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Boolean Functions

Boolean function f : {�1, 1}
n
! {�1, 1}

ANDn(x) =

(
�1 (TRUE) if x = (�1)

n

1 (FALSE) otherwise



Approximate Degree

A real polynomial p ✏-approximates f if

|p(x)� f(x)| < ✏ 8x 2 {�1, 1}
n

gdeg✏(f) = minimum degree needed to ✏-approximate f

gdeg(f) := deg1/3(f) is the approximate degree of f



Threshold Degree

Definition

Let f : {�1, 1}
n
! {�1, 1} be a Boolean function. A polynomial

p sign-represents f if sgn(p(x)) = f(x) for all x 2 {�1, 1}
n.

Definition

The threshold degree of f is min deg(p), where the minimum is
over all sign-representations of f .

An equivalent definition of threshold degree is lim✏%1
gdeg✏(f).



Why Care About Approximate and Threshold Degree?

Upper bounds on gdeg✏(f) and deg±(f) yield e�cient learning

algorithms.

✏ ⇡ 1/3: Agnostic Learning [KKMS05]

✏ ⇡ 1� 2
�n�

: Attribute-E�cient Learning [KS04, STT12]

✏! 1 (i.e., deg±(f) upper bounds): PAC learning [KS01]

Upper bounds on gdeg1/3(f) also imply fast algorithms for
di↵erentially private data release [TUV12, CTUW14].

Upper bounds on gdeg✏(f) and deg±(f) for small formulas and
threshold circuits f yield state of the art formula size and

threshold circuit lower bounds [Tal17, Forster02].
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Why Care About Approximate and Threshold Degree?

Lower bounds on gdeg✏(f) and deg±(f) yield lower bounds on:

Oracle Separations [Bei94, BCHTV16]

Quantum query complexity [BBCMW98]

Communication complexity [She08, SZ08, CA08, LS08, She12]

Lower bounds hold for a communication problem related to f .
Via, e.g., a technique called the Pattern Matrix Method [She08].

✏ ⇡ 1/3 =) BQPcc lower bounds.

✏ ⇡ 1� 2�n�
=): PPcc lower bounds

✏ ! 1 (i.e., deg±(f) lower bounds) =) UPPcc lower bounds.

Lower bounds on gdeg✏(f) and deg±(f) also yield e�cient
secret-sharing schemes [BIVW16]
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Example 1: The Approximate Degree of ANDn



Example: What is the Approximate Degree of ANDn?

gdeg(ANDn) = ⇥(
p
n).

Upper bound: Use Chebyshev Polynomials.

Markov’s Inequality: Let G(t) be a univariate polynomial s.t.
deg(G)  d and supt2[�1,1] |G(t)|  1. Then

sup

t2[�1,1]
|G

0
(t)|  d

2
.

Chebyshev polynomials are the extremal case.



Example: What is the Approximate Degree of ANDn?

gdeg(ANDn) = O(
p
n).

After shifting a scaling, can turn degree O(
p
n) Chebyshev

polynomial into a univariate polynomial Q(t) that looks like:

!"#$%&'()*+*&',*

Define n-variate polynomial p via p(x) = Q(
Pn

i=1 xi/n).

Then |p(x)�ANDn(x)|  1/3 8x 2 {�1, 1}
n.



Example: What is the Approximate Degree of ANDn?

[NS92] gdeg(ANDn) = ⌦(
p
n).

Lower bound: Use symmetrization.

Suppose |p(x)�ANDn(x)|  1/3 8x 2 {�1, 1}
n.

There is a way to turn p into a univariate polynomial psym

that looks like this:

!"#$%&'()*+*&',*

Claim 1: deg(psym)  deg(p).

Claim 2: Markov’s inequality =) deg(p
sym

) = ⌦(n
1/2

).



AND Has Low Threshold Degree

Fact: deg±(ANDn) = 1.

Proof: ANDn(x) = sgn(p(x)) for p(x) = n� 1 +
Pn

i=1 xi.

In fact, p(x)/n approximates ANDn to error 1� 1/n.



Example 2: The Threshold Degree of the
Minsky-Papert DNF



The Minsky-Papert DNF

The Minsky-Papert DNF is MP(x) := ORn1/3 �ANDn2/3 .



The Minsky-Papert DNF

Claim: deg±(MP) = ⌦̃(n
1/3

).

More generally, deg±(ORt �ANDb) � ⌦(min(b
1/2

, t)).

Proved by Minsky and Papert in 1969 via an ad hoc
symmetrization argument.

(Klivans-Servedio 2004): All polysize DNFs have threshold
degree Õ(n

1/3
).

Yields fastest known algorithm for PAC learning DNFs.

We will prove the matching upper bound:

deg±(ORt �ANDb)  Õ(min(b
1/2

, t)).

First, we’ll construct a sign-representation of degree Õ(b
1/2

)

using Chebyshev approximations to ANDb.
Then we’ll construct a sign-representation of degree Õ(t) using
rational approximations to ANDb.
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A Sign-Representation for ORt �ANDb of degree Õ(b
1/2

)

Let p1 be a (Chebyshev-derived) polynomial of degree
O
�p

b · log t
�
approximating ANDb to error 1

8t .

Let p =
1
2 · (1� p1).

p(xi) is “close to 0” if ANDb(xi) is FALSE, and “close to 1”
otherwise.

Then 1
2 �

Pt
i=1 p(xi) sign-represents ORt �ANDb.
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A Sign-Representation for ORt �ANDb of degree Õ(t)

Fact: there exist p1, q1 of degree O(log b · log t) such that
����ANDb(x)�

p1(x)

q1(x)

���� 
1

8t
for all x 2 {�1, 1}

b
.

Let p(x)
q(x) =

1
2 ·

⇣
1�

p1(x)
q1(x)

⌘
.

Then sgn(ORt �ANDb(x)) =
1
2 �

Pt
i=1

p(xi)
q(xi)

=
1

2
�

tX

i=1

p(xi) · q(xi)

q2(xi)
.

Put the sum over common denominator
Qt

i=1q
2
(xi) to obtain:

sgn(ORt �ANDb(x)) = r(x)/

tY

i=1

q
2
(xi)

for r(x) :=

0

@1

2
·

Y

1it

q
2
(xi)

1

A�

tX

i=1

0

@p(xi) · q(xi) ·

Y

1it,i0 6=i

q
2
(xi0)

1

A .
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Recent Progress on Lower Bounds:
Beyond Symmetrization



Beyond Symmetrization

Symmetrization is “lossy”: in turning an n-variate poly p into
a univariate poly p

sym, we throw away information about p.

Challenge problem: What is gdeg(ORt � ANDn/t)?



History of the OR-AND Tree

Theorem
gdeg(ORt � ANDn/t) = ⇥(n

1/2
).

Tight Upper Bound of O(n
1/2

)

[HMW03] via quantum algorithms
[BNRdW07] di↵erent proof of O(n

1/2
log n) (via error reduction+composition)

[She13] di↵erent proof of tight upper bound (via robust composition)

Tight Lower Bound of ⌦(n1/2
)

[BT13] and [She13] via the method of dual polynomials
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Linear Programming Formulation of Approximate Degree

What is best error achievable by any degree d approximation of f?
Primal LP (Linear in ✏ and coe�cients of p):

minp,✏ ✏

s.t. |p(x)� f(x)|  ✏ for all x 2 {�1, 1}
n

deg p  d

Dual LP:

max 
X

x2{�1,1}n

 (x)f(x)

s.t.
X

x2{�1,1}n

| (x)| = 1

X

x2{�1,1}n

 (x)q(x) = 0 whenever deg q  d



Dual Characterization of Approximate Degree

Theorem: deg✏(f) > d i↵ there exists a “dual polynomial”
 : {�1, 1}

n
! R with

(1)

X

x2{�1,1}n

 (x)f(x) > ✏ “high correlation with f”

(2)

X

x2{�1,1}n

| (x)| = 1 “L1-norm 1”

(3)

X

x2{�1,1}n

 (x)q(x) = 0, when deg q  d “pure high degree d”

A lossless technique. Strong duality implies any approximate
degree lower bound can be witnessed by dual polynomial.

Example: 2�n
· PARITYn witnesses the fact that

lim✏%1
gdeg✏(PARITYn) = n.
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Goal: Construct an explicit dual polynomial
 OR-AND for ORt � ANDn/t



Constructing a Dual Polynomial

By [NS92], there are dual polynomials

 OUT for gdeg (ORt) = ⌦(t
1/2

) and

 IN for gdeg
�
ANDn/t

�
= ⌦

⇣
(n/t)

1/2
⌘

Both [She13] and [BT13] combine  OUT and  IN to obtain a
dual polynomial  OR-AND for ORt � ANDn/t.

The combining method was proposed in earlier works [SZ09,
She09, Lee09]. We call it dual block composition.



Dual Block Composition [SZ09, She09, Lee09]

 OR-AND(x1, . . . , xn1/2) := C ·  OUT(. . . , sgn( IN(xi)), . . . )

tY

i=1

| IN(xi)|

(C chosen to ensure  OR-AND has L1-norm 1).

Must verify:

1  OR-AND has pure high degree � t
1/2

·(n/t)
1/2

= n
1/2.

2  OR-AND has high correlation with ORt � ANDn/t.
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Dual Block Composition [SZ09, She09, Lee09]
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Must verify:

1  OR-AND has pure high degree � t
1/2

·(n/t)
1/2

= n
1/2.X[She09]

2  OR-AND has high correlation with ORt �ANDn/t. [BT13, She13]



Proving Hardness Amplification Theorems Via Dual
Block Composition

These theorems show that g � f is “harder to approximate” by
low-degree polynomials than is f alone.
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(Negative) One-Sided Approximate Degree

Negative one-sided approximate degree is an intermediate
notion between approximate degree and threshold degree.

A real polynomial p is a negative one-sided ✏-approximation
for f if

|p(x)� 1| < ✏ 8x 2 f
�1

(1)

p(x)  �1 8x 2 f
�1

(�1)

godeg�,✏(f) = min degree of a negative one-sided
✏-approximation for f .

Examples: godeg�,1/3(ANDn) = ⇥(
p
n); godeg�,1/3(ORn) = 1.
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Hardness-Amplification Theorems: Part 1

Theorem (BT13, She13)

Let f be a Boolean function with godeg�,1/2(f) � d. Let

F = ORt �f . Then gdeg1/2(F ) � d ·
p
t.

Theorem (BT14)

Let f be a Boolean function with godeg�,1/2(f) � d. Let

F = ORt �f . Then gdeg1�2�t(F ) � d.

Theorem (She14)

Let f be a Boolean function with godeg�,1/2(f) � d. Let
F = ORt �f . Then deg±(F ) = ⌦(min{d, t}).
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Recent Theorems: Part 2

For some applications in complexity theory, one needs an even
simpler “hardness-amplifying function” than ORt.

Define GAPMAJt : {�1, 1}
t
! {�1, 1} to be the partial

function that equals:
�1 if at least 2/3 of its inputs are �1

+1 if at least 2/3 of its inputs are +1

undefined otherwise.

Theorem (BCHTV16)

Let f be a Boolean function with gdeg1/2(f) � d. Let

F = GAPMAJt � f . Then gdeg1�2�⌦(t)(F ) � d and
deg±(F ) � ⌦(min{d, t}).
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Proving the Theorem

Theorem (BCHTV16, BT14, BIVW16)

Let f be a Boolean function with gdeg1/2(f) � d. Let
F = GAPMAJt � f . Then deg1�2�⌦(t)(F ) � d.

Let  IN be any dual witness to the fact that gdeg1/2(f) � d.
Define  OUT : {�1, 1}

t
! R via:

 OUT(y) =

8
><

>:

1/2 if y = ALL-FALSE

�1/2 if y = ALL-TRUE

0 otherwise

Combine  OUT and  IN via dual block composition to
obtain a dual witness  F for F .

Must verify:
1  F has pure high degree d.
2  F has correlation at least 1� 2

�⌦(t) with F .
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Proving the Theorem: Pure High Degree

Notice  OUT is balanced (i.e., it has pure high degree 1).

So previous analysis shows  F has pure high degree at least
1 · d = d.



Proving the Theorem: Correlation Analysis

Recall: F = GAPMAJt � f

 F (x1, . . . , xt) := C ·  OUT(. . . , sgn( IN(xi)), . . . )

tY

i=1

| IN(xi)|

Goal: Show
P

x2{�1,1}n  F (x) · F (x) � 1� 2
�⌦(t).

Idea: Show
X

x2{�1,1}n

 F (x) · F (x) =

X

y2{�1,1}t

 OUT(y) · GAPMAJt(y)� 2
�⌦(t)

= 1� 2
�⌦(t)

.

Consider y=(sgn ( IN(x1)) , . . . , sgn ( IN(xt)))=ALL-TRUE.
If a  1/3 fraction of the coordinates yi of y are “in error”,
then F (x)= OUT(y)=�1. ,
Any coordinate yi is “in error” with probability  1/4 under
distribution | IN(xi)|, since  IN is well-correlated with f .
Under product distribution

Qt
i=1 | IN(xi)|, a � 1/3 fraction of

the coordinates of y are in error with probability only 2
�⌦(t).

Identical analysis applies for y = ALL-FALSE.
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Applying the Theorem: Oracle Separations for
Statistical Zero Knowledge



Some Delicious Alphabet Soup

PP is the class of all languages solvable by polynomial time
randomized algorithms that output the correct answer with
probability strictly better than 1/2.

SZK is the class of all languages with e�cient interactive
proofs, in which convincing proofs reveal no information other
than their own validity.

Open Problem (Watrous, 2002): Give an oracle O such that
PPO

6⇢ SZKO.

Remainder of the talk: Solving this problem using the
Theorem just proved.

This is the strongest relativized evidence that SZK contains
intractable problems.

Other consequences of the Theorem: SZKO
6⇢PZKO,

NISZKO
6⇢NIPZKO, PZKO

6⇢coPZKO, and more.
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Query (Decision Tree) Complexity

Let f : {�1, 1}
n
! {�1, 1} be a function and x 2 {�1, 1}

n

be an input to f .
Goal: Compute f(x) by reading as few bits of x as possible.

The PPdt cost of f is the least d such that there is some
randomized algorithm making at most d queries that outputs
f(x) with probability at least 1/2 + 2

�d.
The SZKdt cost of f is the least d such that there is an
interactive proof for the claim that f(x) = �1, where:

The total communication between prover and verifier is  d.
The verifier makes  d queries to x.
A convincing proof reveals nothing to the verifier (other than
f(x) = �1) that the verifier could not have learned by making
d queries to f without ever talking to the prover.

Fact: To give an oracle O s.t. SZKO
6⇢ PPO, it’s enough to

give an f s.t. SZKdt
(f) = O(log n) and PPdt

(f) = n
⌦(1).
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Connecting PPdt and Approximate Degree

Fact: PPdt
(f)  d () gdeg✏(f)  d for ✏ = 1� 2

�d.

Idea for =): For any randomized algorithm A making at
most T queries to x, there is a degree T polynomial p such
that p(x) = Pr[A(x) = �1].

If PPdt
(f) = d, then there is a d-query algorithm A such that

(
f(x) = 1 =) Pr[A(x) = 1] � 1/2 + 2

�d

f(x) = �1 =) Pr[A(x) = 1]  1/2� 2
�d

.

So there is a degree d polynomial p such that:
(
f(x) = 1 =) p(x)� 1/2 2 [2

�d
, 1]

f(x) = �1 =) p(x)� 1/2 2 [�1, 2
�d

]
.
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Summary So Far

Giving an oracle O such that !"#$ ⊆ &&$
Reduces 

To

Giving a function f such that !"#'( ) = + log /
and &&'( ) = /0(2)

Reduces 
To

Giving a func5on f such that !"#'( ) = + log /
and 4deg2789: ) ≥ < for some < = /0(2)



A Problem in SZKdt With Large (1/3)-Approximate Degree

The Permutation Testing Problem (PTP) interprets its input
as a list of N numbers (x1, . . . , xN ) from range {1, . . . , N}.
PTP(x) = �1 if every number between 1 and N appears exactly

once in the list.
PTP(x) = 1 if at least N/2 range items do not appear in the list.
PTP(x) is undefined otherwise.

Fact: SZKdt
(PTP) = O(log n).

Idea: Verifier picks a range item j at random, and demands
that prover provide an i such that xi = j.

Fact: gdeg(PTP) = ⇥̃(n
1/3

) [Aaronson 2012, AS 2004].
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The Punchline: A Problem Separating SZKdt And PPdt

Recall: we seek a function f such that: SZKdt
(f) = O(log n)

and gdeg1�2�d(f) = ⌦(d), for some d = n
⌦(1).

Recall: SZKdt
(PTP)=O(log n), and gdeg(PTP)=⇥̃(n

1/3
).

But gdeg1�1/n(PTP) = O(log n). /
Can we turn PTP into a function F such that
SZKdt

(F ) = O(log n), yet gdeg1�2�d(F ) � d for d = n
⌦(1)?

Yes! Let F = GAPMAJn1/4 � PTPn3/4 .

Claim 1: gdeg
1�2�n1/4 (F ) = ⌦(n

1/4
).

Proof: By Theorem from earlier.

Claim 2: SZKdt
(F ) = O(log n).

Rough Intuition: On input x = (x1, . . . , xn1/4) to F , Verifier
picks a random i 2 {1, . . . , n

1/4
}, and prover proves that

PTP(xi) = �1 in zero-knowledge.
i.e., SZKdt is closed under composition with GAPMAJ.
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Summary

Many important hardness amplifications for approximate
degree have been proven in recent years using the method of
dual polynomials.

These theorems show that the block-composed function g � f

is harder to approximate than f alone, even for very simple
“hardness amplifiers” g.

Most of the proofs use dual block composition and its
variants.

These results led to:
Improved understanding of how subclasses of the polynomial
hierarchy (e.g. SZK), and AC0 circuits, can compute hard
functions in query, communication, and relativized settings.
Secret-sharing schemes with reconstruction procedures in AC0.
and more.

Next talk by Mark Bun: beyond block-composed functions.
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Thank you!


