Workshop on Multiparameter Persistent Homology Casa Matemática Oaxaca, August 2018

Decomposition of exact 2-d persistence modules

Steve Oudot

— joint work with J. Cochoy — arXiv 1605.09726 (math.RT)

Context: richer descriptors for data

from 1-parameter...

...to multi-parameter

Barcodes from decompositions (1-d)

discrete setting: $M: \mathbb{Z} \rightarrow$ vect $_{k}$
$\rightarrow \mathrm{fg}$ graded module over $\boldsymbol{k}[t]$

continuous setting: $M: \mathbb{R} \rightarrow \operatorname{vect}_{\boldsymbol{k}}$
$\rightarrow \mathrm{pfd}$ representation of poset (\mathbb{R}, \leq)

$\operatorname{dgm} M$:

Existence of decompositions (multi-d)

discrete setting: $M: \mathbb{Z}^{d} \rightarrow$ vect $_{k}$

$$
M \simeq \bigoplus_{j \in J} M_{j} \quad \text { (indecomposables) }
$$

- bounded support: by recurrence
- unbounded support: [Ringel]
continuous setting: $M: \mathbb{R}^{d} \rightarrow \operatorname{vect}_{k}$
$\rightarrow \mathrm{pfd}$ representation of poset $\left(\mathbb{R}^{d}, \leq\right)$

$$
M \simeq \bigoplus M_{j} \quad[\text { Botnan, Crawley-Boevey }]
$$

Existence of decompositions (multi-d)

discrete setting: $M: \mathbb{Z}^{d} \rightarrow \operatorname{vect}_{\boldsymbol{k}}$

$$
M \simeq \bigoplus_{j \in J} M_{j} \quad \text { (indecomposables) }
$$

- bounded support: by recurrence
- unbounded support: [Ringel]
continuous setting: $M: \mathbb{R}^{d} \rightarrow \operatorname{vect}_{\boldsymbol{k}}$
$\rightarrow \mathrm{pfd}$ representation of poset $\left(\mathbb{R}^{d}, \leq\right)$

$$
M \simeq \bigoplus_{j \in J} M_{j} \quad[\text { Botnan, Crawley-Boevey }]
$$

Q: shape of indecomposables?

non-thin summands

wild-type

Existence of decompositions (multi-d)

discrete setting: $M: \mathbb{Z}^{d} \rightarrow \operatorname{vect}_{\boldsymbol{k}}$

$$
M \simeq \bigoplus_{j \in J} M_{j} \quad \text { (indecomposables) }
$$

- bounded support: by recurrence
- unbounded support: [Ringel]
continuous setting: $M: \mathbb{R}^{d} \rightarrow \operatorname{vect}_{\boldsymbol{k}}$
Thm: [Cochoy, O.]

$$
M: \mathbb{R}^{2} \rightarrow \operatorname{vect}_{\boldsymbol{k}} \text { exact }
$$

$$
M \simeq \bigoplus_{j \in J} \boldsymbol{k}_{B_{j}}
$$

B_{j} : block

Q: shape of indecomposables?

non-thin summands

wild-type

Existence of decompositions (multi-d)

Exactness:

$$
M(s) \xrightarrow{\phi=(\alpha, \beta)} M\left(t_{x}, s_{y}\right) \oplus M\left(s_{x}, t_{y}\right) \xrightarrow{\psi=\gamma-\delta} M(t) \quad \operatorname{Im} \phi=\operatorname{Ker} \boldsymbol{\psi}
$$

$\operatorname{Im} \phi \subseteq \operatorname{Ker} \psi:$ commutativity
$\operatorname{Im} \phi \supseteq \operatorname{Ker} \psi: \exists$ preimages in $M\left(t_{x}, s_{y}\right)$ and $M\left(s_{x}, t_{y}\right) \Rightarrow \exists$ common preimage in $M(s)$

Existence of decompositions (multi-d)

Exactness:

$$
M(s) \xrightarrow{\phi=(\alpha, \beta)} M\left(t_{x}, s_{y}\right) \oplus M\left(s_{x}, t_{y}\right) \xrightarrow{\psi=\gamma-\delta} M(t) \quad \operatorname{Im} \phi=\operatorname{Ker} \boldsymbol{\psi}
$$

$\lceil\operatorname{Im} \phi \subseteq \operatorname{Ker} \psi:$ commutativity
$\operatorname{Im} \phi \supseteq \operatorname{Ker} \psi: \exists$ preimages in $M\left(t_{x}, s_{y}\right)$ and $M\left(s_{x}, t_{y}\right) \Rightarrow \exists$ common preimage in $M(s)$

$$
\operatorname{Im} \rho=\operatorname{Im} \gamma \cap \operatorname{Im} \delta
$$

$\operatorname{Ker} \rho=\operatorname{Ker} \alpha+\operatorname{Ker} \beta$

Consequences

Stability of pfd zigzag modules:

$$
F, G: \mathbb{Z} \mathbb{Z} \rightarrow \operatorname{vect}_{\boldsymbol{k}}
$$

(Kan ext.)

Thm: [Botnan, Lesnick] [Bjerkevik]

$$
\mathrm{d}_{\mathrm{b}}(F, G):=\mathrm{d}_{\mathrm{b}}(\operatorname{dgm} M, \operatorname{dgm} N)=\mathrm{d}_{i}(M, N)
$$

Consequences

Stability of pfd zigzag modules:

$$
F, G: \mathbb{Z} \mathbb{Z} \rightarrow \operatorname{vect}_{k} \quad \sim
$$

(Kan ext.)

$$
\begin{aligned}
& \text { Thm: [Botnan, Lesnick] [Bjerkevik] } \\
& \qquad \mathrm{d}_{\mathrm{b}}(F, G):=\mathrm{d}_{\mathrm{b}}(\operatorname{dgm} M, \operatorname{dgm} N)=\mathrm{d}_{i}(M, N)
\end{aligned}
$$

Application to interlevel-sets persistence: $f, g: X \rightarrow \mathbb{R}$ Morse $\longrightarrow F, G:$ Int $\rightarrow \operatorname{vect}_{k} \leadsto M, N: \mathbb{R}_{>\Delta}^{2} \rightarrow \operatorname{vect}_{k}$ B-dec

$$
\mathrm{H}_{0}\left(f^{-1}(\cdot) ; \boldsymbol{k}\right) \quad(a, b) \mapsto(-a, b)
$$

thm $\Rightarrow \mathrm{d}_{\mathrm{b}}(\operatorname{dgm} M, \operatorname{dgm} N)=\mathrm{d}_{i}(M, N) \leq\|f-g\|_{\infty}$

$$
\begin{aligned}
& \sum_{(\text {right Kan ext.) }} \\
M, N: \mathbb{R}^{2} & \rightarrow \operatorname{vect}_{\boldsymbol{k}} \text { B-dec }
\end{aligned}
$$

Consequences

Stability of pfd zigzag modules:

$$
F, G: \mathbb{Z} \mathbb{Z} \rightarrow \text { vect }_{k} \quad \leadsto \quad M, N: \mathbb{R}^{2} \rightarrow \operatorname{vect}_{k} \text { B-dec }
$$

(Kan ext.)

Thm: [Botnan, Lesnick] [Bjerkevik]

$$
\mathrm{d}_{\mathrm{b}}(F, G):=\mathrm{d}_{\mathrm{b}}(\operatorname{dgm} M, \operatorname{dgm} N)=\mathrm{d}_{i}(M, N)
$$

Application to interlevel-sets persistence: $f, g: X \rightarrow \mathbb{R}$ pfd $\leadsto F, G:$ Int $\rightarrow \operatorname{vect}_{k} \quad \leadsto M, N: \mathbb{R}_{>\Delta}^{2} \rightarrow \operatorname{vect}_{k}$ exact $\mathrm{H}_{r}\left(f^{-1}(\cdot) ; k\right) \quad(a, b) \mapsto(-a, b)$
thm + our result $\Rightarrow \mathrm{d}_{\mathrm{b}}(\mathrm{dgm} M, \operatorname{dgm} N)=\mathrm{d}_{i}(M, N) \leq\|f-g\|_{\infty}$ \sum (right Kan ext.) see also [Carlsson, de Silva, Kališnik, Morozov]

Proof of the theorem (1-d case) [Crawley-Boevey]

Overview:

1. Define a counting functor for each interval I :

$$
C_{I}: \left\lvert\, \begin{aligned}
& \operatorname{vect}_{k}^{\mathbb{R}} \rightarrow \operatorname{vect}_{\boldsymbol{k}} \\
& M \mapsto \boldsymbol{k}^{\operatorname{mult}\left(\boldsymbol{k}_{I} ; M\right)} \quad\left(\operatorname{mult}\left(\boldsymbol{k}_{I} ; M\right):=\max \left\{n \mid M \simeq \boldsymbol{k}_{I}^{n} \oplus N\right\}\right)
\end{aligned}\right.
$$

2. Define an embedding operator (non-functorial) for each interval I :

$$
M \mapsto M_{I} \leq M \text { such that } M_{I} \simeq \boldsymbol{k}_{I}^{\operatorname{mult}\left(\boldsymbol{k}_{I} ; M\right)}
$$

3. Show that $M=\bigoplus_{I} M_{I}$
\rightarrow show that the M_{I} 's are in direct sum
\rightarrow show that the sum of the M_{I} 's covers M

Proof of the theorem (1-d case) [Crawley-Boevey]

Overview:

1. Define a counting functor for each interval I :

$$
C_{I}: \left\lvert\, \begin{aligned}
& \operatorname{vect}_{k}^{\mathbb{R}} \rightarrow \operatorname{vect}_{k} \\
& M \mapsto \boldsymbol{k}^{\operatorname{mult}\left(\boldsymbol{k}_{I} ; M\right)} \quad\left(\operatorname{mult}\left(\boldsymbol{k}_{I} ; M\right):=\max \left\{n \mid M \simeq \boldsymbol{k}_{I}^{n} \oplus N\right\}\right)
\end{aligned}\right.
$$

2. Define an embedding operator (non-functorial) for each interval I :

$$
M \mapsto M_{I} \leq M \text { such that } M_{I} \simeq \boldsymbol{k}_{I}^{\operatorname{mult}\left(\boldsymbol{k}_{I} ; M\right)}
$$

3. Show that $M=\bigoplus_{I} M_{I}$
\rightarrow show that the M_{I} 's are in direct sum
\rightarrow show that the sum of the M_{I} 's covers M

Counting functor (1-d case)

For $I=(a, b)$:

- $\operatorname{Im}_{I}^{+}(t):=\bigcap_{a<s \leq t} \operatorname{Im} M(s \rightarrow t) \quad$ (elements alive at least since a and still at t)
- $\operatorname{Im}_{I} \overline{-}(t):=\sum_{s \leq a} \operatorname{Im} M(s \rightarrow t) \quad$ (elements born before a and still alive at t)
$\checkmark \operatorname{Im}_{I}^{+}(t) / \operatorname{Im}_{I}^{-}(t) \quad$ (elements alive at t that were born at a)

Counting functor (1-d case)

For $I=(a, b)$:

- $\operatorname{Im}_{I}^{+}(t):=\bigcap_{a<s \leq t} \operatorname{Im} M(s \rightarrow t) \quad$ (elements alive at least since a and still at t)
- $\operatorname{Im}_{I}(t):=\sum_{s \leq a} \operatorname{Im} M(s \rightarrow t) \quad$ (elements born before a and still alive at t)
- $\operatorname{Ker}_{I}^{+}(t):=\bigcap_{s \geq b} \operatorname{Ker} M(t \rightarrow s) \quad$ (elements alive at t but not after b)
- $\operatorname{Im}_{I}(t):=\sum_{t \leq s<b} \operatorname{Ker} M(s \rightarrow t) \quad$ (elements alive at t and dead before b)
$\rightarrow \operatorname{Ker}_{I}^{+}(t) / \operatorname{Ker}_{I}^{-}(t) \quad($ elements alive at t that die at $b)$

Counting functor (1-d case)

For $I=(a, b)$:

- $\operatorname{Im}_{I}^{+}(t):=\bigcap_{a<s \leq t} \operatorname{Im} M(s \rightarrow t) \quad$ (elements alive at least since a and still at t)
- $\operatorname{Im}_{I} \bar{I}^{-}(t):=\sum_{s \leq a} \operatorname{Im} M(s \rightarrow t) \quad$ (elements born before a and still alive at t)
- $\operatorname{Ker}_{I}^{+}(t):=\bigcap_{s \geq b} \operatorname{Ker} M(t \rightarrow s) \quad$ (elements alive at t but not after b)
- $\operatorname{Im}_{I}^{-}(t):=\sum_{t \leq s<b} \operatorname{Ker} M(s \rightarrow t) \quad$ (elements alive at t and dead before b)

Counting functor (1-d case)

For $I=(a, b)$:

Prop: For $t \leq t^{\prime} \in(a, b), M\left(t \longrightarrow t^{\prime}\right)$ induces $C_{I}(t) \xrightarrow{\simeq} C_{I}\left(t^{\prime}\right)$

$$
\longrightarrow C_{I}(M):=\lim _{t \in I} C_{I}(t)
$$

functorial construction

Prop: $\operatorname{dim} C_{I}(M)=\operatorname{mult}\left(\boldsymbol{k}_{I} ; M\right)$

$$
C_{I}(t):=\left(\operatorname{Im}_{I}^{+}(t) \cap \operatorname{Ker}_{I}^{+}(t)\right) /\left(\left(\operatorname{Im}_{I}^{+}(t) \cap \operatorname{Ker}_{I}^{-}(t)\right)+\left(\operatorname{Im}_{I}^{-}(t) \cap \operatorname{Ker}_{I}^{+}(t)\right)\right)
$$

Proof of the theorem (1-d case) [Crawley-Boevey]

Overview:

1. Define a counting functor for each interval I :

$$
C_{I}: \left\lvert\, \begin{aligned}
& \operatorname{vect}_{k}^{\mathbb{R}} \rightarrow \operatorname{vect}_{\boldsymbol{k}} \\
& M \mapsto \boldsymbol{k}^{\operatorname{mult}\left(\boldsymbol{k}_{I} ; M\right)} \quad\left(\operatorname{mult}\left(\boldsymbol{k}_{I} ; M\right):=\max \left\{n \mid M \simeq \boldsymbol{k}_{I}^{n} \oplus N\right\}\right)
\end{aligned}\right.
$$

2. Define an embedding operator (non-functorial) for each interval I :

$$
M \mapsto M_{I} \leq M \text { such that } M_{I} \simeq \boldsymbol{k}_{I}^{\operatorname{mult}\left(\boldsymbol{k}_{I} ; M\right)}
$$

3. Show that $M=\bigoplus_{I} M_{I}$
\rightarrow show that the M_{I} 's are in direct sum
\rightarrow show that the sum of the M_{I} 's covers M

Embedding of summands (1-d case)

$$
\begin{aligned}
& C_{I}(t):=\underbrace{\left(\operatorname{Im}_{I}^{+}(t) \cap \operatorname{Ker}_{I}^{+}(t)\right.}_{C_{I}^{+}(t)}) /\left(\left(\operatorname{Im}_{I}^{+}(t) \cap \operatorname{Ker}_{I}^{-}(t)\right)+\left(\operatorname{Im}_{I}^{-}(t) \cap \operatorname{Ker}_{I}^{+}(t)\right)\right) \\
& C_{I}(M):=\lim _{\overleftarrow{t \in I}} C_{I}(t) \\
& C_{I}^{ \pm}(M):=\lim _{\overleftarrow{t \in I}} C_{I}^{ \pm}(t) \\
& 0 \longrightarrow C_{I}^{-}(t) \longrightarrow C_{I}^{+}(t) \longrightarrow C_{I}(t) \longrightarrow 0 \text { is exact for all } t \in I \\
& \downarrow \text { (Mittag-Leffler) } \\
& 0 \longrightarrow C_{I}^{-}(M) \longrightarrow C_{I}^{+}(M) \longrightarrow C_{I}(M) \longrightarrow 0 \text { is exact }
\end{aligned}
$$

$W:=$ vector space complement of $C_{I}^{-}(M)$ in $C_{I}^{+}(M) \leadsto W \simeq C_{I}(M)$
$M_{I}(t):=\pi_{t}\left(M_{I}\right)$ where the π_{t} are the (injective) cone maps for $C_{I}^{+}(M)$

Proof of the theorem (1-d case) [Crawley-Boevey]

Overview:

1. Define a counting functor for each interval I :

$$
C_{I}: \left\lvert\, \begin{aligned}
& \operatorname{vect}_{k}^{\mathbb{R}} \rightarrow \operatorname{vect}_{\boldsymbol{k}} \\
& M \mapsto \boldsymbol{k}^{\operatorname{mult}\left(\boldsymbol{k}_{I} ; M\right)} \quad\left(\operatorname{mult}\left(\boldsymbol{k}_{I} ; M\right):=\max \left\{n \mid M \simeq \boldsymbol{k}_{I}^{n} \oplus N\right\}\right)
\end{aligned}\right.
$$

2. Define an embedding operator (non-functorial) for each interval I :

$$
M \mapsto M_{I} \leq M \text { such that } M_{I} \simeq \boldsymbol{k}_{I}^{\operatorname{mult}\left(\boldsymbol{k}_{I} ; M\right)}
$$

3. Show that $M=\bigoplus_{I} M_{I}$
\rightarrow show that the M_{I} 's are in direct sum
\rightarrow show that the sum of the M_{I} 's covers M

Direct sum (1-d case)

Base case: M_{I} vs. M_{J} with $\sup I \neq \sup J$
$<$

$$
\begin{aligned}
& M_{I}(t) \cap M_{J}(t) \neq 0 \\
& \quad \Rightarrow M_{I}(u) \cap M_{J}(u) \neq 0 \\
& \quad \Rightarrow M_{I}(u) \neq 0 \text { (contradiction) }
\end{aligned}
$$

Direct sum (1-d case)

Base case: M_{I} vs. M_{J} with $\sup I \neq \sup J$

$$
\begin{aligned}
& M_{I}(t) \cap M_{J}(t) \neq 0 \\
& \quad \Rightarrow M_{I}(u) \cap M_{J}(u) \neq 0 \\
& \quad \Rightarrow M_{I}(u) \neq 0 \text { (contradiction) }
\end{aligned}
$$

Variant case: M_{I} vs. M_{J} with $\sup I=\sup J$ and $\inf I \neq \inf J$

$$
\int \operatorname{Ker}_{I}^{ \pm}(t)=\operatorname{Ker}_{J}^{ \pm}(t)
$$

$$
\operatorname{Im}_{I}^{+}(t) \subseteq \operatorname{Im}_{J}^{-}(t)
$$

$C_{I}^{+}(t) \subseteq C_{J}^{-}(t) \Rightarrow M_{I}(t) \cap M_{J}(t)=0$

Proof of the theorem (1-d case) [Crawley-Boevey]

Overview:

1. Define a counting functor for each interval I :

$$
C_{I}: \left\lvert\, \begin{aligned}
& \operatorname{vect}_{k}^{\mathbb{R}} \rightarrow \operatorname{vect}_{\boldsymbol{k}} \\
& M \mapsto \boldsymbol{k}^{\operatorname{mult}\left(\boldsymbol{k}_{I} ; M\right)} \quad\left(\operatorname{mult}\left(\boldsymbol{k}_{I} ; M\right):=\max \left\{n \mid M \simeq \boldsymbol{k}_{I}^{n} \oplus N\right\}\right)
\end{aligned}\right.
$$

2. Define an embedding operator (non-functorial) for each interval I :

$$
M \mapsto M_{I} \leq M \text { such that } M_{I} \simeq \boldsymbol{k}_{I}^{\operatorname{mult}\left(\boldsymbol{k}_{I} ; M\right)}
$$

3. Show that $M=\bigoplus_{I} M_{I}$
\rightarrow show that the M_{I} 's are in direct sum
\rightarrow show that the sum of the M_{I} 's covers M

Covering M (1-d case)

Approach: show that $\sum_{I} M_{I}(t)=M(t)$ for every $t \in \mathbb{R}$
Suppose $X:=\sum_{I} M_{I}(t) \subsetneq M(t)$:
$u:=\inf \{s \leq t \mid X \subsetneq \operatorname{Im} M(s \rightarrow t)\}$

$v:=\sup \{s \geq t \mid \operatorname{Ker} M(t \rightarrow s) \subsetneq X\}$

Then:

$$
\left.\begin{array}{rl}
\operatorname{Im}_{(u, v)}^{-}(t) \subseteq X \nsupseteq \operatorname{Im}_{(u, v)}^{+}(t) \\
\operatorname{Ker}_{(u, v)}^{-}(t) \subseteq X \nsupseteq \operatorname{Ker}_{(u, v)}^{+}(t)
\end{array}\right] \Rightarrow \begin{gathered}
\\
\\
\\
\\
\\
\\
\\
M_{(u, v)}^{-}(t) \subseteq X \nsupseteq C_{(u, v)}^{+}(t) \nsubseteq X:=\sum_{I} M_{I}(t) \\
\\
\\
\\
\text { (contradiction) }
\end{gathered}
$$

Proof of the theorem (1-d case) [Crawley-Boevey]

Overview:

1. Define a counting functor for each interval I :

$$
C_{I}: \left\lvert\, \begin{aligned}
& \operatorname{vect}_{k}^{\mathbb{R}} \rightarrow \operatorname{vect}_{\boldsymbol{k}} \\
& M \mapsto \boldsymbol{k}^{\operatorname{mult}\left(\boldsymbol{k}_{I} ; M\right)} \quad\left(\operatorname{mult}\left(\boldsymbol{k}_{I} ; M\right):=\max \left\{n \mid M \simeq \boldsymbol{k}_{I}^{n} \oplus N\right\}\right)
\end{aligned}\right.
$$

2. Define an embedding operator (non-functorial) for each interval I :

$$
M \mapsto M_{I} \leq M \text { such that } M_{I} \simeq \boldsymbol{k}_{I}^{\operatorname{mult}\left(\boldsymbol{k}_{I} ; M\right)}
$$

3. Show that $M=\bigoplus_{I} M_{I}$
\rightarrow show that the M_{I} 's are in direct sum
\rightarrow show that the sum of the M_{I} 's covers M

Proof of the theorem (exact 2-d case) [Cochoy, o.]

Overview:

1. Define a counting functor for each block B :

$$
\begin{aligned}
& C_{B}: \mid \text { Exact } \operatorname{vect}_{k}^{\mathbb{R}^{2}} \rightarrow \text { vect }_{k} \\
& M \mapsto \boldsymbol{k}^{\operatorname{mult}\left(\boldsymbol{k}_{B} ; M\right)} \quad\left(\operatorname{mult}\left(\boldsymbol{k}_{B} ; M\right):=\max \left\{n \mid M \simeq \boldsymbol{k}_{B}^{n} \oplus N\right\}\right)
\end{aligned}
$$

2. Define an embedding operator (non-functorial) for each block B :

$$
M \mapsto M_{B} \leq M \text { such that } M_{B} \simeq \boldsymbol{k}_{B}^{\operatorname{mult}\left(\boldsymbol{k}_{B} ; M\right)}
$$

3. Show that $M=\bigoplus_{B} M_{B}$
\rightarrow show that the M_{B} 's are in direct sum
\rightarrow show that the sum of the M_{B} 's covers M

Specificity of the exact 2-d case

$\sum_{\substack{u \in B \\ u \geq t}} \operatorname{Ker} M(t \rightarrow u) \nsubseteq \bigcap_{\substack{u \notin B \\ u \geq t}} \operatorname{Ker} M(t \rightarrow u)$

Specificity of the exact 2-d case

$$
\begin{aligned}
& \sum_{\substack{s \notin B \\
s \leq t}} \operatorname{Im} M(s \rightarrow t) \nsubseteq \bigcap_{\substack{s \in B \\
s \leq t}} \operatorname{Im} M(s \rightarrow t) \\
& \sum_{\substack{u \in B \\
u \geq t}} \operatorname{Ker} M(t \rightarrow u) \nsubseteq \bigcap_{\substack{u \notin B \\
u \geq t}} \operatorname{Ker} M(t \rightarrow u)
\end{aligned}
$$

exactness \Rightarrow may restrict focus to horizontal and vertical lines

$$
\bigcap_{\substack{s \in B \\ s \leq t}} \operatorname{Im} M(s \rightarrow t)=\operatorname{Im}_{h}^{+}(t) \cap \operatorname{Im}_{v}^{+}(t)
$$

$$
\sum_{\substack{u \in B \\ u \geq t}} \operatorname{Ker} M(t \rightarrow u)=\operatorname{Ker}_{h}^{-}(t)+\operatorname{Ker}_{v}^{-}(t)
$$

Specificity of the exact 2-d case

\because product order on \mathbb{R}^{2} is not total

$$
\begin{aligned}
& \sum_{\substack{s \notin B \\
s \leq t}} \operatorname{Im} M(s \rightarrow t) \nsubseteq \bigcap_{\substack{s \in B \\
s \leq t}} \operatorname{Im} M(s \rightarrow t) \\
& \sum_{\substack{u \in B \\
u \geq t}} \operatorname{Ker} M(t \rightarrow u) \nsubseteq \bigcap_{\substack{u \notin B \\
u \geq t}} \operatorname{Ker} M(t \rightarrow u)
\end{aligned}
$$

- exactness \Rightarrow may restrict focus to horizontal and vertical lines

$$
\begin{aligned}
\bigcap_{\substack{s \in B \\
s \leq t}} \operatorname{Im} M(s \rightarrow t) & =\operatorname{Im}_{h}^{+}(t) \cap \operatorname{Im}_{v}^{+}(t) \\
& =: \operatorname{Im}_{B}^{+}(t)
\end{aligned}
$$

$$
\begin{aligned}
\left(\operatorname{Im}_{h}^{-}(t)+\operatorname{Im}_{v}^{-}(t)\right) & \cap \operatorname{Im}_{B}^{+}(t) \\
= & : \operatorname{Im}_{B}^{-}(t)
\end{aligned}
$$

$\begin{aligned} \sum_{\substack{u \in B \\ u \geq t}} \operatorname{Ker} M(t \rightarrow u) & =\operatorname{Ker}_{h}^{-}(t)+\operatorname{Ker}_{v}^{-}(t) \\ & =: \operatorname{Ker}_{B}^{-}(t)\end{aligned}$

$$
\begin{aligned}
\operatorname{Ker}_{B}^{-}(t)+\left(\operatorname{Ker}_{h}^{+}(t)\right. & \left.\cap \operatorname{Ker}_{v}^{+}(t)\right) \\
= & \operatorname{Ker}_{B}^{+}(t)
\end{aligned}
$$

Specificity of the exact 2-d case

\bullet product order on \mathbb{R}^{2} is not total

$$
\sum_{\substack{s \notin B \\ s \leq t}} \operatorname{Im} M(s \rightarrow t) \nsubseteq \bigcap_{\substack{s \in B \\ s \leq t}} \operatorname{Im} M(s \rightarrow t)
$$

$$
\sum_{\substack{u \in B \\ u \geq t}} \operatorname{Ker} M(t \rightarrow u) \nsubseteq \bigcap_{\substack{u \notin B \\ u \geq t}} \operatorname{Ker} M(t \rightarrow u)
$$

(•)exactness \Rightarrow may restrict focus to horizontal and vertical lines

$$
\begin{aligned}
\bigcap_{\substack{s \in B \\
s \leq t}} \operatorname{Im} M(s \rightarrow t) & =\operatorname{Im}_{h}^{+}(t) \cap \operatorname{Im}_{v}^{+}(t) \\
& =: \operatorname{Im}_{B}^{+}(t)
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{\substack{u \in B \\
u \geq t}} \operatorname{Ker} M(t \rightarrow u)=\operatorname{Ker}_{h}^{-}(t)+\operatorname{Ker}_{v}(t) \\
&=: \operatorname{Ker}_{B}^{-}(t)
\end{aligned}
$$

duality:

$$
\begin{aligned}
& \operatorname{Im}_{M^{*}, B}^{ \pm}(t)=\left(\operatorname{Ker}_{M, B}^{\mp}(t)\right)^{\perp} \\
& \operatorname{Ker}_{M^{*}, B}^{ \pm}(t)=\left(\operatorname{Im}_{M, B}^{\mp}(t)\right)^{\perp}
\end{aligned}
$$

$$
\begin{array}{r}
\left(\operatorname{Im}_{h}^{-}(t)+\operatorname{Im}_{\bar{v}}^{-}(t)\right) \\
=: \operatorname{Im}_{B}^{-}(t)
\end{array}
$$

$$
\begin{aligned}
\operatorname{Ker}_{B}^{-}(t)+\left(\operatorname{Ker}_{h}^{+}(t)\right. & \left.\cap \operatorname{Ker}_{v}^{+}(t)\right) \\
= & : \operatorname{Ker}_{B}^{+}(t)
\end{aligned}
$$

Specificity of the exact 2-d case

\bullet product order on \mathbb{R}^{2} is not total

$$
\sum_{\substack{s \notin B \\ s \leq t}} \operatorname{Im} M(s \rightarrow t) \nsubseteq \bigcap_{\substack{s \in B \\ s \leq t}} \operatorname{Im} M(s \rightarrow t)
$$

$$
\sum_{\substack{u \in B \\ u \geq t}} \operatorname{Ker} M(t \rightarrow u) \nsubseteq \bigcap_{\substack{u \notin B \\ u \geq t}} \operatorname{Ker} M(t \rightarrow u)
$$

duality:

$$
\operatorname{Im}_{M^{*}, B}^{ \pm}(t)=\left(\operatorname{Ker}_{M, B}^{\mp}(t)\right)^{\perp}
$$

$$
\operatorname{Ker}_{M^{*}, B}^{ \pm}(t)=\left(\operatorname{Im}_{M, B}^{\mp}(t)\right)^{\perp}
$$ embedding operator go through

exactness \Rightarrow may restrict focus
to horizontal and vertical lines

$$
\begin{aligned}
\bigcap_{\substack{s \in B \\
s \leq t}} \operatorname{Im} M(s \rightarrow t) & =\operatorname{Im}_{h}^{+}(t) \cap \operatorname{Im}_{v}^{+}(t) \\
& =: \operatorname{Im}_{B}^{+}(t)
\end{aligned}
$$

$$
\begin{aligned}
\left(\operatorname{Im}_{h}^{-}(t)+\operatorname{Im}_{v}^{-}(t)\right. &) \cap \operatorname{Im}_{B}^{+}(t) \\
= & : \operatorname{Im}_{B}^{-}(t)
\end{aligned}
$$

$\begin{aligned} \sum_{\substack{u \in B \\ u \geq t}} \operatorname{Ker} M(t \rightarrow u) & =\operatorname{Ker}_{h}^{-}(t)+\operatorname{Ker}_{v}^{-}(t) \\ & =: \operatorname{Ker}_{B}^{-}(t)\end{aligned}$

$$
\begin{aligned}
\operatorname{Ker}_{B}^{-}(t)+\left(\operatorname{Ker}_{h}^{+}(t)\right. & \left.\cap \operatorname{Ker}_{v}^{+}(t)\right) \\
= & \operatorname{Ker}_{B}^{+}(t)
\end{aligned}
$$

Direct sum (exact 2-d case)

Base case: M_{B} vs. $M_{B^{\prime}}$ with $\sup B \neq \sup B^{\prime}$

$$
\begin{aligned}
& M_{B}(t) \cap M_{B^{\prime}}(t) \neq 0 \Rightarrow M_{B}(u) \cap M_{B^{\prime}}(u) \neq 0 \\
& \quad \Rightarrow M_{B^{\prime}}(u) \neq 0 \text { (contradiction) }
\end{aligned}
$$

Direct sum (exact 2-d case)

Base case: M_{B} vs. $M_{B^{\prime}}$ with $\sup B \neq \sup B^{\prime}$

$$
\begin{aligned}
& M_{B}(t) \cap M_{B^{\prime}}(t) \neq 0 \Rightarrow M_{B}(u) \cap M_{B^{\prime}}(u) \neq 0 \\
& \quad \Rightarrow M_{B^{\prime}}(u) \neq 0 \text { (contradiction) }
\end{aligned}
$$

Variant case: M_{B} vs. $M_{B^{\prime}}$ with $\sup B=\sup B^{\prime}$ and $\inf B \neq \inf B^{\prime}$

$$
\begin{aligned}
& \operatorname{Im}_{B}^{+}(t) \subseteq \operatorname{Im}_{B^{\prime}}^{-}(t) \\
& \operatorname{Ker}_{B}^{ \pm}(t)=\operatorname{Ker}_{B^{\prime}}^{ \pm}(t) \\
& \operatorname{Im}_{B}^{+}(t) \cap \operatorname{Im}_{B^{\prime}}^{+}(t) \subseteq \operatorname{Im}_{B^{\prime}}^{-}(t) \\
& \Rightarrow M_{B}(t) \cap M_{B^{\prime}}(t)=0
\end{aligned}
$$

Covering M (exact 2-d case)

Approach: show that $\sum_{B} M_{B}(t)=M(t)$ for every $t \in \mathbb{R}^{2}$
Suppose $X:=\sum_{B} M_{B}(t) \subsetneq M(t)$:

Problem: $\left\{\operatorname{Im}_{B}^{ \pm}(t)\right\}_{B}$ separates any $X \subsetneq M(t)$, but $\left\{\operatorname{Ker}_{B}^{ \pm}(t)\right\}_{B}$ doesn't

Covering M (exact 2-d case)

Approach: show that $\sum_{B} M_{B}(t)=M(t)$ for every $t \in \mathbb{R}^{2}$
Suppose $X:=\sum_{B} M_{B}(t) \subsetneq M(t)$:

Problem: $\left\{\operatorname{Im}_{B}^{ \pm}(t)\right\}_{B}$ separates any $X \subsetneq M(t)$, but $\left\{\operatorname{Ker}_{B}^{ \pm}(t)\right\}_{B}$ doesn't

$$
\nexists B^{\prime \prime} \text { s.t. } \operatorname{Ker}_{B^{\prime \prime}}^{-}(t) \subseteq\langle\alpha+\beta\rangle \nsupseteq \operatorname{Ker}_{B^{\prime}}^{+}(t)
$$

Notes:

affects only the coverage by death quadrants
$\left\{\operatorname{ker}_{B}^{\mp}(t)^{\perp}\right\}_{B}$ separates any $Y \subsetneq M^{*}(t)$

Covering M (exact 2-d case)

Approach: show that $\sum_{B} M_{B}(t)=M(t)$ for every $t \in \mathbb{R}^{2}$
Suppose $X:=\sum_{B} M_{B}(t) \subsetneq M(t)$:

Problem: $\left\{\operatorname{Im}_{B}^{ \pm}(t)\right\}_{B}$ separates any $X \subsetneq M(t)$, but $\left\{\operatorname{Ker}_{B}^{ \pm}(t)\right\}_{B}$ doesn't

Fix: isolate the contribution of death quadrants to the coverage:

$$
\begin{aligned}
& N(t):=\operatorname{Im}_{\mathbb{R}^{2}}^{+}(t) \cap \operatorname{Ker}_{\mathbb{R}^{2}}^{-}(t) \longleftarrow \text { contribution of death quadrants } \\
& M=N \oplus \bigoplus_{\substack{B: \text { band or } \\
\text { birth quadrant }}} M_{B} \longleftarrow \text { coverage by other blocks } \\
& N^{*}=\bigoplus_{B: \text { birth quadrant }}^{\text {in }\left(\mathbb{R}^{2}\right)^{\text {op }}}
\end{aligned} N_{B}^{*} \longleftarrow \text { coverage of } N \text { by death quadran }
$$

A conjecture

Exactness:

continuous setting: $M: \mathbb{R}^{d} \rightarrow \operatorname{vect}_{k}$
Thm: [Cochoy, O.]
$M: \mathbb{R}^{2} \rightarrow \operatorname{vect}_{\boldsymbol{k}}$ exact

$$
M \simeq \bigoplus_{j \in J} \boldsymbol{k}_{B_{j}}
$$

B_{j} : block

$$
M(s) \xrightarrow{\phi=(\alpha, \beta)} M\left(t_{x}, s_{y}\right) \oplus M\left(s_{x}, t_{y}\right) \xrightarrow{\psi=\gamma-\delta} M(t) \quad \operatorname{Im} \phi=\operatorname{Ker} \boldsymbol{\psi}
$$

$\lceil\operatorname{Im} \phi \subseteq \operatorname{Ker} \psi:$ commutativity
$\operatorname{Im} \phi \supseteq$ Ker $\psi: \exists$ preimages in $M\left(t_{x}, s_{y}\right)$ and $M\left(s_{x}, t_{y}\right) \Rightarrow \exists$ common preimage in $M(s)$

A conjecture

Exactness:

$$
M(s) \xrightarrow{\phi=(\alpha, \beta)} M\left(t_{x}, s_{y}\right) \oplus M\left(s_{x}, t_{y}\right) \xrightarrow{\psi=\gamma-\delta} M(t) \quad \operatorname{Im} \phi=\operatorname{Ker} \boldsymbol{\psi}
$$

$\lceil\operatorname{Im} \phi \subseteq \operatorname{Ker} \psi:$ commutativity
$\operatorname{Im} \phi \supseteq \operatorname{Ker} \psi: \exists$ preimages in $M\left(t_{x}, s_{y}\right)$ and $M\left(s_{x}, t_{y}\right) \Rightarrow \exists$ common preimage in $M(s)$

$$
\left[\begin{array}{l}
\operatorname{Im} \rho=\operatorname{Im} \gamma \cap \operatorname{Im} \delta \\
\operatorname{Ker} \rho=\operatorname{Ker} \alpha+\operatorname{Ker} \beta
\end{array}\right] \text { weak exactness blocks }
$$

A conjecture

Exactness:

continuous setting: $M: \mathbb{R}^{d} \rightarrow$ vect $_{k}$

Conjecture:

$M: \mathbb{R}^{2} \rightarrow$ vect $_{k}$ weakly exact

$$
M \simeq \bigoplus_{j \in J} \boldsymbol{k}_{B_{j}}
$$

B_{j} : rectangle

$$
M(s) \xrightarrow{\phi=(\alpha, \beta)} M\left(t_{x}, s_{y}\right) \oplus M\left(s_{x}, t_{y}\right) \xrightarrow{\psi=\gamma-\delta} M(t) \quad \operatorname{Im} \phi=\operatorname{Ker} \psi
$$

$\lceil\operatorname{Im} \phi \subseteq \operatorname{Ker} \psi:$ commutativity
$\operatorname{Im} \phi \supseteq \operatorname{Ker} \psi: \exists$ preimages in $M\left(t_{x}, s_{y}\right)$ and $M\left(s_{x}, t_{y}\right) \Rightarrow \exists$ common preimage in $M(s)$

$$
\left[\begin{array}{l}
\operatorname{Im} \rho=\operatorname{Im} \gamma \cap \operatorname{Im} \delta \\
\operatorname{Ker} \rho=\operatorname{Ker} \alpha+\operatorname{Ker} \beta
\end{array}\right] \text { weak exactness blocks }
$$

A conjecture

Exactness:

$\lceil\operatorname{Im} \phi \subseteq \operatorname{Ker} \psi:$ commutativity
$\operatorname{Im} \phi \supseteq \operatorname{Ker} \psi: \exists$ preimages in $M\left(t_{x}, s_{y}\right)$ and $M\left(s_{x}, t_{y}\right) \Rightarrow \exists$ common preimage in $M(s)$

$$
\begin{array}{ll}
\operatorname{Im} \rho=\operatorname{Im} \gamma \cap \operatorname{Im} \delta & \text { counting functor \& embedding operator } \\
\operatorname{Ker} \rho=\operatorname{Ker} \alpha+\operatorname{Ker} \beta & \text { direct sum }
\end{array}
$$

