two boundaries (A, £) and (B, M) share the same bulk as
their Drinfeld center iff they are Morita equivalent [zheng, 2017.

Z(A, L) = Z(B,M) = Z(D,N) =€

(A, L) (B, M) (D,N)
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This automatically include a classification of gapped/gapless
domain walls between two bulk phases.

(U, At (v, B

M

(=) (D,a+ @) (&,c1+ 2+ c3)

(U, A, M) B ey 1) (Vs B,N) = (U@ V, AR B, M By N),

This is a powerful formula (factorization homology) allows us to
compute and construct non-chiral gapless boundaries/walls, which
have even wider applications.
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As an example, we will show how to recover modular invariant bulk
CFT's from 241D topological orders.

(v,6,0) (V,¢e,erev)
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Modular invariant bulk CFT's from 2+1D topological orders:

(V’ E, erev) [z, z]
[x.z] [E
Z(1y)
[x, x]
—
x 0
i M
Xt e §
L, 1 :

(V,€,0)Re,q) (C,H,M)Rie,q) (V, €)= (V@ V,EREM).
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(Va ¢, e) IX(C,C) ((C7 H, M) &(e,c) (Vz Ey erev) = (V ®c V: CKX év M)

(V ®c V,CKR C,M) is a gapless domain wall between two trivial
phases:
U=[1y,1y] €CXC;
If M =C, [1ne, 1] = @i i X i* is a Lagrangian algebra in
C X €, which is nothing but the famous charge conjugate
modular invariant bulk CFT.

M # C, [1y, 1n] is a different Lagrangian algebra in € X C or
a different modular invariant bulk CFT.

Liang Kong
How to take a square root of a modular tensor category?



This gapless wall (V ®@¢ V,C X €, M) between two trivial phases
provides a physical explanation of the one-to-one correspondences
among the following three sets:

the set of gapped walls between (€, ¢) and (C, ¢),
the set of Lagrangian algebras in Z(C),

the set of modular-invariant bulk CFT's in € X C.

M [Lyg, 1y € CRE.
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(V.EE™) [z

[x.2] IE

Z(1)
[ x]
—
x ¥ {1
i M
x = [y, x] Lo E

The observables on the 0+1D world line of the boundary of the
domain wall M are described by an enriched category
M# = (M, M). homy(x,y) =[x, y] =y @ x* € M.
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(V’ E’ erev) [z’ z]
[x.z] IE
Z(1y)
[x, x]
—
X [ el ]
i M
ERE e
v, o] :

(Vv ¢, e) Iz(e,c) ((Ca H, M) x((i’,c) (Vz Ey erev) = (V ®c V: CKX 67 M)

This simple formula recovers and encodes all boundary-bulk CFT's
over V, including all its ingredients.
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Conclusions:

We have found a solution to the equation Z(?) = C.

We have found a unified mathematical theory of gapless/gapped
boundaries of all 2+1D topological order. It leads to a classification
theory of all gapless/gapped boundaries and defects of codimension
1 and 2, for 241D topological orders.

We have shown that this theory can also be used to study
non-chiral gapless boundaries/walls.

Outlooks:

It opens the way to study gapless boundaries for symmetry enriched
topological orders and symmetry enriched topological orders.

It gives us a clue how to construct lattice models to realize all chiral
2+1D topological orders (generalizing Levin-Wen models).

It provides a systematic way to study topological phase transitions.
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Thank you !
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