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When biology speaks, we listen.
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... but it may get too loud, too noisy...
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I Many problem in high dimensional biology can be analyzed
using linear regression

yi = µ+ xtiβ + εi, for i = 1, . . . , n

where xi ∈ Rp are standardized; yi ∈ R is centered;
µ ∈ R; and β ∈ Rp

I In -omics studies p >> n, and not all p covariates are
equally relevant

I Among the p covariates available, many may be highly
correlated, e.g., many genes from a common pathway

I Do we need to listen to the whole rock band? or can we just
listen to the singer?
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Which covariates should be included in the model ...

Variable Selection

... to optimize the prediction of the response?

focused on Prediction Performance

... in a complex high dimensional setting
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Regularization

Select coefficients in a continuous way by adding a bound
to their size

For example,

LASSO: least absolute shrinkage and selection operator
(Tibshirani, JRSS, 1996)

(µ̂, β̂) = argmin
µ,β

n∑
i=1

(
yi − µ− xtiβ

)2
subject to

‖β‖1 ≤ C for some C > 0
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Penalized Estimators

More general, one can define

(µ̂, β̂) = argmin
µ,β

{
n∑
i=1

(
yi − µ− xtiβ

)2
+ λP (β)

}

where P is a penalty function and λ controls the level of
penalization.

For example:

LASSO: (Tibshirani, JRSS, 1996)

I P (β) = ‖β‖1
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Penalty Functions

Other examples:

I Ridge: (Hoerl and Kennard, Technometrics, 1970)
I P (β) = ‖β‖22

I Bridge: (Frank and Friedman, Technometrics, 1993)
I P (β) = ‖β‖qq

Limitations

I Ridge and Bridge do not give sparse solutions.

I If p > n, LASSO can select at most n variables out of p
candidates (Efron et al., Annals of Statistics, 2004).

I If there is a group of highly correlated variables, LASSO
tends to select only one covariate from the group.
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Elastic Net Penalty

Zou and Hastie (JRSS, 2005) proposed

(µ̂, β̂) = argmin
µ,β

{
n∑
i=1

(yi − µ− xiβ)
2
+ λ

(
1− α
2
‖β‖22 + α‖β‖1

)}

I EN combines the selection property of the L1 penalty of LASSO
with the smooth shrinkage of the L2 penalty of Ridge

I EN can select at more variables than observations

I It preserves groups of highly correlated variables

Gabriela Cohen Freue, UBC PENSE



Elastic Net Penalty

Zou and Hastie (JRSS, 2005) proposed

(µ̂, β̂) = argmin
µ,β

{
n∑
i=1

(yi − µ− xiβ)
2
+ λ

(
1− α
2
‖β‖22 + α‖β‖1

)}

I EN combines the selection property of the L1 penalty of LASSO
with the smooth shrinkage of the L2 penalty of Ridge

I EN can select at more variables than observations

I It preserves groups of highly correlated variables

Gabriela Cohen Freue, UBC PENSE



We propose...

Penalized Elastic Net

PENSE
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Are regularized estimators robust?

(µ̂, β̂) = argmin
µ,β

{
n∑
i=1

(
yi − µ− xtiβ

)2
+ λP (β)

}

Regularized estimators are not necessarily
robust!!

I RLARS: Khan, Van Aelst and Zamar, JASA 2007

I S- and MM-Ridge: Maronna, Technometrics, 2011

I sparseLTS: Alfons, Croux, and Gelper, Ann. Appl. Stat,
2013

I MM-Bridge and MM-LASSO: Smucler and Yohai
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PENSE: Penalized Elastic Net S-Estimator

Non-robust:

(µ̂, β̂) = argmin
µ,β

{
n∑
i=1

(
yi − µ− xtiβ

)2
+ λP (β)

}

Robust:

(µ̂, β̂) = argmin
µ,β

{
nσ̂(µ,β)2 + λP (β)

}
where

σ̂ :
1

n

n∑
i=1

ρ

(
ri

σ̂(ri)

)
= δ,
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PENSE: Penalized Elastic Net Estimator

(µ̂, β̂) = argmin
µ,β

{
nσ̂(µ,β)2 + λ

(
1− α
2
‖β‖22 + α‖β‖1

)}

The generalized gradient of the penalized S loss is given by

∇(µ,β)L(µ,β) = 2

[
− 1

n

n∑
i=1

ri(µ,β)wi(µ,β)

(
1
xi

)
+
λS
2

(
0

∇βPα(β)

)]
,
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IRWEN Algorithm

1. Given an initial µ̂(0) and β̂
(0)

, compute the weights wi
2. Solve an EN problem and get updated β̂

(0)
and

corresponding µ̂(0)

3. Iterate until convergence (or maximum number of steps)

Caution
I Robust objective functions are often non-convex and

exhibit multiple optima

I Most optimization algorithms only find local optima

I Where we start determines what local optima is attained

I Initial values play an important role

Topic for another talk...
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Choosing Lambda: another talk!

Gabriela Cohen Freue, UBC PENSE



Proteomics Case Study

Proteomics Biomarker Study of Cardiac Allograft Vasculopathy
I Biomarkers in Transplantation: enrolled patients who

received a heart transplant at St. Paul’s Hospital, BC

I Around one year after transplantation, some patients
presented signs of coronary artery narrowing

I BiT measured (81) protein levels in plasma 37 plasma
samples

I Goal: identify potential biomarkers of CAV
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Potential Biomarkers

PENSE(M) can be uses select the most relevant proteins is
plasma to predict CAV
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Potential Biomarkers

Identified by PENSEM (α = 0.6)

Protein ID Gene Symbol Protein Name
3 C4B/C4A Complement C4-B/C4-A

20 C7 Complement component C7
42 APOE Apolipoprotein E
45 AMBP Protein AMBP
64 CFI Complement factor I
68 SHBG Sex hormone-binding globulin

103 C1QC Complement C1q subunit C
116 APOC2 Apolipoprotein C-II
139 HBD Hemoglobin subunit delta
161 SEPP1 Selenoprotein P
298 HBA2;HBA1;HBZ Hemoglobin subunit alpha/zeta

Some of these were previously associated with CAV (Lin*, Cohen

Freue*, et al., 2013)
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Outlying Patients

PENSE(M) can be uses to flag outlying patients
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Validation

I Independent set of 52 patients collected by BiT in the
second phase of their study.

I A subset of 6 proteins were analyzed by a Multiple
Reaction Monitoring assay (Cohen Freue and Borchers,
2012; Domanski et al., 2012).

I We built a proteomic score using an MM-estimator based
on the resulting data.

I Among these test samples, 12 were flagged as outlying
and removed from the prediction set.

I For the remaining 40 test patients, the stenosis was
predicted by our model.

I A classification based on the predicted stenosis yielded an
AUC of 0.85.
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Conclusions

I We propose robust penalized S- and MM-estimators using an
EN penalty

I LASSO and Ridge penalties are particular cases of the EN
penalty

I We propose an efficient algorithm to compute PENSE and
PENSEM (‘pense‘ available in CRAN)

I PENSE(M) have strong robustness properties: can have a 50%
BDP

I Under some conditions, PENSE(M) are consistent

I PENSE and PENSEM showed a competitive performance
compared to other existing methods

I PENSE and PENSEM can be used to flag outlying patients
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Thank you!
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