Multidimensional discrete Morse function for persistent homology computation

Tomasz Kaczynski

joint work with Madjid Allili, Claudia Landi, and Filippo Masoni

Départment de mathématiques Université de Sherbrooke

Multiparameter Persistent Homology BIRS–Oaxaca 2018

A D F A B F A B F A B

Outline

- Motivation: Shape similarity measures
- 2) Forman and MDM function
- Preliminaries: Partial matching, filtration, lower stars, indexing
- Matching Algorithm
- Reductions
- f-compatible mdm functions
 - D Experiments
 - Future work

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Shape similarity measures

Shape descriptors based on *1D filtrations:* Filter images X by *sublevel sets* $X_{f \le a}$ of a *measuring function* $f : X \to \mathbb{R}$. Record changes in topology as *a* increases.

- Ideally, f should express features of interest — provided by users.
- Typical choices of *f* for testing purposes:
 - Coordinate projections;
 - Distance to a half-space, the gravity center, an axis of inertia, ...,

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Multiparameter filtration: Study several features of compared shapes at once. Filter models X by *partially ordered sublevel sets* $X_{f \leq a}$ of a *measuring function* $f : X \to \mathbb{R}^k$.

Record changes in topology induced by inclusions

$$j^{(a,b)}: X_a \hookrightarrow X_b,$$

where $a \leq b$, i.e. $a_i \leq b_i$ for all $i = 1, 2, \dots, k$.

History:Pareto optimal points in Economy, \sim 1900'sProblem:Simultaneously maximize several functions.

Tomasz Kaczynski (UdeS)

Why f with values in \mathbb{R}^k and not k separate tests for 1D functions?

Example

Using one coordinate projection per time does not permit distinguishing these two contours:

- Benefits from MultiD descriptors: More accurate shape similarity measures.
- Issues: More costly to compute. Distance (*matching, Wasserstein*, etc) computation in development — at this workshop!
- Explored direction: Reduce the complex representing the shape. Reduction should be filtration-preserving.

< < >> < <</p>

Morse-Forman Theory

Our goals:

- Extend Forman's concept of *discrete Morse function* to *ℝ^k-valued* functions.
- Construct a multifiltration-compatible discrete vector field.
- Compute a reduced complex with the same persistent homology.
- Use the above as a *pre-processing* for the distance computation to come.

MD Morse function

 $\mathcal{K} = \{\mathcal{K}_p\}$ simplicial complex. Given $g : \mathcal{K} \to \mathbb{R}^k$ and $\alpha \in \mathcal{K}_p$, we set

$$H_{g}(\alpha) = \{\beta \in \mathcal{K}_{p+1} \mid \beta > \alpha \text{ and } g(\beta) \preceq g(\alpha)\};\$$

$$T_g(\alpha) = \{ \gamma \in \mathcal{K}_{p-1} \mid \gamma < \alpha \text{ and } g(\alpha) \preceq g(\gamma) \}.$$

H stands for *heads* and T for *tails*.

Definition

 $g:\mathcal{K}
ightarrow \mathbb{R}^k$ is a multidimensional discrete Morse (mdm) function, if

(1) card
$$H_g(\alpha) \leq 1$$
;

(2) card $T_g(\alpha) \leq 1$;

- (3) If $\beta^{(p+1)} > \alpha$ is not in $H_g(\alpha)$, then $g(\alpha) \not\supseteq g(\beta)$;
- (4) If $\gamma^{(p-1)} < \alpha$ is not in $T_g(\alpha)$, then $g(\gamma) \not\supseteq g(\alpha)$.

Proposition

For any simplex $\alpha \in \mathcal{K}$, card $H_g(\alpha) \cdot \operatorname{card} T_g(\alpha) = 0$.

Recall: A discrete vector field (dvf) V on \mathcal{K} is the set of pairs

$$\left\{\left(\alpha^{(p)},\beta^{(p+1)}\right)\right\}$$
 with $\alpha^{(p)} < \beta^{(p+1)}$

such that each simplex of \mathcal{K} is in at most one pair of V.

Definition

Let $g : \mathcal{K} \to \mathbb{R}^k$ be mdm. $\gamma \in \mathcal{K}$ is critical if $H_g(\gamma) = \emptyset = T_g(\gamma)$.

The sets

$$A = \{ \alpha \in \mathcal{K} \mid \text{card } H_g(\alpha) = 1 \},$$
$$B = \{ \beta \in \mathcal{K} \mid \text{card } T_g(\beta) = 1 \},$$
$$C = \{ \gamma \in \mathcal{K} \mid \text{card } H_g(\gamma) = 0 = \text{card } T_g(\gamma) \}$$

form a partition of $\mathcal{K}.$ The map $\mathtt{m}:\mathtt{A}\to\mathtt{B}$ given by

$$\mathfrak{m}(\alpha) =$$
unique $\beta \in H_g(\alpha),$

defines a dvf V called the *gradient field* of g. (A, B, C, m) is also called *partial matching*.

(

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

MDM function idea: back to 2012

What we could do:

• Prove an analogy of the sublevel set *deformation lemma*.

What we could not do:

- Provide a full extension of Forman-Morse theory in this setting;
- Design an algorithm producing an mdm function from data on vertices.

Chosen approach:

- Forget our MDM function;
- Design a function f on simplices as in 1D case;
- Declare *unpaired* simplices *critical*.

Algorithm design progress

- [King-Knudson-Mramor 2005] analogy (2015): Too many *unprocessed* simplices declared critical and dropped to C.
- [Robins-Wood-Sheppard 2011] analogy (2017): More successful in reducing c thanks to processing cells of all dimensions, not only vertices.
- We now can get an *f*-compatible MDM function *g*.

• □ ▶ • @ ▶ • E ▶ •

Partial matching

A partial matching (A, B, C, m) on a simplicial complex \mathcal{K} is a partition A, B, C of \mathcal{K} with a bijection

$$m: A \rightarrow B$$
 $\tau < m(\tau)$.

such that $m(\tau)$ is a cofacet of τ for all $\tau \in A$.

 $\texttt{m}: \texttt{A} \rightarrow \texttt{B} \text{ Forman's } \textit{discrete vector field, } \texttt{C} \textit{ critical cells}$

An *m*–*path* is a sequence

```
\tau_0 \mapsto \sigma_0 > \tau_1 \mapsto \sigma_1 > \ldots \tau_p \mapsto \sigma_p > \tau_{p+1}
```

A partial matching is *acyclic* if there is no closed m-path.

Tomasz Kaczynski (UdeS)

Filtration, lower stars and indexing

Multifiltration is given initially on vertices $f : \mathcal{K}_0 \to \mathbb{R}^k$. It may be assumed that *f* is *component-wise injective*.

We extend it to $f : \mathcal{K} \to \mathbb{R}^k$ on all cells:

 $f(\sigma) = (f_1(\sigma), \dots, f_k(\sigma))$ with $f_i(\sigma) = \max_{\nu \in \mathcal{K}_0(\sigma)} f_i(\nu)$.

The sublevel set filtration of \mathcal{K}

$$\mathcal{K}^{a} = \{ \sigma \in \mathcal{K} \mid f(\mathbf{v}) \preceq a \text{ for all } \mathbf{v} \in \sigma \}, \ a \in \mathbb{R}^{k}.$$

The *lower star* of $\sigma \in \mathcal{K}$ is $L(\sigma) = \{\alpha \in \mathcal{K} \mid \sigma \subseteq \alpha \text{ and } f(\alpha) \preceq f(\sigma)\}$, The *strict lower star* is $L_*(\sigma) = L(\sigma) \setminus \{\sigma\}$.

Topological Sorting Algorithm \Rightarrow construction of an *indexing map* on \mathcal{K} , compatible with *f*:

A bijective map $I: \mathcal{K} \to \{1, 2, \dots, N\}, N = \overline{\overline{\mathcal{K}}}$, such that

$$\sigma, \tau \in \mathcal{K}, \ \sigma \neq \tau, \ \sigma \subseteq \tau \text{ or } f(\sigma) \precneqq f(\tau) \Rightarrow I(\sigma) < I(\tau).$$

Goal: build a multifiltration-compatible partition of \mathcal{K} into A, B, and C, $m : A \rightarrow B$, C declared critical.

- Process all cells σ of \mathcal{K} increasingly with indexing *I*.
- Extra routines:
 - States classified(σ)=true/ false, to avoid re-processing cells from lower stars of other cells and sets unclass_facets_{σ}(α), for $\alpha \in L_*(\sigma)$.
 - Priority queues PQzero and PQone, to store cells with 0 and 1 available unclassified facets.
- σ is added to C, if $L_*(\sigma) = \emptyset$. Otherwise, σ is paired with the cofacet $\delta \in L_*(\sigma)$ of minimal index $I(\delta)$.
- Additional pairings interpreted as building L_{*}(σ) with simple homotopy expansions or reducing it with contractions:
 - α is a candidate for pairing when unclass_facets_σ(α) contains exactly
 one λ that belongs to PQzero.
 - If no pairing of α is possible, add it to C and continue from that cell.
 - When PQone ≠ Ø, its front is popped out and either inserted into PQzero or paired with its single available unclassified facet.
 - When $PQone = \emptyset$, the front cell of PQzero is added to C.

Matching Algorithm

Algorithm 2 Matching		17:	add α to PQzero
1:	Input: A finite simplicial complex \mathcal{K} with an admissible function $f : \mathcal{K} \to \mathbb{R}^k$ and an indexing map $I : \mathcal{K} \to \{1, 2,, N\}$ on its simplices compatible with f .	18: 19:	else add $\lambda \in unclass_facets_{\sigma}(\alpha)$ to A, add α to B and define $m(\lambda) = \alpha$,
2: 3:	Output: Three lists A, B, C of simplices of K , and a function $m : A \rightarrow B$. for $i = 1$ to N do	20:	classified(α)=true, classified(λ)=true remove λ from PQzero
4:	$\sigma := I^{-1}(i)$	21:	add all $\beta \in L_*(\sigma)$ with num_unclass_facets $\sigma(\beta) = 1$ and either $\beta > \alpha$ or $\beta > \lambda$ to POope
5: 6:	If classified(σ)=false then if $L_{*}(\sigma)$ contains no cells then	22:	end if
7: 8:	add σ to C, classified(σ)=true else	23: 24:	end while if PQzero $\neq \emptyset$ then
9:	$\delta :=$ the cofacet in $L_*(\sigma)$ of minimal index $I(\delta)$	25: 26:	$\gamma := PQzero.pop_front$ add γ to C_c plaquified(γ)=true
10:	add σ to A and δ to B and define $m(\sigma) = \delta$, classified(σ)=true, classified(δ)=true	27:	add all $\tau \in L_*(\sigma)$ with num_unclass_facets _{σ} $(\tau) = 1$ and $\tau > \gamma$ to
11:	add all $\alpha \in L_*(\sigma) - \{\delta\}$ with num_unclass_facets $\sigma(\alpha) = 0$ to PQzero add all $\alpha \in L_*(\sigma)$ with num_unclass_facets $(\alpha) = 1$ and $\alpha > \delta$ to POone	28:	PQone end if
13:	while PQone $\neq \emptyset$ or PQzero $\neq \emptyset$ do	29:	end while
14: 15:	while PQone $\neq \emptyset$ do $\alpha := PQone.pop_front$	31:	end if
16:	if num_unclass_facets _{σ} (α) = 0 then	32:	end for

Theorem

The algorithm produces a multifiltration-compatible partial matching (A, B, C, m) that is acyclic.

The worst case processing cost is $O(N \cdot \gamma \log \gamma)$, where

$$N := \overline{\overline{\mathcal{K}}}, \ \gamma := \max_{\sigma \in \mathcal{K}} \overline{\overline{\operatorname{cbd}}(\sigma)}, \ \text{and} \ \operatorname{cbd}(\sigma) := \{\tau \in \mathcal{K} \, | \, \sigma \leq \tau\}.$$

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example

	$v_2 = (1, 1)$ $v_4 = (1, 1)$ $v_5 $	(2, 1) $(2, 0) w_1$	w_4 e_{13} w_{12} w_4 e_{13} e_{14} e_6 t_{11} e_{10} e_{14} e_3 w_2 e_9 w_8
i = 1	$L_*(w_1) = \emptyset, w_1 \in \mathbb{C}.$	5, 6, 7	e_5, e_6, t_7 classified.
i = 2	$L_*(w_2) = \{e_3\}, m(w_2) = e_3.$	i = 8	$L_*(w_8) = \{e_9\}, m(w_8) = e_9.$
i = 3	e_3 classified.	i = 9	e_9 classified.
i = 4	$L_*(w_4) = \{e_5, e_6, t_7\},\$	i = 10	$L_*(e_10) = \{t_11\}, m(e_10) = t_11.$
	$m(w_4) = e_5,$	i = 11	t_11 classified.
	$e_6 \in PQzero, t_7 \in PQone,$	i = 12	$L_*(w_{12}) = \{e_{13}, e_{14}\},\$
	line 15, $\alpha = t_7$ leaves		$m(w_{12}) = e_{13},$
	PQone,		$e_{14} \in PQzero, PQone = \emptyset,$
	line 19, $\lambda = e_6$, m $(e_6) = t_7$,		line 25, $\gamma = e_{14} \in C$.
	e_6 leaves PQzero.	13, 14	e_{13}, e_{14} classified.

Red circles: Cells left in C; Left: 2015 algorithm; Right: 2017 algorithm.

Lefschetz complex reductions

 $S = \{S_q\}$ cells, $\tau < \sigma$ facets, $\kappa(\sigma, \tau)$ incidence $\Rightarrow C_*(S, \partial^{\kappa})$ chain complex.

- $\{S^a\}_{a \in \mathbb{R}^k}$ is a *multi-filtration* of S if
 - $a \leq b \Rightarrow S^a \subseteq S^b$,
 - $\sigma \in S^a, \ \tau \leq \sigma \ \Rightarrow \ \tau \in S^a$.

Persistent homology

$$H^{a,b}_q(\mathsf{S}) := \operatorname{im} H_q(j^{(a,b)}) \;,\; j^{(a,b)} : \, \mathsf{S}^a \hookrightarrow \, \mathsf{S}^b.$$

 $\begin{array}{l} (\mathtt{A}, \mathtt{B}, \mathtt{C}, \mathtt{m}) \text{ on } (\mathtt{S}, \kappa), \, \sigma \in \mathtt{A} \implies \textit{reduced complex } (\overline{\mathtt{S}}, \overline{\kappa}), \\ \overline{\mathtt{S}} = \mathtt{S} \setminus \{ \mathtt{m}(\sigma), \sigma \}, \, \texttt{and} \ \overline{\kappa} : \overline{\mathtt{S}} \times \overline{\mathtt{S}} \rightarrow \textbf{R}, \end{array}$

$$\overline{\kappa}(\eta,\xi) = \kappa(\eta,\xi) - \kappa(\eta,\sigma)\kappa(\mathfrak{m}(\sigma),\xi)\kappa^{-1}(\mathfrak{m}(\sigma),\sigma).$$

Isomorphism Lemma

$$\begin{array}{lll} H_*(\mathbb{S}^a) & \stackrel{H_*(j^{(a,b)})}{\longrightarrow} & H_*(\mathbb{S}^b) \\ \downarrow \cong & & \downarrow \cong & , \ a \preceq b. \\ H_*(\overline{\mathbb{S}}^a) & \stackrel{H_*(j^{(a,b)})}{\longrightarrow} & H_*(\overline{\mathbb{S}}^b) \end{array}$$

Iterated reductions

$$\mathcal{K}^a =: S^a(0) \supset S^a(1) \supset \ldots \supset S^a(n) = C^a$$

Corollary

For every $a \leq b$, $H^{a,b}_*(\mathcal{C}) \cong H^{a,b}_*(\mathcal{K})$. Moreover, the diagram

$$\begin{array}{ccc} H_*(\mathcal{K}^a) & \stackrel{H_*(j^{(a,b)})}{\longrightarrow} & H_*(\mathcal{K}^b) \\ \downarrow \cong & & \downarrow \cong & a \preceq b. \\ H_*(\mathcal{C}^a) & \stackrel{H_*(j^{(a,b)})}{\longrightarrow} & H_*(\mathcal{C}^b) \end{array}$$

commutes.

Worst case cost $O(N \gamma m^2)$, $m := \overline{\overline{\mathbb{C}}}$.

Best results when grid is fixed ($\Rightarrow \gamma$ constant) and *m* small w.r.t. *N*.

< □ > < □ > < □ > < □ > < □ >

f-compatible mdm functions g

Recall that $g : \mathcal{K} \to \mathbb{R}^k$ is *mdm* if

- (1) card $H_g(\alpha) \leq 1$;
- (2) card $T_g(\alpha) \le 1$;
- (3) If $\beta^{(p+1)} > \alpha$ is not in $H_g(\alpha)$, then $g(\alpha) \not\supseteq g(\beta)$;
- (4) If $\gamma^{(p-1)} < \alpha$ is not in $T_g(\alpha)$, then $g(\gamma) \not\supseteq g(\alpha)$.

Proposition

Any $f : \mathcal{K} \to \mathbb{R}^k$ used as input in the Matching Algorithm satisfies conditions (3) and (4).

In general, (1) and (2) may fail.

 $\sigma \in \mathcal{K}$ is *primary*, if it is classified by Matching Algorithm at the beginning of processing its own lower star at lines 7 or 10. $P = \{\sigma_{i_i}\}$ all primary simplices ordered increasingly by *I*.

Proposition

The lower stars of primary simplices $L(\sigma_{i_i})$ form a partition of \mathcal{K} .

Definition

- $g:\mathcal{K}
 ightarrow \mathbb{R}^k$ is f-compatible provided that
- (1) $f(\alpha) \not\supseteq f(\beta) \Rightarrow g(\alpha) \not\supseteq g(\beta)$; and
- (2) if α, β ∈ L(σ_{ij}) for a primary σ_{ij} and α is classified earlier than β, then g(α) ≠ g(β).

Theorem

Let $g : \mathcal{K} \to \mathbb{R}^k$ be *f*-compatible. Then *g* is an mdm function, and its partial matching coincides with that produced by Matching Algorithm.

Theorem

There exist f-compatible functions g.

Tomasz	Kaczyns	ski (UdeS)
--------	---------	------------

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Interpretation of retrieved critical cells

Left and center: gradient vector fields of two scalar functions f_1 , f_2 .

Right: critical cells of dimension 0 in yellow, dimension 1 in blue and dimension 2 in red for $f = (f_1, f_2)$ as retrieved by Matching Algorithm.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Pareto: smooth and discrete

Left: Pareto critical curves for two projection maps. Right: Critical cells retrieved by the algorithm: vertices - yellow, edges - blue, triangles - red.

Tomasz Kaczynski (UdeS)

Future work

- Improve construction of *f*-compatible mdm functions *g*.
- Continue developing extension of the combinatorial Morse theory to multidimensional functions.
- Further experiments, applications, and optimization.
- M. Allili, TK, and C. Landi, *Reducing complexes in multidimensional persistent homology theory*, J. Symb. Comp. **78** (2017), 61–75.
- —, —, —, and F. Masoni, *Algorithmic construction of acyclic partial matchings for multidimensional persistence*, in DGCI 2017.

 —, —, —, —, Acyclic Partial Matchings for Multidimensional Persistence: Algorithm and Combinatorial Interpretation, preprint 2018.

Gracias por su atención!

< □ > < □ > < □ > < □ > < □ > < □ >