
Decomposition of exact 2-d

persistence modules

Workshop on Multiparameter Persistent Homology
Casa Matemática Oaxaca, August 2018

— joint work with J. Cochoy

Steve Oudot

— arXiv 1605.09726 (math.RT)

Context: richer descriptors for data

1

scale

from 1-parameter... ...to multi-parameter

cu
rv

a
tu

re

scale

?

Barcodes from decompositions (1-d)

2

scale

M '
⊕
i∈I

tbik[t] ⊕
⊕
j∈J

tbj
k[t]

tsjk[t]

discrete setting: M : Z→ vectk

→ fg graded module over k[t]

continuous setting: M : R→ vectk

→ pfd representation of poset (R,≤)

M '
⊕
j∈J

kIj

indicator module
on interval Ij

Ij

[Crawley-Boevey]

dgmM : dgmM :

this is given e.g. in Ringel’s Izmir notes this holds because Zn is a locally finite poset, and M is locally finite-dimensional

Existence of decompositions (multi-d)

3

discrete setting: M : Zd → vectk continuous setting: M : Rd → vectk

M '
⊕
j∈J

Mj (indecomposables)

• bounded support: by recurrence

• unbounded support: [Ringel]

M '
⊕
j∈J

Mj [Botnan, Crawley-Boevey]

→ pfd representation of poset (Rd,≤)

this is given e.g. in Ringel’s Izmir notes this holds because Zn is a locally finite poset, and M is locally finite-dimensional

mention results around this fact, e.g. [Botnan et al.] on the embedding of Rep of [n,m] with horizontal surjections into [n,m− 1]

Existence of decompositions (multi-d)

3

discrete setting: M : Zd → vectk continuous setting: M : Rd → vectk

M '
⊕
j∈J

Mj (indecomposables)

• bounded support: by recurrence

• unbounded support: [Ringel]

Q: shape of indecomposables?

(
1
0

)
(

0
1

)
(1 1)k

k

k2

k

k

k

k2

k
f1

f5

V1

V5

V0

V2

V3

V4

V0⊕
ViV1

V2

V3

V4

V5

∑
fi

↪→
f.f.

non-thin summands wild-type

M '
⊕
j∈J

Mj [Botnan, Crawley-Boevey]

→ pfd representation of poset (Rd,≤)

Note: - every block module is exact by construction, and exactness is stable under taking direct sums, hence the reverse implication is trivial. - M pfd implies that J is locally finite, more precisely that the set of blocks in the decomposition is locally finite (every point small enough neighborhood stabs only finitely many blocks)

this is given e.g. in Ringel’s Izmir notes this holds because Zn is a locally finite poset, and M is locally finite-dimensional

mention results around this fact, e.g. [Botnan et al.] on the embedding of Rep of [n,m] with horizontal surjections into [n,m− 1]

Existence of decompositions (multi-d)

3

discrete setting: M : Zd → vectk continuous setting: M : Rd → vectk

M '
⊕
j∈J

Mj (indecomposables)

• bounded support: by recurrence

• unbounded support: [Ringel]

Q: shape of indecomposables?

(
1
0

)
(

0
1

)
(1 1)k

k

k2

k

k

k

k2

k
f1

f5

V1

V5

V0

V2

V3

V4

V0⊕
ViV1

V2

V3

V4

V5

∑
fi

↪→
f.f.

non-thin summands wild-type

Thm: [Cochoy, O.]

M : R2 → vectk exact

⇐⇒
M '

⊕
j∈J kBj

Bj : block

Note: - every block module is exact by construction, and exactness is stable under taking direct sums, hence the reverse implication is trivial. - M pfd implies that J is locally finite, more precisely that the set of blocks in the decomposition is locally finite (every point small enough neighborhood stabs only finitely many blocks)

This implies a strong correlation between the two coordinates: basically, whenever an element in M(t) has preimages in both M(sx, ty) and M(tx, sy), it also has a preimage in M(s). Note: this is somewhat weaker than a push-out square since there is no terminal → 0 in the exact sequence. As such, M is not a sheaf.

Existence of decompositions (multi-d)

3

continuous setting: M : Rd → vectk

Thm: [Cochoy, O.]

M : R2 → vectk exact

⇐⇒
M '

⊕
j∈J kBj

Bj : block

M(sx, ty)
δ // M(t)

M(s)

β

OO

α //

ρ

66

M(tx, sy)

γ

OO

M(s)
φ= (α, β) // M(tx, sy)⊕M(sx, ty)

ψ= γ−δ // M(t)

Exactness:
s

t

Im φ = Kerψ

Im φ ⊆ Kerψ: commutativity

Im φ ⊇ Kerψ: ∃ preimages in M(tx, sy) and M(sx, ty) ⇒ ∃ common preimage in M(s)

Note: - every block module is exact by construction, and exactness is stable under taking direct sums, hence the reverse implication is trivial. - M pfd implies that J is locally finite, more precisely that the set of blocks in the decomposition is locally finite (every point small enough neighborhood stabs only finitely many blocks)

This implies a strong correlation between the two coordinates: basically, whenever an element in M(t) has preimages in both M(sx, ty) and M(tx, sy), it also has a preimage in M(s). Note: this is somewhat weaker than a push-out square since there is no terminal → 0 in the exact sequence. As such, M is not a sheaf.

Existence of decompositions (multi-d)

3

continuous setting: M : Rd → vectk

Thm: [Cochoy, O.]

M : R2 → vectk exact

⇐⇒
M '

⊕
j∈J kBj

Bj : block

M(sx, ty)
δ // M(t)

M(s)

β

OO

α //

ρ

66

M(tx, sy)

γ

OO

M(s)
φ= (α, β) // M(tx, sy)⊕M(sx, ty)

ψ= γ−δ // M(t)

Exactness:
s

t

Im φ = Kerψ

Im φ ⊆ Kerψ: commutativity

Im φ ⊇ Kerψ: ∃ preimages in M(tx, sy) and M(sx, ty) ⇒ ∃ common preimage in M(s)

Im ρ = Im γ ∩ Im δ

Ker ρ = Kerα+Kerβ

if you start from two zigzag modules F,G then you get a bound on the bottleneck distance between their diagrams in terms of the interleaving distance between their Kan extensions M,N

Consequences

4

Stability of pfd zigzag modules:

F,G : ZZ→ vectk M,N : R2 → vectk B-dec

∆

Thm: [Botnan, Lesnick] [Bjerkevik]

db(F,G) := db(dgmM,dgmN) = di(M,N)

· · · · · ·
(Kan ext.)

if you start from two zigzag modules F,G then you get a bound on the bottleneck distance between their diagrams in terms of the interleaving distance between their Kan extensions M,N

Consequences

4

Stability of pfd zigzag modules:

F,G : ZZ→ vectk M,N : R2 → vectk B-dec

∆

Thm: [Botnan, Lesnick] [Bjerkevik]

db(F,G) := db(dgmM,dgmN) = di(M,N)

· · · · · ·
(Kan ext.)

Application to interlevel-sets persistence:

f, g : X → R Morse
H0(f−1(·);k)

 M,N : R2
>∆ → vectk B-dec

(a, b) 7→ (−a, b)

F,G : Int→ vectk

(right Kan ext.)

M,N : R2 → vectk B-dec

thm ⇒ db(dgmM,dgmN) = di(M,N) ≤ ‖f − g‖∞

if you start from two zigzag modules F,G then you get a bound on the bottleneck distance between their diagrams in terms of the interleaving distance between their Kan extensions M,N

Consequences

4

Stability of pfd zigzag modules:

F,G : ZZ→ vectk M,N : R2 → vectk B-dec

∆

Thm: [Botnan, Lesnick] [Bjerkevik]

db(F,G) := db(dgmM,dgmN) = di(M,N)

· · · · · ·
(Kan ext.)

Application to interlevel-sets persistence:

thm + our result ⇒ db(dgmM,dgmN) = di(M,N) ≤ ‖f − g‖∞

f, g : X → R pfd
Hr(f−1(·);k)

 M,N : R2
>∆ → vectk exact

(a, b) 7→ (−a, b)

F,G : Int→ vectk

(right Kan ext.)

M,N : R2 → vectk exact
see also [Carlsson, de Silva, Kalǐsnik, Morozov]

internal direct sum

note: there can only be finitely many copies of kI in M because M is pfd

Proof of the theorem (1-d case) [Crawley-Boevey]

5

Overview:

1. Define a counting functor for each interval I:

CI : vectRk → vectk

M 7→ kmult(kI ;M) (mult(kI ;M) := max{n |M ' knI ⊕N})

2. Define an embedding operator (non-functorial) for each interval I:

M 7→MI ≤M such that MI ' kmult(kI ;M)
I

3. Show that M =
⊕

IMI

show that the MI ’s are in direct sum

show that the sum of the MI ’s covers M

Proof of the theorem (1-d case) [Crawley-Boevey]

5

Overview:

2. Define an embedding operator (non-functorial) for each interval I:

M 7→MI ≤M such that MI ' kmult(kI ;M)
I

3. Show that M =
⊕

IMI

show that the MI ’s are in direct sum

show that the sum of the MI ’s covers M

1. Define a counting functor for each interval I:

CI : vectRk → vectk

M 7→ kmult(kI ;M) (mult(kI ;M) := max{n |M ' knI ⊕N})

Counting functor (1-d case)

6

For I = (a, b):
I

a bt

• Im+
I (t) :=

⋂
a<s≤t

ImM(s→ t) (elements alive at least since a and still at t)

• Im−I (t) :=
∑
s≤a

ImM(s→ t) (elements born before a and still alive at t)

Im+
I (t)/Im

−
I (t) (elements alive at t that were born at a)

note: in this special case, intersection = kerM(t→ d).

note: due to total order, sum = union.

Counting functor (1-d case)

6

For I = (a, b):
I

a bt

• Im+
I (t) :=

⋂
a<s≤t

ImM(s→ t) (elements alive at least since a and still at t)

• Im−I (t) :=
∑
s≤a

ImM(s→ t) (elements born before a and still alive at t)

• Ker+
I (t) :=

⋂
s≥b

KerM(t→ s) (elements alive at t but not after b)

• Im−I (t) :=
∑
t≤s<b

KerM(s→ t) (elements alive at t and dead before b)

Ker+
I (t)/Ker−I (t) (elements alive at t that die at b)

note: in this special case, intersection = kerM(t→ d).

note: due to total order, sum = union.

Counting functor (1-d case)

6

For I = (a, b):
I

a bt

• Im+
I (t) :=

⋂
a<s≤t

ImM(s→ t) (elements alive at least since a and still at t)

• Im−I (t) :=
∑
s≤a

ImM(s→ t) (elements born before a and still alive at t)

• Ker+
I (t) :=

⋂
s≥b

KerM(t→ s) (elements alive at t but not after b)

• Im−I (t) :=
∑
t≤s<b

KerM(s→ t) (elements alive at t and dead before b)

CI(t) :=
(
Im+

I (t) ∩Ker+
I (t)

)
/
((
Im+

I (t) ∩Ker−I (t)
)
+
(
Im−I (t) ∩Ker+

I (t)
)){ {

(alive at least since a but not after b) (alive since a but dead before b) + (alive until b but born before a)

f : M → N takes images to images and kernels to kernels ⇒ induces maps Im±M,I(t)→ Im±N,I(t) and Ker±M,I(t)→ Ker±N,I(t) then C±M,I(t)→ C±N,I(t) and then CM,I(t)→ CN,I(t) and finally (by universality of the limit) CI(M)→ CI(N)

In other words, if M decomposes as a number of copies of the constant module over I and some other summand, then CI(M) encodes that number of copies

note: defined on morphisms in the obvious manner

Counting functor (1-d case)

6

For I = (a, b):
I

a bt

CI(t) :=
(
Im+

I (t) ∩Ker+
I (t)

)
/
((
Im+

I (t) ∩Ker−I (t)
)
+
(
Im−I (t) ∩Ker+

I (t)
)){ {

(alive at least since a but not after b) (alive since a but dead before b) + (alive until b but born before a)

Prop: For t ≤ t′ ∈ (a, b), M(t −→ t′) induces CI(t)
'−→ CI(t

′)

Prop: dimCI(M) = mult(kI ;M)

CI(M) := lim←−
t∈I

CI(t)

t′

functorial construction

internal direct sum

note: there can only be finitely many copies of kI in M because M is pfd

Proof of the theorem (1-d case) [Crawley-Boevey]

7

Overview:

1. Define a counting functor for each interval I:

CI : vectRk → vectk

M 7→ kmult(kI ;M) (mult(kI ;M) := max{n |M ' knI ⊕N})

2. Define an embedding operator (non-functorial) for each interval I:

M 7→MI ≤M such that MI ' kmult(kI ;M)
I

3. Show that M =
⊕

IMI

show that the MI ’s are in direct sum

show that the sum of the MI ’s covers M

in particular, we can take a vector space complement of the smaller limit in the bigger one, to get an ”embedded” realization of CI via the cone maps

thus, we get a submodule of M that is isomorphic to RI ◦ CI(M)

by the Mittag-Leffler condition, this exact sequence goes to the limit, thus giving isomorphism of the two constructions

the quotient at each t gives an exact sequence as follows

alternatively, we could have taken the inverse limits of the C±I (t) then taken the quotient of the limitsthis is how we defined our counting functor

Embedding of summands (1-d case)

8

CI(t) :=
(
Im+

I (t) ∩Ker+
I (t)

)
/
((
Im+

I (t) ∩Ker−I (t)
)
+
(
Im−I (t) ∩Ker+

I (t)
)){ {

C+
I (t) C−I (t)

W := vector space complement of C−I (M) in C+
I (M)

C±I (M) := lim←−
t∈I

C±I (t)

0 // C−I (M) // C+
I (M) // CI(M) // 0 is exact

CI(M) := lim←−
t∈I

CI(t)

0 // C−I (t) // C+
I (t)

// CI(t) // 0 is exact for all t ∈ I⇒

(Mittag-Leffler)

 W ' CI(M)

MI(t) := πt(MI) where the πt are the (injective) cone maps for C+
I (M)

internal direct sum

note: there can only be finitely many copies of kI in M because M is pfd

Proof of the theorem (1-d case) [Crawley-Boevey]

9

Overview:

1. Define a counting functor for each interval I:

CI : vectRk → vectk

M 7→ kmult(kI ;M) (mult(kI ;M) := max{n |M ' knI ⊕N})

2. Define an embedding operator (non-functorial) for each interval I:

M 7→MI ≤M such that MI ' kmult(kI ;M)
I

3. Show that M =
⊕

IMI

show that the MI ’s are in direct sum

show that the sum of the MI ’s covers M

Direct sum (1-d case)

10

Base case: MI vs. MJ with sup I 6= sup J

I

t

J

u

MI(t) ∩MJ(t) 6= 0

<

⇒ MI(u) ∩MJ(u) 6= 0

⇒ MI(u) 6= 0 (contradiction)

Direct sum (1-d case)

10

Base case: MI vs. MJ with sup I 6= sup J

I

t

J

u

MI(t) ∩MJ(t) 6= 0

Variant case: MI vs. MJ with sup I = sup J and inf I 6= inf J

Ker±I (t) = Ker±J (t)

<

<

I

t

J

⇒ MI(u) ∩MJ(u) 6= 0

⇒ MI(u) 6= 0 (contradiction)

Im+
I (t) ⊆ Im−J (t)

C+
I (t) ⊆ C

−
J (t) ⇒ MI(t) ∩MJ(t) = 0

internal direct sum

note: there can only be finitely many copies of kI in M because M is pfd

Proof of the theorem (1-d case) [Crawley-Boevey]

11

Overview:

1. Define a counting functor for each interval I:

CI : vectRk → vectk

M 7→ kmult(kI ;M) (mult(kI ;M) := max{n |M ' knI ⊕N})

2. Define an embedding operator (non-functorial) for each interval I:

M 7→MI ≤M such that MI ' kmult(kI ;M)
I

3. Show that M =
⊕

IMI

show that the MI ’s are in direct sum

show that the sum of the MI ’s covers M

by contradiction

Covering M (1-d case)

12

Approach: show that
∑
IMI(t) =M(t) for every t ∈ R

tu

u := inf{s ≤ t | X (ImM(s→ t)}

Suppose X :=
∑
IMI(t) (M(t):

t v

v := sup{s ≥ t | KerM(t→ s) (X}

Im−(u,v)(t) ⊆ X + Im+
(u,v)(t)

Ker−(u,v)(t) ⊆ X + Ker+
(u,v)(t)

⇒ C−(u,v)(t) ⊆ X + C+
(u,v)(t)

Then:

M(u,v)(t) * X :=
∑
IMI(t)

⇒

(contradiction)

internal direct sum

note: there can only be finitely many copies of kI in M because M is pfd

Proof of the theorem (1-d case) [Crawley-Boevey]

13

Overview:

1. Define a counting functor for each interval I:

CI : vectRk → vectk

M 7→ kmult(kI ;M) (mult(kI ;M) := max{n |M ' knI ⊕N})

2. Define an embedding operator (non-functorial) for each interval I:

M 7→MI ≤M such that MI ' kmult(kI ;M)
I

3. Show that M =
⊕

IMI

show that the MI ’s are in direct sum

show that the sum of the MI ’s covers M

internal direct sum

note: there can only be finitely many copies of kI in M because M is pfd

Proof of the theorem (exact 2-d case) [Cochoy, O.]

14

Overview:

1. Define a counting functor for each block B:

CB : Exact vectR
2

k → vectk

M 7→ kmult(kB ;M) (mult(kB ;M) := max{n |M ' knB ⊕N})

2. Define an embedding operator (non-functorial) for each block B:

M 7→MB ≤M such that MB ' kmult(kB ;M)
B

3. Show that M =
⊕

BMB

show that the MB ’s are in direct sum

show that the sum of the MB ’s covers M

the maps from spaces in Im−B to t do not factor through all the spaces at s ≤ t ∈ B

Specificity of the exact 2-d case

15

product order on R2 is not total∑
s/∈B
s≤t

Im M(s→ t) *
⋂
s∈B
s≤t

Im M(s→ t)

∑
u∈B
u≥t

KerM(t→ u) *
⋂
u/∈B
u≥t

KerM(t→ u)

t

t

B

B

s

u

the maps from spaces in Im−B to t do not factor through all the spaces at s ≤ t ∈ B

Specificity of the exact 2-d case

15

t
Im

+
h

(t) Im
−
h

(t)

t

Im
− v

(
t
)

t t

Im
+ v

(
t
)

Ker
+
h

(t)

K
e
r
+ v

(
t
)

Ker
−
h

(t)

K
e
r
− v

(
t
)

product order on R2 is not total

exactness ⇒ may restrict focus
to horizontal and vertical lines

B B

B B⋂
s∈B
s≤t

ImM(s→ t) = Im +
h (t) ∩ Im +

v (t)

∑
s/∈B
s≤t

Im M(s→ t) *
⋂
s∈B
s≤t

Im M(s→ t)

∑
u∈B
u≥t

KerM(t→ u) *
⋂
u/∈B
u≥t

KerM(t→ u)

∑
u∈B
u≥t

KerM(t→ u) = Ker−h (t) + Ker−v (t)

Similarly, for any u /∈ B and u ≥ t, the morphism M(t→ u) factors through M(ux, ty) or M(tx, uy), and so KerM(t→ u) ⊇ KerM(t→ (ux, ty)) or KerM(t→ (tx, uy)), which implies that
∑

u/∈B,u≥t KerM(t→ u) = Ker−h (t) + Ker−v (t)

Note: for any s /∈ B and s ≤ t, the morphism M(s→ t) factors through M(sx, ty) or M(tx, sy), and so ImM(s→ t) ⊆ ImM((sx, ty)→ t) or ImM((tx, sy)→ t), which implies that
∑

s/∈B,s≤t ImM(s→ t) = Im−h (t) + Im−v (t)

the maps from spaces in Im−B to t do not factor through all the spaces at s ≤ t ∈ B

Specificity of the exact 2-d case

15

product order on R2 is not total

exactness ⇒ may restrict focus
to horizontal and vertical lines⋂

s∈B
s≤t

ImM(s→ t) = Im +
h (t) ∩ Im +

v (t)

∑
s/∈B
s≤t

Im M(s→ t) *
⋂
s∈B
s≤t

Im M(s→ t)

∑
u∈B
u≥t

KerM(t→ u) *
⋂
u/∈B
u≥t

KerM(t→ u)

∑
u∈B
u≥t

KerM(t→ u) = Ker−h (t) + Ker−v (t)

=: Im +
B(t)

=: Ker−B(t)

(
Im−h (t) + Im−v (t)

)
∩ Im +

B(t)

=: Im−B(t)

Ker−B(t) +
(

Ker +
h (t) ∩Ker +

v (t)
)

=: Ker +
B(t)

Similarly, for any u /∈ B and u ≥ t, the morphism M(t→ u) factors through M(ux, ty) or M(tx, uy), and so KerM(t→ u) ⊇ KerM(t→ (ux, ty)) or KerM(t→ (tx, uy)), which implies that
∑

u/∈B,u≥t KerM(t→ u) = Ker−h (t) + Ker−v (t)

Note: for any s /∈ B and s ≤ t, the morphism M(s→ t) factors through M(sx, ty) or M(tx, sy), and so ImM(s→ t) ⊆ ImM((sx, ty)→ t) or ImM((tx, sy)→ t), which implies that
∑

s/∈B,s≤t ImM(s→ t) = Im−h (t) + Im−v (t)

the maps from spaces in Im−B to t do not factor through all the spaces at s ≤ t ∈ B

Specificity of the exact 2-d case

15

product order on R2 is not total

exactness ⇒ may restrict focus
to horizontal and vertical lines⋂

s∈B
s≤t

ImM(s→ t) = Im +
h (t) ∩ Im +

v (t)

∑
s/∈B
s≤t

Im M(s→ t) *
⋂
s∈B
s≤t

Im M(s→ t)

∑
u∈B
u≥t

KerM(t→ u) *
⋂
u/∈B
u≥t

KerM(t→ u)

∑
u∈B
u≥t

KerM(t→ u) = Ker−h (t) + Ker−v (t)

=: Im +
B(t)

=: Ker−B(t)

(
Im−h (t) + Im−v (t)

)
∩ Im +

B(t)

=: Im−B(t)

Ker−B(t) +
(

Ker +
h (t) ∩Ker +

v (t)
)

=: Ker +
B(t)

duality:

Im±M∗,B(t) =
(
Ker∓M,B(t)

)⊥
Ker±M∗,B(t) =

(
Im∓M,B(t)

)⊥

Similarly, for any u /∈ B and u ≥ t, the morphism M(t→ u) factors through M(ux, ty) or M(tx, uy), and so KerM(t→ u) ⊇ KerM(t→ (ux, ty)) or KerM(t→ (tx, uy)), which implies that
∑

u/∈B,u≥t KerM(t→ u) = Ker−h (t) + Ker−v (t)

Note: for any s /∈ B and s ≤ t, the morphism M(s→ t) factors through M(sx, ty) or M(tx, sy), and so ImM(s→ t) ⊆ ImM((sx, ty)→ t) or ImM((tx, sy)→ t), which implies that
∑

s/∈B,s≤t ImM(s→ t) = Im−h (t) + Im−v (t)

the maps from spaces in Im−B to t do not factor through all the spaces at s ≤ t ∈ B

Specificity of the exact 2-d case

15

product order on R2 is not total

exactness ⇒ may restrict focus
to horizontal and vertical lines⋂

s∈B
s≤t

ImM(s→ t) = Im +
h (t) ∩ Im +

v (t)

∑
s/∈B
s≤t

Im M(s→ t) *
⋂
s∈B
s≤t

Im M(s→ t)

∑
u∈B
u≥t

KerM(t→ u) *
⋂
u/∈B
u≥t

KerM(t→ u)

∑
u∈B
u≥t

KerM(t→ u) = Ker−h (t) + Ker−v (t)

=: Im +
B(t)

=: Ker−B(t)

(
Im−h (t) + Im−v (t)

)
∩ Im +

B(t)

=: Im−B(t)

Ker−B(t) +
(

Ker +
h (t) ∩Ker +

v (t)
)

=: Ker +
B(t)

duality:

Im±M∗,B(t) =
(
Ker∓M,B(t)

)⊥
Ker±M∗,B(t) =

(
Im∓M,B(t)

)⊥
definitions of counting functor and

embedding operator go through

Direct sum (exact 2-d case)

16

Base case: MB vs. MB′ with supB 6= supB′

MB(t) ∩MB′(t) 6= 0 ⇒ MB(u) ∩MB′(u) 6= 0

B

B′

t

u

⇒ MB′(u) 6= 0 (contradiction)

Direct sum (exact 2-d case)

16

Base case: MB vs. MB′ with supB 6= supB′

MB(t) ∩MB′(t) 6= 0 ⇒ MB(u) ∩MB′(u) 6= 0

Variant case: MB vs. MB′ with supB = supB′ and inf B 6= inf B′

Im+
B(t) ⊆ Im−B′(t)

⇒ MB(t) ∩MB′(t) = 0

B

B′

t

u

⇒ MB′(u) 6= 0 (contradiction)

Ker±B(t) = Ker±B′(t)

Im+
B(t) ∩ Im+

B′(t) ⊆ Im−B′(t)

B
B′

B

B′

by contradiction

Covering M (exact 2-d case)

17

Approach: show that
∑
BMB(t) =M(t) for every t ∈ R2

Problem:
{
Im±B(t)

}
B

separates any X (M(t), but
{
Ker±B(t)

}
B

doesn’t

Suppose X :=
∑
BMB(t) (M(t):

B

B′

t

M(t) = 〈α, β〉

@B” s.t. Ker−B”(t) ⊆ 〈α+ β〉 + Ker+
B”(t)

by contradiction

Covering M (exact 2-d case)

17

Approach: show that
∑
BMB(t) =M(t) for every t ∈ R2

Problem:
{
Im±B(t)

}
B

separates any X (M(t), but
{
Ker±B(t)

}
B

doesn’t

Suppose X :=
∑
BMB(t) (M(t):

B

B′

t

M(t) = 〈α, β〉

@B” s.t. Ker−B”(t) ⊆ 〈α+ β〉 + Ker+
B”(t)

{ker∓B(t)
⊥}B separates any Y (M∗(t)

affects only the coverage by death quadrants

Notes:

by contradiction

Covering M (exact 2-d case)

17

Approach: show that
∑
BMB(t) =M(t) for every t ∈ R2

Problem:
{
Im±B(t)

}
B

separates any X (M(t), but
{
Ker±B(t)

}
B

doesn’t

Suppose X :=
∑
BMB(t) (M(t):

Fix: isolate the contribution of death quadrants to the coverage:

N(t) := Im +
R2 (t) ∩Ker−R2 (t) contribution of death quadrants

M = N ⊕
⊕

B: band or
birth quadrant

MB coverage by other blocks

N∗ =
⊕

B: birth quadrant
in (R2)op

N∗B
coverage of N by death quadrants

18

continuous setting: M : Rd → vectk

Thm: [Cochoy, O.]

M : R2 → vectk exact

⇐⇒
M '

⊕
j∈J kBj

Bj : block

M(sx, ty)
δ // M(t)

M(s)

β

OO

α //

ρ

66

M(tx, sy)

γ

OO

M(s)
φ= (α, β) // M(tx, sy)⊕M(sx, ty)

ψ= γ−δ // M(t)

Exactness:
s

t

Im φ = Kerψ

Im φ ⊆ Kerψ: commutativity

Im φ ⊇ Kerψ: ∃ preimages in M(tx, sy) and M(sx, ty) ⇒ ∃ common preimage in M(s)

Im ρ = Im γ ∩ Im δ

Ker ρ = Kerα+Kerβ

A conjecture

18

continuous setting: M : Rd → vectk

Thm: [Cochoy, O.]

M : R2 → vectk exact

⇐⇒
M '

⊕
j∈J kBj

Bj : block

M(sx, ty)
δ // M(t)

M(s)

β

OO

α //

ρ

66

M(tx, sy)

γ

OO

M(s)
φ= (α, β) // M(tx, sy)⊕M(sx, ty)

ψ= γ−δ // M(t)

Exactness:
s

t

Im φ = Kerψ

Im φ ⊆ Kerψ: commutativity

Im φ ⊇ Kerψ: ∃ preimages in M(tx, sy) and M(sx, ty) ⇒ ∃ common preimage in M(s)

Im ρ = Im γ ∩ Im δ

Ker ρ = Kerα+Kerβ

blocks

rectangles

A conjecture

weak exactness

18

continuous setting: M : Rd → vectk

M(sx, ty)
δ // M(t)

M(s)

β

OO

α //

ρ

66

M(tx, sy)

γ

OO

M(s)
φ= (α, β) // M(tx, sy)⊕M(sx, ty)

ψ= γ−δ // M(t)

Exactness:
s

t

Im φ = Kerψ

Im φ ⊆ Kerψ: commutativity

Im φ ⊇ Kerψ: ∃ preimages in M(tx, sy) and M(sx, ty) ⇒ ∃ common preimage in M(s)

Im ρ = Im γ ∩ Im δ

Ker ρ = Kerα+Kerβ

blocks

rectangles

A conjecture

weak exactness

Conjecture:

M : R2 → vectk weakly exact

⇐⇒
M '

⊕
j∈J kBj

Bj : rectangle

18

continuous setting: M : Rd → vectk

M(sx, ty)
δ // M(t)

M(s)

β

OO

α //

ρ

66

M(tx, sy)

γ

OO

M(s)
φ= (α, β) // M(tx, sy)⊕M(sx, ty)

ψ= γ−δ // M(t)

Exactness:
s

t

Im φ = Kerψ

Im φ ⊆ Kerψ: commutativity

Im φ ⊇ Kerψ: ∃ preimages in M(tx, sy) and M(sx, ty) ⇒ ∃ common preimage in M(s)

Im ρ = Im γ ∩ Im δ

Ker ρ = Kerα+Kerβ

A conjecture

Conjecture:

M : R2 → vectk weakly exact

⇐⇒
M '

⊕
j∈J kBj

Bj : rectangle

counting functor & embedding operator

direct sum coverage

